8660C SYNTHESIZED SIGNAL GENERATOR

(hp) HEWLETT

CERTIFICATION

Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United States National Bureau of Standards, to the extent allowed by the Bureau's calibration facility, and to the calibration facilities of other International Standards Organization members.

W ARRANTY

This Hewlett-Packard instrument product is warranted against defects in material and workmanship for a period of one year from date of shipment. During the warranty period, Hewlett-Packard Company will, at its option, either repair or replace products which prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by HP. Buyer shall prepay shipping charges to HP and HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to HP from another country.

HP warrants that its software and firmware designated by HP for use with an instrument will execute its programming instructions when properly installed on that instrument. HP does not warrant that the operation of the instrument, or software, or firmware will be uninterrupted or error free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HP SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

ASSISTANCE

Product maintenance agreements and other customer assistance agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office. Addresses are provided at the back of this manual.

To assist you in making the fullest use of the 8660 Synthesizer Signal Generator, Hewlett-Packard prepares Application Notes as new information is available. To receive current notes plus information on new HP Synthesizers and Signal Generators, please fill in the Information Request Card attached.

THEN FOLD HERE

BUSINESS REPLY MAIL

FIRST CLASS

PERMIT No. R-5261
SPOKANE, WASHINGTON

POSTAGE WILL BE PAID BY

HEWLETT-PACKARD COMPANY
1620 Signal Drive
TAF C-34
Spokane, Washington 99220

Attn: Product Marketing

Please send the latest APPLICATION NOTES and new product information on HP Synthesizers and Signal Generators.

NAME
COMPANY
STREET \& NUMBER \qquad
CITY (TOWN)
STATE (PROVINCE) \qquad
COUNTRY \qquad

We'd appreciate your taking a moment to fill in the reverse side of this card.

Digitized by the Internet Archive in 2023 with funding from
 Amateur Radio Digital Communications, Grant 151

Section Page Page
1-1
I GENERAL INFORMATION
1-1. Introduction 1-1
1-6. Specifications 1-1
1-8. Instruments Covered by Manual 1-1
1-13. Description 1-3
1-16. General Operating Principles 1-3
1-23. Options 1-3
1-31. Equipment Required But Not Supplied 1-4
1-33. Equipment Available 1-4
1-35. Accessories Supplied $1-4$
1-37. Warranty 1-4
1-39. Test Equipment and Accessories 1-4
1-41. Electrical Protection $1-4$
II INSTALLATION 2-1
2-1. Introduction 2-1
$2-3$. Initial Inspection 2-1
2-6. Preparation for Use 2-1
2-7. Power Requirements 2-1
2-9. Line Voltage Selection 2-1
2-12. Power Cable 2-2
2-14. Mating Connectors 2-2
2-16. Operating Environment 2-2
2-19. Bench Operation 2-3
2-21. Rack Mounting (Option 908) 2-3
2-23. Storage and Shipment 2-3
2-24. Environment 2-3
2-26. Packaging 2-3
III OPERATION 3-1
3-1. Introduction 3-1
3-4. Panel Features 3-1
3-6. Operator's Maintenance 3-1
$3-8$. Operating Principles 3-1
3-10. Local Operation 3-1
3-13. Operating Modes 3-4
3-22. Operator's Checks 3-4
$3-25$. Modulator Units 3-4
3-27. RF Units 3-9
3-29. Remote Operation 3-9
3-31. General Programming Requirements 3-9
3-33. BCD Remote Operation 3-9
3-44. HP-IB Remote Operation 3-11
IV PERFORMANCE TESTS 4-1
4-1. Introduction 4-1
$4-3$. Equipment Required 4-1
$4-5$. Test Record 4-1
4-7. Internal Crystal Oscillator Aging Rate 4-1
4-8. Reference Test 4-3
V ADJUSTMENTS 5-1
5-1. Introduction 5-1$5-4$. Equipment Required5-1
5-7. Adjustment Aids 5-1
5-9. Factory Selected Components 5-1
5-13. Related Adjustments 5-1
$5-16$. Adjustment Locations 5-1
5-18. Checks and Adjustments 5-1
5-20. Safety Considerations 5-3
$5-26$. Power Supply 5-4
5-27. Reference Section 5-6
$5-28.10 \mathrm{MHz}$ Bandpass Filter Adjustment (After Repair) 5-12
$5-29.10 \mathrm{MHz}$ Bandpass Filter Adjustment 5-13
5-30. High Frequency Section 5-14
5-31. N1 Phase Lock Loop 5-20
5-32. N2 Phase Lock Loop 5-22
5-33. N3 Phase Lock Loop 5-24
5-34. Summing Loop 2 (SL2) 5-26
5-35. Summing Loop 1 (SL1) 5-29
$5-36$. DCU Sweep Output 5-31
VI REPLACEABLE PARTS 6-1
6-1. Introduction 6-1
6-3. Exchange Assemblies 6-1
6-5. Abbreviations 6-1
6-7. Replaceable Parts List 6-1
$6-11$. Ordering Information 6-1
6-14. Spare Parts Kit 6-1
6-16. Illustrated Parts Breakdowns 6-2
VII MANUAL CHANGES 7-1
7-1. Introduction 7.1
7-3. Manual Changes 7.1
7-6. Manual Change Instructions 7-4
7-7. Instrument Improvement Modifications 7-36
7-9. Improvement in Filtering of Reference Sig-nal From Crystal Oscillator is Added tothe A22 Reference Switch Assembly(Serial Prefixes 1416)7-36
7-11. Addition of Shock Mounting for the A21 Reference Oscillator Assembly (Serial Prefixes 1504 and below) 7.-36
7-13. Improvement in FM Distortion while in FM MODE with the Addition of A4A8 (Serial Prefixes 1508 and below) 7-36
7-15. Improvement in Reliability of Power Supply Assemblies Under all Environmental Con- ditions (Serial Prefixes 1520 and below) 7-36
7-17. Improvement in the Adjustment of ReferenceLoop Bandwidth and Capture Range (Ser-ial Prefixes 1538 and below)$7-36$

CONTENTS (Cont'd)

SectionPage7-19. Improvement in Tuning the 10 MHz Trap onthe \emptyset Error Line and Changing CurrentLimit of the +5.25 V Power Supply(Serial Prefixes 1542 and below) .7.36
7-21. Improvement in Reliability with Higher Wattage Resistor (Serial Prefixes 1548 and below) 7-36
7-23. Improvement in Reduction of Spur (Serial Prefixes 1615 and below) $7-36$
7-25. Improvement in Power Detect Circuitry (Serial Prefixes 1629 and below) 7-36
7-27. Improvement in Power Detect Circuitry (Serial Prefixes 1633 and below) 7-37
7-29. Elimination of Voltage Spikes (Serial Prefixes 1636 and below) . . $7-37$
7-31. Elimination of Race Condition (Serial Prefixes 1638 and below) 7-37
7-33. Regulation of the +30 V Supply to the Reference Oscillator Oven (Serial Prefixes 1643 and below) 7-37
7-35. Improvement in Filtering of the -10 V Supply (Serial Prefixes 1702 and below) $7-37$
7-37. Elimination of a Race Condition on the A1A8 Sweep Control Assembly (Serial Prefixes 1707 and below) 7-37
Section
Page
7-39. Improvement in Data Transfer on A3A1 Front Interface Board Assembly (Serial Prefixes 1709 and below) 7-37
7-41. Improvement in Turn-on Status of A1A1 Switch Control Assembly (Serial Prefixes 1722 and below) 7-38
VIII SERVICE 8-1
8-1. Introduction 8-1
8-3. Principles of Operation 8-1
8 -5. Troubleshooting 8-1
8-8. Recommended Test Equipment 8-2
8-11. Repair 8-2
8-12. Factory Selected Components 8-2
8-14. Board Repair 8-2
8-24. Module Exchange 8-3
8-26. Safety Requirements 8-3
8-28. Service Aids 8-3
8-36. Algorithmic State Machines (ASM's) 8-3
8-59. Decimal Entry State Path 8-11
8-65. Units Entry State Path 8-11
8-71. Mnemonics 8-13
8-74. Logic Symbols and Descriptions 8-13
8-78. Troubleshooting 8-13
8-87. Principles of Operation 8-83
8-107. Digital Control Unit Troubleshooting 8-84
8-124. DCU Repair 8-90

ILLUSTRATIONS

Figure Page1-1. Model 8660C and Accessories Supplied1-0
2-1. Line Voltage Selection 2-2
2-2. Power Cable HP Part Numbers 2-3
2-3. Preparation for Rack Mounting 2-3
$3-1$. Front and Rear Panel Controls, Indicators and Connectors 3-2
3-2. Model 8660 C Data Input Timing 3-10
3-3. Model 8660C Error Output Timing 3-10
3-4. Handshake Flow Chart 3-18
3-5. HP-IB Address Switch S1 with Factory Set ASCII
Address Code 3 Selected (1910) 3-19
4-1. Crystal Oscillator Aging Rate Test Setup 4-1
4-2. Internal Reference Test Setup 4-3
5-1. Power Supply Test Setup 5-4
5-2. Reference Accuracy Adjustment Test Setup 5-6
$5-3$. $\quad 100 \mathrm{MHz}$ Adjustment Test Setup 5-7
5-4. RF Level Checks Test Setup 5-7Figure
Page
5-5. RF Level Checks Typical Waveform 5-8
$5-6$. $\quad 100 \mathrm{MHz}$ Band-pass Filter Adjustment Test Setup 5-9
5-7. Oscilloscope Level Checks Test Setup 5-11
5-8. A22A1 Adjustment Test Setup (After Repair) 5-12
5-9. A22A1 Adjustment Test Setup 5-13
5-10. Phase Detector Response Adjustment Test Setup 5-14
5-11. Voltage Controlled Oscillator Adjustments Test Setup 5-16
5-12. Loop Gain Adjustment Test Setup 5-18
5-13. 10 MHz Trap Adjustment Test Setup 5-19
5-14. Output Amplitude Check Test Setup 5-20
5-15. N1 Loop Test Setup 5-20
5-16. N2 Loop Test Setup 5-23
5-17. N3 Loop Test Setup 5-25
5-18. SL1 and SL2 Test Setup 5-27
5-19. SL1 Test Setup 5-29

ILLUSTRATIONS (Cont'd)

Figure Page
6-1. Cabinet Parts 6-57
6 -2. DCU Front Panel Parts 6-58
7-1. Reference Circuit Schematic Backdating
(Partial Diagram, Part of Change A) 7-4
7-2. Reference VCO and Divider Schematic Back- dating (Partial Diagram, Part of Change C) 7-6
7-3. Power Supply Schematic 7-9
7-4. Power Supply Schematic Backdating (Partial Diagram, Part of Change F) 7-11
7-5. HP-IB Output Assembly Schematic Backdating (Partial Diagram, Part of Change H) 7-13
7-6. Option 005 A3A1 Component Locations Backdating (Part of Change 1) $7-15$
7-7. HP-IB Output Assembly Backdating Schematic (Part of Change I) 7-16
7-8. A3A1 Front Interface Board Component Locations Backdating (Part of Change J) 7-18
7-9. A3A1 Front Interface Board Schematic Backdating (Part of Change J) 7-19
7-10. Power Supply Schematic Backdating (Part of Change M) 7-20
7-11. A1A8 Sweep Count Assembly Component Locations Backdating (Part of Change O) 7-21
7-12. A1A8 Sweep Count Assembly Backdating Schematic (Part of Change O) 7-22
7-13. Front Output Interface Board Component Location Backdating (Part of Change P) 7-23
7-14. Front Interface Board Schematic Backdating (Part of Change P) $7-25$
7-15. Option 005 A3A2 Component Locations Backdating (Part of Change X 7-29
7-16. A3A2 Rear Input HP-IB Option 005 Back- dating Schematic (Part of Change X) 7-30
7-17. Option 005 A3A1 Component Locations Backdating (Part of Change X) 7-31
7-18. A3A1 Front Output HP-IB Opt. 005 Back dating Schematic (Part of Change X) 7-32
7-19. Option 005 A3A2 Component Locations Back- dating (Part of Change AB) 7-34
8-1. Examples of Diode and Transistor Marking Methods 8-4
8-2. Model 8660C With Circuit Board Extended for Maintenance 8-6
8-3. Printed Circuit Board Connector Identification, Component Side 8-9
8-4. Printed Circuit Board Connector Identification, Circuit Side 8=9
8-5. Part of the Algorithmic State Machine for Model 8660C DCU 8-12
8-6. Common Gates and Inverters Used in the Model 8660C 8-29
8-7. ASM Block Diagram 8-86
8-8. Sample Flow Chart 8-86
Figure Page
8-9. 8660C Keyboard Simplified Diagram 8-87
8-10. ASM Troubleshooting Flow Chart (for Numeric Key Pressed 8-89
8-11. Integrated Circuit Packaging 8-90
8-12. Model 8660C System Block Diagram 8-91
8-13. Model 8660C Block Diagram 8-93
8-14. A21 Reference Oscillator Assembly 8-95
8-15. A22 Assembly Component Locations 8-95
8-16. A4A2 Reference Phase Detector Component Locations 8.95
8-17. A4A1 Reference Divider Component Locations 8-95
8-18. Reference Circuit Schematics 8-95
8-19. A4A4 Reference VCO Component Locations 8-97
8-20. A4A3 Reference Divide-by-Two Component Locations 8-97
8-21. Reference VCO and Divider Schematic 8-97
8-22. A4A6 HF Loop Pretuning Component Locations 8-99
8-23. HF Loop Pretuning Circuit Schematic 8-99
8-24. A4A7 HF Loop Phase Detector Component Locations 8-101
8-25. Sampling Phase Detector Schematic 8-101
8-26. A4A5 HF Loop VCO Component Locations 8-102
8-27. A4 Assembly Top View 8.103
8-28. A4 Assembly Bottom View 8.103
8-29. VCO and Amplifiers Schematic 8.103
8-30. A16 N1 Phase Detector Component Locations 8-105
8-31. N1 Phase Detector Schematic 8-105
8-32. A17 N1 VCO Component Locations $8-107$
8-33. N1 VCO Schematic 8-107
8-34. A14 N2 Phase Detector Component Locations 8-109
8-35. N2 Phase Detector Schematic 8-109
8-36. A14a N2a Phase Detector Component Locations 8-111
8-37. N2a Phase Detector Schematic 8-111
8-38. A13 N2 VCO Component Locations 8-113
8-39. N2 VCO Schematic 8.113
8-40. A10 N3 Phase Detector Component Locations 8-115
8-41. N3 Phase Detector Schematic $8-115$
8-42. A8 N3 VCO Component Locations 8-117
8-43. N3 VCC Schematic 8-117
8-44. A12 SL2 Phase Detector Component Locations 8.119
8-45. SL2 Phase Detector Schematic 8-119
8-46. A11 SL2 VCO Component Locations 8.121
8-47. SL2 VCO Schematic 8-121

ILLUSTRATIONS (Cont'd)

Figure Page
8-48. A15 SL1 Phase Detector Component Locations 8-123
8-49. SL1 Phase Detector Schematic 8-123
8-50. A18 SL1 Mixer and D/A Converter
Component Locations 8-125
8-51. SL1 Mixer and D/A Converter Schematic 8-125
8.52. A19 SL1 VCO Component Locations 8-127
8-53. SL1 VCO Schematic 8-127
8-54. 8660C DCU (A1) 8-129
8-55. DCU Block Diagram, A1 8-129
8-56. P/O A1A1 Switch Control Assembly Component Locations (Part 1) 8-131
8-57. A1A1 Switch Control Schematic (Part 1) 8-131
8-58. P/O A1A1 Switch Control Assembly Component Locations (Part 2) 8-133
8-59. A1A1 Switch Control Schematic (Part 2) 8-133
8-60. Keyboard Assembly Front View 8-134
8-61. Keyboard Assembly Rear View 8-134
8-62. P/O A1A2 Key Control Assembly Component Locations (Part 1) 8-135
8-63. P/O A1A2 Key Control Schematic (Part 1). 8-135
8-64. P/O A1A2 Key Control Assembly Component Locations (Part 2) 8-137
8-65. P/O A1A2 Key Control Assembly Schematic (Part 2) 8-137
8-66. P/O A1A3 Readout Control Assembly Component Locations (Part 1) 8.139
8-67. P/O A1A3 Readout Control Schematic (Part 1) 8-139
8-68. P/O A1A3 Readout Control Assembly Component Locations (Part 2) 8-141
8-69. P/O A1A3 Readout Control Schematic (Part 2) 8.141
8-70. P/O A1A4 ROM Input Assembly
Component Locations (Part 1) 8-143
8-71. P/O A1A4 ROM Input Schematic (Part 1). 8-143
8-72. P/O A1A4 ROM Input Assembly Component Locations (Part 2) 8-145
8-73. P/O A1A4 ROM Input Schematic (Part 2). 8-145
8-74. P/O A1A5 ROM Output Assembly Component Locations (Part 1) 8-147
8-75. P/O A1A5 ROM Output Schematic (Part 1) 8-147
8-76. P/O A1A5 ROM Output Assembly Component Locations (Part 2) 8-149
8-77. P/O A1A5 ROM Output Schematic (Part 2) 8-149
8-78. P/O A1A6 Register Assembly Component Locations (Part 1) 8-151
8-79. P/O A1A6 Register Schematic (Part 1) 8-151
8-80. P/O A1A6 Register Assembly Component Locations (Part 2) 8-153
Figure Page
8-81. P/O A1A6 Register Schematic (Part 2) 8-153
8-82. P/O A1A6 Register Assembly Component Locations (Part 3) 8.155
8-83. P/O A1A6 Register Schematic (Part 3) 8-155
8-84. A1A7 Arithmetic Logic Unit Component Locations 8-157
8-85. A1A7 Arithmetic Logic Unit 8-157
8-86. A1A8 Sweep Count Assembly Component Locations 8.159
8-87. A1A8 Sweep Count Schematic 8-159
8-88. A1A9 A Register Assembly Component Locations 8-161
8-89. A1A9 A Register Schematic 8-161
8-90. A1A10 Output Register Component Locations 8-163
8-91. A1A10 Output Register Schematic 8-163
8-92. Readout Digit Schematic 8-164
8-93. A1A12 Numeric Readout Assembly Component Locations 8-165
8-94. A1A12 Numeric Readout Schematic 8-165
8-95. Interface Mother Board 8-167
8-96. A3A1 Front Interface Board Component Locations 8-167
8-97. A3A1 Front Interface Board Schematic 8-167
8-98. A3A2 Rear Input Interface Board Component Locations 8.169
8-99. A3A2 Rear Input Interface Board Schematic 8-169
8-100. Option 005 A3A2 Component Locations 8-171
8-101. A3A2 Rear Input HP-IB Option 005 Schematic 8-171
8-102. Option 005 A3A1 Component Locations 8-173
8-103. A3A1 Front Output HP-IB Option 005 Schematic 8-173
8-104. A6A1 Assembly Component Locations Front and Internal Views 8-174
8-105. A5 Component Locations 8-174
8-106. A20 Top and Bottom Component Locations 8-175
8-107. Power Supply Schematic 8-175
8-108. A1A2 Annunciator Assembly and Schematic $8-177$
$8-109$. DCU and Interface Wiring Diagram 8-177
8-110. ASM Flow Chart Example 8-178
8-111. Logic Diagram of IC's Used in DCU Shift Registers 8-179
8-112. DCU Algorithmic State Machine (Flow Graph) 8-179

ILLUSTRATIONS (Cont’d)

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure Page Page Page Page Page Page Page Page Page

8-113. ASM Troubleshooting Flow Chart for

8-113. ASM Troubleshooting Flow Chart for Numeric Key Pressed Numeric Key Pressed 8-180 8-180 8-180 8-180 8-180 8-180 8-180 8-180 8-180

8-114. ASM Troubleshooting Flow Chart for

8-114. ASM Troubleshooting Flow Chart for Decimal Point Key Pressed Decimal Point Key Pressed 8-180 8-180 8-180 8-180 8-180 8-180 8-180 8-180 8-180

8-115. ASM Troubleshooting Flow Chart for

8-115. ASM Troubleshooting Flow Chart for Units Key Pressed Units Key Pressed 8-180 8-180 8-180 8-180 8-180 8-180 8-180 8-180 8-180

8-116. ASM Troubleshooting Flow Chart for

8-116. ASM Troubleshooting Flow Chart for CF Key Pressed CF Key Pressed 8-181 8-181 8-181 8-181 8-181 8-181 8-181 8-181 8-181

8-117. ASM Troubleshooting

Flow Chart for SWP Width

Flow Chart for SWP Width Key Pressed Key Pressed 8-182 8-182 8-182 8-182 8-182 8-182 8-182 8-182 8-182

8-118. ASM Troubleshooting Flow Chart for

8-118. ASM Troubleshooting Flow Chart for STEP \uparrow or STEP \downarrow Key Pressed STEP \uparrow or STEP \downarrow Key Pressed 8-183 8-183 8-183 8-183 8-183 8-183 8-183 8-183 8-183
8-119. ASM Troubleshooting Flow Chart
8-119. ASM Troubleshooting Flow Chart for Manual Tune 8-184 8-184 8-184 8-184 8-184 8-184 8-184 8-184 8-184
8-120. ASM Troubleshooting Flow Chart for
8-120. ASM Troubleshooting Flow Chart for Auto Sweep 8-185 8-185 8-185 8-185 8-185 8-185 8-185 8-185 8-185FigurePage
8-121. ASM Troubleshooting Flow Chart for KYBD Pushbutton Pressed 8-186
8-122. ASM Troubleshooting Flow Chart for Power-On Initialization 8-187
8-123. LF Loops Adjustment Locations 8-189
8-12.4. HP-IB Adapter and Self Test Features 8-191
8-125. HF Loop and Reference Loop Adjustment Locations 8-191
8-126. Interconnection Assembly (Opt. 004) 8-193
8-127. A2 Mother Board Component Locations 8-193
8-128. A9A1 Cable Loop Assembly 8-193
8-129. A1A11 DCU Mother Board Component Locations 8-193
8-130. Mainframe Mother Board Test Points 8-194
8-131. Model 8660C Internal Views 8-195
8-132. Plug-In Connectors Detail 8-196
TABLES
Table Page
1-1. Model 8660C Specifications 1-2
1-2. Test Equipment and Accessories List 1-5
3-1. Operator's Checks 3-5
3-2. Storage Register Addresses 3-11
3 3. Model 8660 C Programming Examples 3-12
3-4. AM-FM Function Register Coding 3-14
$3-5$. Programming Connections to J3 3-14
3-6. HP-IB Interface Lines 3-16
3-7. HP-IB Code Allocations 3-19
3-8. 8660 HP-IB Coding Table 3-20
4-1. Performance Test Record 4 -3
5-1. Factory Selected Components 5-2
5-2. Unregulated Power Supplies 5-5
5-3. Regulated Power Supplies 5-5
$5-4$. Reference Section Output Levels 5-11
5-5. Pretune Adjustments 5-17
$5-6$. N1 Loop Output Frequency Checks 5-22
5-7. N2 Oscillator Output Frequency Checks 5-24
$5-8$. N3 Oscillator Output Frequency Checks 5-26
$5-9$. SL2 Oscillator Output Frequency Adjustments 5-28
5-10. SL1 Oscillator Output Frequency Adjustments 5-31
5-11. Adjustments 5-32
5-12. Frequency Versus Exact Output Levels 5-32TablePage
6-1. Reference Designations 6-3
6-2. Abbreviations 6-3
6-3. Replaceable Parts 6-5
6-4. Code List of Manufacturers 6-59
7-1. Manual Changes by Serial Number 7-1
7-2. Summary of Changes by Component 7-2
7-3. Replaceable Parts Backdating
(Part of Change A) $7-5$
7-4. Replaceable Parts Backdating (Part of Change D)7.8
7-5. Replaceable Parts Backdating (Part of Change I) 7-14
7-6. Replaceable Parts Backdating (Part of Change J) $7-17$
7-7. Replaceable Parts Backdating (Part of Change P) 7-24
7-8. Replaceable Parts Backdating (Part of Change X) 7-27
8-1. 8660C Troubleshooting Tables 8-1
8-2. Etched Circuit Soldering Equipment 8-5
8-3. Schematic Diagram Notes 8-7
8-4. Mnemonics Information 8-15
8-5. Logic Symbology 8-28
8-6. Power Supply Troubleshooting 8-30
8-7. DCU Troubleshooting by Replacement 8-32
8-8. DCU and Interface Troubleshooting Guide 8-34
8-9. Incorrect Initial Readout 8-37
8-10. Center Frequency Readout Faulty 8-38

TABLES (Cont'd)

Table Page Table Page
8-11. BCD Data to Mainframe Incorrect 8-42
8-12. Readout is Partially Displayed or Incorrect $8-43$
8 -13. Only 1 or 2 Half-Digits Displayed 8-44
8-14. Center Frequency Readout Does Not Justify Correctly $8-45$
8-15. Readout Does Not Justify with Only One Units Key $8-45$
8-16. Either STEP \uparrow.or STEP \downarrow Operation Defective 8-46
8-17. Both STEP \uparrow and STEP \downarrow Defective at the RF Output $8-47$
8-18. Manual STEP Defective 8-48
8-19. Manual Tune Mode Inoperative 8-49
8-20. Manual Tune Defective on One Range, Fine, Medium or Coarse 8-50
8-21. Either Up or Down Manual Tune Defective 8-50
8-22. Auto Sweep Defective at All Sweep Rates 8-52
8-23. Auto Sweep Defective at One Sweep Rate 8-54
8 -24. Single Sweep Defective $8-55$
8-25. Manual Sweep Defective 8-56
$8-26$. Out of Range Indicator Inoperative 8-60
8-27. KYBD Pushbutton Readout Defective 8.62
8-28. STEP Pushbutton Readout Defective 8-62
8 -29. Sweep Width Pushbutton Readout Defective 8-63
8-30. Remote Control Problems 8-63
8-31. Harmonics Excessive Below 1300 MHz 8-70
8-32. Output Frequency is Half Indicated Frequency Above 1300 MHz 8-70
8-33. Troubleshooting Option 005 Interface Circuits 8-71

SERVICE SHEETS

1 Block Diagram 8-93
22 A1A2 Key Control Assembly (Part 2) 8-137
2 Reference Loop 8-95
3 Reference Loop VCO 8-97
4 HF Loop Pretuning 8-99
5 HF Loop Phase Detector 8-101
6 HF Loop VCO 8-103
7 N1 Phase Detector 8-105
8 N1 VCO 8-107
9 N2 Phase Detector 8-109
9A N2a Phase Detector $8-111$
10 N2 VCO 8-113
11 N3 Phase Detector 8.115
12 N3 VCO 8-117
13 SL2 Phase Detector 8-119
14 SL2 VCO 8-121
15 SL1 Phase Detector 8-123
16 SL1 Mixer and D/A 8-125
17 SL1 VCO 8-127
18 DCU Block Diagram 8-129
19 A1A1 Switch Control Assembly (Part 1) 8-131
20 A1A1 Switch Control Assembly (Part 2) 8-133
21 A1A2 Key Control Assembly (Part 1) 8-135
23 A1A3 Readout Control Assembly(Part 1)8-139
24 A1A3 Readout Control Assembly (Part 2) 8-141
25 A1A4 ROM Input Assembly (Part 1) 8-143
26 A1A4 ROM Input Assembly (Part 2) 8-145
27 A1A5 ROM Output Assembly (Part 1) 8-147
28 A1A5 ROM Output Assembly (Part 2) 8-149
29 A1A6 Register Assembly (Part 1) 8-151
30 A1A6 Register Assembly (Part 2) 8-153
31 A1A6 Register Assembly (Part 3) 8-155
32 A1A7 Arithmetic Logic Unit 8-157
33 A1A8 Sweep Count Assembly 8-159
34 A1A9 A Register Assembly 8-161
35 A1A10 Output Register Assembly 8-163
36 A1A12 Numeric Readout Assembly 8-165
37 A3A1 Front Output Interface Board 8-167
38 A3A2 Rear Input Interface Board 8-169
39 A3A2 HP-IB Rear Input Assembly 8-171
40 A3A1 HP-IB Front Output Assembly 8-173
41 Power Supply 8-175
42 DCU and Interface Wiring Diagram 8-177

SAFETY CONSIDERATIONS

GENERAL

This product and related documentation must be reviewed for familiarization with safety markings and instructions before operation. This product has been designed and tested in accordance with international standards.

SAFETY SYMBOLS

Instruction manual symbol: the product will be marked with this symbol when it is necessary for the user to refer to the instruction manual (refer to Section II of this manual).

5 Indicates hazardous voltages. $\xlongequal{\perp} \quad$ Indicates earth (ground) terminal

The WARNING sign denotes a hazard. It calls attention to a procedure, practice, or the like, which, if not correctly performed or adhered to, could result in personal injury. Do not proceed beyond a WARNING sign until the indicated conditions are fully understood and met.

The CAUTION sign denotes a hazard. It calls attention to an operating procedure, practice, or the like, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the product. Do not proceed beyond a CAU TION sign until the indicated conditions are fully understood and met.

SAFETY EARTH GROUND

This is a Safety Class I product (provided with a protective earthing terminal). An uninterruptible safety earth ground must be provided from the main power source to the product input wiring terminals, power cord, or supplied power cord set. Whenever it is likely that the protection has been impaired, the product must be made inoperative and be secured against any unintended operation.

BEFORE APPLYING POWER

Verify that the product is configured to match the available main power source per the input power configuration instructions provided in this manual.

If this product is to be energized via an auto-transformer make sure the common terminal is connected to the neutral (grounded side of mains supply).

SERVICING

WARNINGS

Any servicing, adjustment, maintenance, or repair of this product must be performed only by qualified personnel.

Adjustments described in this manual may be performed with power supplied to the product while protective covers are removed. Energy available at many points may, if contacted, result in personal injury.

Capacitors inside this product may still be charged even when disconnected from its power source.

To avoid a fire hazard, only fuses with the required current rating and of the specified type (normal blow, time delay, etc.) are to be used for replacement.

NOTE

Abstract

Although this is a Class 1 instrument, all warning, grounding, safety and voltage information is repeated here to ensure that all users of the instrument are aware of the safety and other precautions required to assure that the instrument is operated properly. The information is repeated at appropriate intervals throughout the manual.

WARNINGS

SAFETY

To avoid the possibility of injury or death, the following precautions must be followed before the instrument is switched on:
a. If this instrument is to be energized via an autotransformer for voltage reduction, make sure that the common terminal is connected to the earthed pole of the power source.
b. The power cable plug shall only be inserted into a socket outlet provided with a protective earth contact. The protective action must not be negated by the use of an extension cord without a protective conductor (grounding).
c. Before switching on the instrument, the protective earth terminal of the instrument must be connected to a protective conductor of the power cord. This is accomplished by ensuring that the instrument's internal earth terminal is correctly connected to the instrument's chassis and that the power cord is wired correctly.

Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any unintended operation. Such equipment should be suitably tagged explaining the cause of malfunction, and include a warning that the equipment is not to be used until the malfunction is corrected.

Any interruption of the protective (grounding) conductor inside or outside the instrument or disconnection of the protective earth terminal is likely to make the instrument dangerous. Intentional interruption is prohibited.

HIGH VOLTAGE

Any adjustment, maintenance, and repair of the opened instrument under voltage should be
avoided as much as possible and, if inevitable, should be carried out only by a skilled person who is aware of the hazard involved.

Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply.

FUSES

Make sure that only fuses with the required rated current and of the specified type (normal blow time delay, etc.) are used for replacement. The use of repaired fuses and the short-circuiting of fuseholders must be avoided.

CAUTIONS

GROUNDING

Any interruption of the protective (grounding) conductor inside or outside the instrument is likely to cause damage, this instrument and all line powered devices connected to it must be connected to the same earth ground (see Section II).

LINE VOLTAGE

Be sure to select the correct fuse rating for the selected line voltage (see LINE VOLTAGE SELECTION in Section II); fuse ratings are listed on the fuse compartment.

To prevent damage to the instrument, make the line voltage selection BEFORE connecting line power. Also ensure that the line power cord is connected to a line power socket that is provided with a protective earth contact.

SAFETY

To avoid the possibility of damage to test equipment, read completely through each test before starting it. Make any preliminary control settings necessary for correct test equipment operation.

MODEL 8660C

LINE POWER CORD

ACCESSORY

Figure 1-1. Model 8660C and Accessories Supplied

SECTION I GENERAL INFORMATION

1-1. INTRODUCTION

1-2. This manual contains all information required to install, operate, test, adjust and service the Hewlett-Packard Model 8660C Synthesized Signal Generator mainframe. This section covers instrument identification, specifications and other basic information. Figure 1-1 shows a front view of the instrument and accessories supplied.

1-3. The other various sections of this manual provide information as follows:
a. SECTION II, INSTALLATION, provides information relative to incoming inspection, power requirements, mounting, packing for shipment, etc.
b. SECTION III, OPERATION, provides information relative to operating the instrument.
c. SECTION IV, PERFORMANCE TESTS, provides information required to ascertain that the instrument is performing in accordance with published specifications.
d. SECTION V, ADJUSTMENTS, provides information required to properly adjust and align the instrument after repairs are made.
e. SECTION VI, REPLACEABLE PARTS, provides ordering information for all replaceable parts and assemblies.
f. SECTION VII, MANUAL CHANGES, provides manual change information necessary to document all prefixes listed on the title page. In addition, this section also contains recommended modifications for the earlier instrument configurations.
g. SECTION VIII, SERVICE, includes all information required to service the instrument when a malfunction occurs.

1-4. Packaged with this instrument is an Operating Information Supplement. This is simply a copy of the first three sections of this manual (less Table 1-2). This supplement should stay with the instrument for use by the operator. Additional copies of the Operating Information Supplement may be ordered separately through your nearest Hewlett-

Packard office. The part number is listed on the inside title page of this manual below the Manual Part Number.

1-5. Also listed on the inside title page of this manual, below the manual part number, is a "Microfiche" part number. This number may be used to order 4×6 inch microfilm transparancies of the manual. Each microfiche contains up to 60 photo-duplicates of the manual pages. The microfiche package also includes the latest Manual Changes Supplement as well as all pertinent Service Notes.

1-6. SPECIFICATIONS

1-7. Instrument specifications are listed in Table 1-1. These specifications are the performance standards or limits against which the instrument may be tested.

1-8. INSTRUMENTS COVERED BY MANUAL

1-9. This instrument has a two-part serial number. The first four digits and the letter comprise the serial number prefix. The last five digits form the sequential suffix that is unique to each instrument. The contents of this manual apply directly to instruments having the same serial number prefix(es) as listed under SERIAL NUMBERS on the inside title page.

1-10. An instrument manufactured after the printing of this manual may have a serial prefix that is not listed on the inside title page. This unlisted serial prefix indicates that the instrument is different from those documented in this manual. The manual for this instrument is supplied with a yellow Manual Changes supplement that contains "change information" that documents the differences.

1-11. In addition to change information, the supplement may contain information for correcting errors in the manual. To keep this manual as current and accurate as possible, Hewlett-Packard recommends that you periodically request the latest Manual Changes supplement for this manual. The supplement for this manual is keyed to this manual's print date and part number, both of

Table 1-1. Model 8660C Specifications (1 of 2)

SPECIFICATIONS

Frequency Selection:

Keyboard control panel allows selection of CW (or center frequency) by entry keys or synthesized tuning dial. Least significant digit either 1 Hz (standard) or 100 Hz (Option 004).*

Reference Oscillator:

Internal: 10 MHz quartz oscillator. Aging rate less than ± 3 parts in 10^{8} per 24 hours after 72 hour warmup (± 3 parts in 10^{9} per 24 hours after 30 day warmup, Option 001).
External: Rear panel switch allows operation from any 5 MHz or 10 MHz signal at a level between 0.5 V and 2.5 V rms into 170 ohms. Stability and spectral purity will be partially determined by characteristics of external reference oscillator.

Reference Output:

Rear panel BNC connector provides output of signal selected (INT. or EXT.) at the following levels into 170 ohms:
Internal Reference: 0.75 V to 1.5 Vrms .
External Reference: Nominally equal to external input.

Display:

Ten-digit numerical LED display of CW frequency is active in either local or remote mode. Springloaded pushbuttons provide display of sweep width, selected step size, or characters being entered on the keyboard.

Synthesized Search:

Synthesized search dial changes the synthesized output frequency 180 steps per revolution (with the 86601 A , the COARSE and STEP tuning are desensitized to 36 steps/revolution). Step sizes are 1 Hz , $1 \mathrm{kHz}, 1 \mathrm{MHz}$, or any step size entered through the keyboard.

Digital Sweep:

Type: Symmetrical about CW/center frequency. Sweep width is divided into 100 synthesized steps for fastest sweep speed or 100 steps for slower speeds or Manual Sweep.
Sweep Width: Continuously adjustable over range of RF section installed. Smallest step size is equal to frequency resolution of mainframe.
Sweep End Point Accuracy: Same as reference oscillator accuracy.

Sweep Speed: Selectable $0.1 \mathrm{sec}, 1 \mathrm{sec}$, or 50 sec per sweep (Auto or Single).
Sweep Output: 0 to +8 V stepped ramp, 100 or 1000 equal steps depending on sweep speed.
Manual Sweep: Synthesized search dial allows manual sweep over width selected in 1000 steps (LED display follows output frequency during manual sweep).
Single Sweep: Initiated by momentary contact pushbutton.

Frequency Stepping:

After a step size has been entered on the keyboard, depressing STEP \uparrow or STEP \downarrow button will increment frequency up or down by the desired step size.
Step Accuracy: Same as reference oscillator accuracy.

REMOTE PROGRAMMING

CW frequency, frequency stepping (STEP \uparrow or STEP \downarrow) and output level, and most modulation functions are programmable. Note: digital sweep is NOT programmable.

Frequency:

CW frequency is programmable over entire range with same resolution obtained in manual operation.

Frequency Step:

STEP \uparrow or STEP \downarrow may also be programmed to change output frequency by a previously selected step size.

Output Level:

Programmable in 1 dB steps over the output range of the RF section installed (for output level accuracy see $R F$ section specifications).

Modulation: See specifications for modulation and RF section installed.

Programming Input:
Connector Type: 36 pin Cinch type (mating connector supplied). (Optional HP-IB interface; 24 pin Cinch type 57 (mating connector NOT supplied)).
Logic: TTL compatible (negative true) " 0 " logic state corresponds to +2 V or higher.
" 1 " logic state corresponds to +0.8 V or lower.

Internal Fan-in from Programming Connector:

10 ; (required current approximately 15 mA per line in the " 1 " state).

[^0]Table 1-1. Model 8660C Specifications (2 of 2)

GENERAL

Operating Temperature Range: 0° to $+55^{\circ} \mathrm{C}$.
Leakage: Meets radiated and conducted limits of MIL I-6181D.

Power: 100 or $120 \mathrm{Vac},+5-10 \%$ at 48 to 440 Hz . 200 or $240 \mathrm{Vac},+5-10 \%$ at 48 to 66 Hz . 400 VA maximum.
Weight: (Mainframe only): Net, $23.2 \mathrm{~kg}(51 \mathrm{lb})$, Shipping $28.6 \mathrm{~kg}(63 \mathrm{lb})$.

Options:
Option 001: $\pm 3 \times 10^{-9} /$ day internal reference oscillator.
Option 002: No internal reference oscillator.
Option 003: Operation from 50 to 400 Hz line.
Option 004: 100 Hz frequency resolution $(200 \mathrm{~Hz}$ above 1300 MHz center frequency.)
Option 005: HP-IB programming interface.
Option 100: 11661B factory installed.
Option 908: Rack Mounting Kit.
which appear on the inside title page. Complimentary copies of the supplement are available from Hewlett-Packard.

1-12. For information concerning a serial number prefix not listed on the inside title page or in the Manual Changes supplement, contact your nearest Hewlett-Packard office.

1-13. DESCRIPTION

1-14. The Model 8660C Synthesized Signal Generator Mainframe requires two plug-in sections to provide a useable RF output. The plug-ins required are an RF Section and a Modulation (or Auxiliary) Section. These plug-in sections are inserted into the front of the Model 8660 C ; all operating controls are on the front panels of the plug-in sections or on the mainframe panel.

1-15. An internal plug-in unit, the Frequency Extension Module (HP accessory number 11661) is required when any RF Section other than the HP Model 86601 is in use.

1-16. GENERAL OPERATING PRINCIPLES

1-17. All of the signals generated in the Model 8660 C are phase locked, directly or indirectly, to a 100 MHz master oscillator in the reference section. The 100 MHz master oscillator is phase locked to an internal temperature controlled oscillator or to an external standard. Provisions are made for the internal oscillator to be used as a reference signal for other equipment.

1-18. The Model 8660 C uses synthesizer techniques to provide digitally controlled, precise RF signals which are used in the RF Section output plug-ins to produce the selected output frequency. The output frequencies are exactly those selected
in 1 Hz or 2 Hz increments in the standard instruments, or in 100 Hz or 200 Hz increments in Option 004 instruments.

1-19. Six phase locked loops, (four in Option 004 instruments), all phase locked to the 100 MHz master oscillator, are used to generate the RF signals used in the RF Section plug-ins to produce the final output signal.

1-20. The Model 8660 C output frequency may be selected by front panel controls or by a remote programming device.

1-21. Operating of the plug-in sections may also be remotely programmed through the mainframe circuits.

1-22. Descriptions, operating instructions and service information for the various plug-in sections is provided in separate manuals.

NOTE

The 8660 family, and plug-ins available are described briefly on the first foldout Sheet.

1-23. OPTIONS

1-24. Option 001: Reference Oscillator with ± 3 $\times 10^{-9} /$ per day stability.

1-25. Option 002: No internal standard reference oscillator.

1-26. Option 003: 50 to 400 Hz ac operation.
1-27. Option 004: 100 Hz resolution below $1300 \mathrm{MHz}, 200 \mathrm{~Hz}$ resolution above 1300 MHz .

1-28. Option 005. Hewlett-Packard Interface Bus installed instead of BCD interface. HP-IB utilizes some ASCII interface codes (also previously referred to as General Purpose Interface Bus).

1-29. Option 100. Adds an internal plug-in, the 11661 (for use with an 86602 or 86603 RF Section) before the instrument is shipped from the factory.

1-30. Option 908. Adds a rack mounting kit. If the 8660 C was purchased without the rack mounting option, the kit may be ordered from the nearest Hewlett-Packard office using HP part number 08660-60347.

1-31. EQUIPMENT REQUIRED BUT NOT SUPPLIED

1-32. An RF Section and a Modulation or Auxiliary Section must be installed in the Model 8660C mainframe. In addition when an RF Section such as the 86602 or 86603 is used, the internal Frequency Extension Module (Model 11661) must be used.

1-33. EQUIPMENT AVAILABLE

1-34. A service kit, Hewlett-Packard accessory number 11672 A , is recommended for servicing and adjusting the mainframe and the plug-in sections. Contents of the service kit are listed in Table 1-2. Individual items in the kit may be ordered separately if desired.

1-35. ACCESSORIES SUPPLIED

1-36. The following accessories are provided with the Model 8660C:
a. A detachable three-wire power cable. The type of power cord will be determined by the shipment destination.
b. An accessory kit, part number 08660 60070, consisting of the following:
1 Connector, Type N-to-BNC 1250-0780
1 Extender Board, 20 contact 5060-0256
1 Extender Board, 24 contact 5060-0258
2 Extender Boards, 15 contact $5060-0276$
1 Extender Board, 18 contact 5060-0277
1 Connector 36 pin with hood and clamp

1251-0084
1 Extender Board A3 Interface, 18 Contact 08660-60348
1 Extender Board A3 Interface, $\quad 08660-60349$
1 Interface Extender Board Cable 08660-60361

1-37. WARRANTV

1-38. Certification and warranty information for the Model 8660C appears on the inside front cover of this manual.

1-39. TEST EQUIPMENT AND ACCESSORIES

$1-40$. Table 1-2 lists the test equipment and accessories recommended to test, adjust, and service the Model 8660C.

1-41. ELECTRICAL PROTECTION

$1-42$. The safety classification of this instrument is Safety Class I.

1-43. This apparatus has been designed and tested to operate in a safe manner. The Operating and Service Manual contains information, warnings and cautions which must be followed by the user to ensure safe operation and to retain safe operating conditions.

Table 1-2. Test Equipment and Accessories List (1 of 2)

Item	Minimum Specifications	Suggested Model	Use*
Digital Voltmeter	Voltage Accuracy $\pm 0.02 \%$ 0.000 V to $\pm 40 \mathrm{Vdc}$	HP Model 3465A	A, S
AC Microvoltmeter	$50 \mu \mathrm{~V}$ to 3 V	HP 400F	A, S
Variable Voltage Transformer	Range 103 to 127 Vac Meter Range 103-127 Vac $\pm 1 \mathrm{~V}$	$\begin{aligned} & \text { General Radio } \\ & \text { W4MT3A } \end{aligned}$	A
Frequency Standard	Frequency 10 MHz Long Term Stability $<1 \mathrm{x}$ $10^{-10} / 24$ hours	HP 5065A	P, A
Oscilloscope	Frequency dc to 50 MHz Time base 10 ns to 1 s Time base accuracy 3%	HP 180A with HP 1801A and HP 1821A plug-ins	P, A, S
10:1 Divider Probes	10:1 Divider 10 Megohm 10 pF	HP 10004A (2)	
Spectrum Analyzer	Frequency Range 10 to 600 MHz , Response $\pm 1 \mathrm{~dB}$, Measurement Accuracy $\pm 2.0 \mathrm{~dB}$	HP 140/HP 8554B/ HP 8552/8553	A, S
Frequency Counter	Range $0-50 \mathrm{MHz}, 0-500 \mathrm{MHz}$ Accuracy ± 1 count \pm time base accuracy. External time base 10 MHz	HP 5328A Option 030	A, S
Pulse Generator	Pulse rate 100 kHz Pulse width $0.035 \mu \mathrm{sec}$ Amplitude 0.5 V Polarity - Selectable	HP 8011A	A
Signal Generator/ Sweeper	Frequency $-1-110 \mathrm{MHz}$ Output Range +20 to -20 dBm Output CW or swept	HP 8601A	A, S
RF Voltmeter	Range 0.1 to 2 V Frequency Range 1 to 10 MHz	HP 3400A	P
Test Oscillator	Freq. Range 10 Hz to 1 kHz Output Level +10 to -20 dBm	HP 651B	A, S
50-Ohm Feedthru Termination		HP 11048C	P
* USE $-\mathrm{A}=$ Adjustments; $\mathrm{P}=$ Performance Tests; $\mathrm{S}=$ Service			

Table 1-2. Test Equipment and Accessories List (2 of 2)

SECTION II INSTALLATION

2-1. INTRODUCTION

2-2. This section provides information on incoming inspection, selecting the input line voltage, operating environment, and information applicable to bench and rack mounted operation of the Model 8660C.

2-3. INITIAL INSPECTION

$2-4$. Inspect the shipping container for damage. If the shipping container or cushioning material is damaged it should be kept until the contents of the shipment have been checked mechanically and electrically. The contents of the shipment are shown in Figure 1-1, and the procedures for checking electrical performance are given in Section IV. If the contents are incomplete, if there is mechanical damage or defects, or if the instrument does not pass the electrical performance test, notify the nearest Hewlett-Packard office. If the shipping container is damaged or the cushioning material shows signs of stress, notify the carrier as well as the Hewlett-Packard office. Keep the shipping materials for the carrier's inspection. The HP office will arrange for repair or replacement without waiting for claim settlements.
$2-5$. The warranty statement for the instrument is on the inside front cover of this manual. Contact the nearest Sales/Service Office for information relative to warranty claims.

2-6. PREPARATION FOR USE

2-7. Power Requirements.

$2-8$. The Model 8660 C requires a power source of $100,120,220$, or 240 volts $+5 \%,-10 \%, 48-66 \mathrm{~Hz}$. Power consumption is approximately 400 VA maximum.

2-9. Line Voltage Selection

CAUTION

To prevent damage to the instrument make the line voltage selection BEFORE connecting the line power. Also ensure the line power cord is connected to a line power circuit that is provided with a protective earth contact.

2-10. A rear panel line power module, (A7), permits operation from $100,120,220$, or 240 Vac .

The number visible in the window (located on the module) indicates the nominal line voltage to which the instrument must be connected.
$2-11$. To prepare the instrument for operation, slide the fuse compartment cover to the left (the line power cable must be disconnected). Pull the handle marked FUSE PULL and remove the fuse; rotate the handle to the left. Gently pull the printed circuit voltage selector card from its slot and orient it so that the desired operating voltage appears on the top-left side (see Figure 2-1). Firmly push the voltage selector card back into its slot. Rotate the FUSE PULL handle to the right, install a fuse of the correct rating, and slide the fuse compartment cover to the right.

NOTE

For 110-120V line, use 4 A slo-blo fuse, $H P$ Stock No. 2110-0635. For 220-240V line, use 2 A slo-blo fuse, HP Stock No. 2110-0303.

WARNING

To avoid the possibility of injury or death, the following precautions must be followed before the instrument is switched on:
a. Note that the protection provided by grounding the instrument cabinet may be lost if any power cable other than the threepronged type supplied is used to couple the ac line voltage to the instrument.
b. If this instrument is to be energized via an autotransformer to reduce or increase the line voltage, make sure that the common terminal is connected to the earthed pole of the power source.
c. The power cable plug shall only be inserted into a socket outlet provided with a protective earth contact. The protective action must not be negated by the use of an extension cord without a protective conductor (grounding).
d. Before switching on the instrument, the protective earth terminal of the instrument must be connected to a protective conductor of the power cord. This is accomplished by ensuring that the instrument's internal earth terminal is correctly connected to the instrument's chassis and that the power cord is wired correctly.

Figure 2-1. Line Voltage Selection

NOTE

The correct fuse rating for the line voltage selected is listed on the line power module. More information about fuses is given in the table of replaceable parts in Section VI (reference designation is A7F1).

2-12. Power Cable

2-13. In accordance with international safety standards, this instrument is equipped with a three-wire power cable. When connected to an appropriate power line outlet, this cable grounds the instrument cabinet. The type of power cable plug shipped with each instrument depends on the country of destination. Refer to Figure 2-2 for the part numbers of the power cable plugs available.

2-14. Mating Connectors

$2-15$. Internal mating connectors between the Model 8660 C and the plug-in sections are in fixed positions. Refer to Figure 8-132 for plug-in con-
nector information. Refer to Figure 8-109 for information relative to the remote control connector, J3.

2-16. Operating Environment

$2-17$. The operating environment should be within the following limitations:
Temperature 0 C to $+55^{\circ} \mathrm{C}$
Humidity. $<95 \%$ relative
Altitude. <4600 metres (15000 feet)
2-18. A forced air cooling system is used to maintain the operating temperature required by the instrument. The air exhaust fan is located on the rear panel of the instrument; the air intake is through the side panels of the instrument. When operating the instrument, choose a location that provides at least three inches of clearance at the rear and at least an inch of clearance for each side. The clearances provided by the plastic feet in bench stacking and the filler strip in rack mounting are adequate for the top and bottom cabinet surfaces.
PLUG*: CEET-VII
CABLE*: HP 8120-1689
PLUG*: SEV 1011.1959-24507
TYPE 12
CABLE*: HP 8120-2104

Figure 2-2. Power Cable HP Part Numbers

2-19. Bench Operation

$2-20$. The instrument has plastic feet and a foldaway tilt stand for convenience in bench operation. The tilt stand raises the front of the instrument for easier viewing of the control panel and the plastic feet are shaped to make full width modular instruments self aligning when stacked.

2-21. Rack Mounting (Option 908)

2 22. The 8660 C Option 908 is supplied with a rack mounting kit. This kit contains all the necessary hardware and installation instructions for mounting the instrument in a rack with 19 -inch spacing (see Figure 2-3). The HP part number for this kit is $08660-60347$.

2-23. STORAGE AND SHIPMENT

2-24. Environment

$2-25$. The instrument should be stored in a clean, dry environment. The following environmental limitations apply to both storage and shipment:
$\begin{array}{lll}\text { Temperature } & . & .\end{array}-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

2-26. Packaging

2-27. Tagging for Service. If the instrument is being returned to Hewlett-Packard for service, please

Figure 2-3. Preparation for Rack Mounting
complete one of the blue repair tags located at the end of this manual and attach it to the instrument.

2-28. Original Packaging. Containers and materials identical to those used in factory packaging are available through Hewlett-Packard offices. If the instrument is being returned to Hewlett-Packard for servicing, attach a tag indicating the type of service required, return address, model number, and full serial number. Also, mark the container FRAGILE to assure careful handling. In any correspondence, refer to the instrument by model number and full serial number.

2-29. Other Packaging. The following general instructions should be used for re-packaging with commercially available materials:
a. Wrap the instrument in heavy paper or plastic. (If shipping to a Hewlett-Packard office or service center, attach a tag indicating the type of service required, return address, model number, and full serial number.)
b. Use a strong shipping container. A doublewall carton made of 2.4 MPa (350 psi) test material is adequate.
c. Use enough shock-absorbing material (75100 mm ; 3 to 4 -inch layer) around all sides of the instrument to provide firm cushion and prevent movement inside the container. Protect the control panel with cardboard.
d. Seal the shipping container securely.
e. Mark the shipping container FRAGILE to assure careful handling.

SECTION III OPERATION

3-1. INTRODUCTION

$3-2$. This section provides operating instructions for the Hewlett-Packard Model 8660C Synthesized Signal Generator mainframe for both the local and remote modes.

3-3. The Model 8660 C is designed to provide precise digitally controlled signals for use in plug-in sections which provide the selected output frequency with the chosen modulation parameters. It will be necessary to have the operating manuals for the plug-in sections being used in order to efficiently operate the instrument.

NOTE

If a Modulation plug-in Section is not used it will be necessary to have an Auxiliary Section in place of the Modulation Section. The Auxiliary Section completes a signal path from the mainframe to the RF Section plug-in and also provides a means of modulating the $R F$ Section from an external source.

3-4. PANEL FEATURES

$3-5$. Front and rear panel controls, indicators and connectors of the 8660 C are shown, and their functions described, in Figure 3-1.

3-6. OPERATOR'S MAINTENANCE

3-7. Operator's maintenance of the Model 8660C Synthesized Signal Generator mainframe is limited to fuse replacement.

3-8. OPERATING PRINCIPLES

3-9. The Model 8660C may be operated by front panel controls in the local mode or externally programmed in the remote mode. Allow the system to warm up for 15 minutes before operating.

WARNING

The power requirements and safety precautions listed throughout this Manual must be observed to preserve the built-in safety features of the Model 8660C.

3-10. LOCAL OPERATION

$3-11$. In the local mode of operation, all functions of the mainframe are controlled by front panel controls, except when an external reference oscillator is used. When an external reference oscillator is used, the rear panel SELECTOR switch must be in the EXT position.
$3-12$. The 20 -key keyboard may be used to:
a. Select any frequency within the range of the RF Section plug-in in 1 Hz increments (above $1300 \mathrm{MHz}, 2 \mathrm{~Hz}$ increments) for standard instruments. Option 004 instruments are selectable in 100 Hz increments (above $1300 \mathrm{MHz}, 200 \mathrm{~Hz}$ increments).

NOTE

Frequencies which are above the output frequency range of the RF Section, if selected, will be stored in the keyboard register, but the information will not be transferred to the center frequency register. The center frequency register and the readout will retain the last valid input. Frequencies below the output frequency range of the RF Section will be transferred to the center frequency register and the output register; the output frequency will be accurate but the output amplitude will be degraded. As an example, the Model 86601A RF Section has a specified lower frequency limit of 10 kHz , but typically will produce a useable RF output down to 3 kHz or lower.
b. When frequencies below the RF Section frequency range are selected, the OUT OF RNG lamp lights and remains lit.
c. Select any desired sweep width within the frequency range of the RF Section in use. See paragraph 3-14 for further details of sweep operation.
d. Select any incremental step within the frequency range of the RF Section in use. See

(1) KYBD pushbutton. When pressed, causes the information stored in the keyboard storage register to be displayed on the CENTER FREQUENCY readout.

2 STEP pushbutton. When pressed, causes the information stored in the step storage register to be displayed on the CENTER FREQUENCY readout.

3 SWP WIDTH pushbutton. When pressed, causes the information stored in the sweep width storage register to be displayed on the CENTER FREQUENCY readout.
4) LINE STBY - ON switch. In the STBY position, with the instrument connected to the ac line source, the reference oscillator oven temperature is maintained at the operating temperature to avoid the necessity of allowing for a warm up period each time the instrument is used.

5 CENTER FREQUENCY readout. Normally displays the output center frequency of the RF Section.

6 ANNUNCIATOR. Provides visual display of mode of operation, crystal oven temperature and out of range frequency selection.

1 MANUAL MODE RESOLUTION. Works in conjunction with the TUNING control to step the rf output in steps of 1 Hz (FINE), 1 kHz (MED) and 1 MHz (COARSE). In the STEP position the TUNING control steps the rf output frequency by the step stored in the step register.
(8) TUNING - MANUAL SWEEP. Works as specified in the MANUAL MODE RESOLUTION description. May also be used to set the rf output to any point within the limits stored in the sweep register when the SWEEP MODE switch is set to MAN.
(9) Keyboard. Contains 20 keys which are used to enter data or instructions as follows:

Numerals 0 through 9
Decimal Point (.)
CLEAR KYBD. Clears keyboard register (does NOT clear other registers).
$\mathrm{GHz}, \mathrm{MHz}, \mathrm{kHz}$ and Hz select frequency in conjunction with numeric keys.

CF. Transfers keyboard storage register data to the center frequency register.

STEP. \uparrow Transfers keyboard storage register data to the step register and steps the center frequency up. May also be used to step the frequency up by the step stored in the step register without a new keyboard entry.
STEP. \downarrow Same as STEP \uparrow except that frequency is stepped down.
SWP WIDTH. Transfers the data in the keyboard storage register to the sweep register.
(10)

SINGLE pushbutton. In the SINGLE mode, when pressed, causes the rf output to be swept, one time only, across the range stored in the sweep register, at a speed determined by the RATE switch.
(11) OUTPUT (0 to +8 V). Provides a sweep ramp for use in external equipment (oscilloscopes, X-Y recorders, etc.) when operating in the swept mode.

12 RATE switch. The rate switch selects sweep rates as follows: FAST - 100 steps at 1 millisecond per step, MED - 1000 steps at 1 millisecond per step, and SLO -1000 steps at 50 milliseconds per step.

13 SWEEP MODE switch. With the sweep mode switch in the AUTO position sweep operation is automatic; the output rf is swept about the center frequency by the data stored in the sweep register at the rate selected by the RATE switch. In the SINGLE mode the rf output is swept once each time the SINGLE pushbutton is pressed. In the MIAN mode the sweep is controlled by the MANUAL TUNE control and the data stored in the sweep register.

LINE MODULE. Contains a means of switching input line voltage to $100 / 120 / 220 / 240 \mathrm{Vac}+5 \%-10 \%$, fuse, line cable connector and filtering. NOTE: the cabinet (earth) ground is also applied through the line module.
(15)

REFERENCE INPUT. Used when an external standard of 5 or 10 MHz is used.

(1)REFERENCE OUTPUT. Provides the capability of using the internal reference as a time base in external equipment.

11 SELECTOR. Selects INT or EXT reference.
(18)

REMOTE INPUTS. When the instrument is operated in the remote mode (pin 5 of this connector is grounded by the programming device), all functions of the instrument are controlled by the remote programming device. Front panel controls (except for LINE STBY-ON) have no effect on operation of the instrument.
paragraph 3-18 for further details of incremental step operation.

3-13. Operating Modes

3-14. Sweep. In the sweep mode the sweep width is selected by the keyboard. The sweep width may be displayed on the CENTER FREQUENCY readout by pressing the SWP WIDTH pushbutton to the left of the readout. Only the center frequency is shown in the AUTO or SINGLE SWEEP modes. In the MAN sweep mode the actual RF output frequency of the RF Section will be displayed.

3-15. When the SWEEP MODE switch is placed in the AUTO position the output signal of the RF Section is swept about the selected center frequency by the selected sweep width. (Example: center frequency 50 MHz , sweep width 20 MHz , the RF output is swept from 40 to 60 MHz .) The sweep rate, selected by the RATE switch is as follows: FAST -100 steps at 1 millisecond per step, MED - 1000 steps at 1 millisecond per step and SLO - 1000 steps at 50 milliseconds per step.

3-16. When the SWEEP MODE switch is placed in the SINGLE position, pressing the SINGLE pushbutton causes the output of the RF Section to be swept one time. When the single sweep is completed, the output of the RF Section returns to the selected center frequency. The sweep width and sweep rate are selected in the same manner as they are in the AUTO mode.

3-17. When the SWEEP MODE switch is placed in the MAN position the step rate of the output frequency of the RF Section may be manually controlled by the MANUAL SWEEP control. In this mode the sweep width is still controlled by the information in the sweep register. The selected sweep width, in this mode, is divided by 1000 and the output of the RF Section may be controlled in frequency steps that are $1 / 1000$ of the sweep width. (Example: center frequency 50 MHz , sweep width 20 MHz , output may be swept manually from 40 to 60 MHz in 20 kHz steps.)

3-18. Step. The center frequency may be stepped up or down, in any increment within the frequency range of the RF Section in use. The increment selected, including units, must be entered in the keyboard before the STEP \uparrow or STEP \downarrow key is pressed. The step entered into the step register remains in the register until changed (or the instrument is place; in the standby mode) and may
be displayed on the readout by pressing a STEP pushbutton.

3-19. When the MANUAL SWEEP control, a Rotary Pulse Generator, is used to control the STEP mode, the size of the step is determined by the information stored in the STEP register.

3-20. Manual. Manual mode operation is essentially the same as the step mode except that increments selected by the MANUAL MODE switch are 1 Hz (FINE), 1 kHz (MED) and 1 MHz (COARSE). These increments are controlled only by the TUNING control when the MANUAL MODE switch is placed in the selected position.

3-21. Combined. The sweep mode, step mode and manual mode may all be used simultaneously except for Manual Sweep which locks out the Manual Tuning Mode. This feature allows the user to quickly determine the frequency parameters of any device being tested.

3-22. Operator's Checks

NOTE

If the instrument is returned for service, be sure to attach a blue repair tag (located at the end of this manual) with failure information.

3-23. During final checkout at the factory the Model 8660C Synthesized Signal Generator mainframe is adjusted for proper operation. No adjustments should be required when the instrument is received. The operator's checks listed in Table 3-1 are based on the assumption that properly operating RF Sections and Modulation Sections are in place during the tests. Refer to the manuals for the specific plug-ins for operating parameters.

3-24. The steps listed in Table 3-1 need not be followed in the sequence listed. Their purpose is to aid the operator in familiarizing himself with the instrument, and to provide assurance that all functions of the instrument are operating properly.

NOTE

1. Numbers shown in the "Result" column of Table 3-1 are those which should be displayed on the CENTER FREQUENCY readout.
2. Any operator's checks specified in the plugin Manuals should also be performed.

3-25. Modulator Units

3-26. Since the modulator plug-ins are not affected by the mainframe except for digital control

Table 3-1. Operator's Checks (1 of 4)

Step	Operation	Result
	NOTE All references to $C F$ or other readouts are displayed on the mainframe CENTER FREQUENCY readout.	
1 1-a 1-b 1-c	Initial turn-on. Set the rear panel line select switch in the power line module to be compatible with the available line power. Connect the instrument to the power outlet; use ground pin adapter for electrical systems having no ground outlet. NOTE The instrument should remain connected to the power source in the STBY (standby) mode when not in use. This will maintain constant temperature in the crystal oven and eliminate the need for a warmup period. Place the LINE STBY/ON switch in the ON position. Allow the system to warm up for 15 minutes before operating.	Cooling fan starts. CF 1.000000 MHz .
2 2-a 2-b 2-c 2-d 2-e	Keyboard Register and Readout Checks. Hold in KYBD pushbutton and enter 1.234567890. Note that readout input steps from right to left. With KYBD pushbutton held in: Press GHz key Press MHz key Press kHz key Press Hz key Release KYBD pushbutton Press KYBD pushbutton With KYBD pushbutton held in: Press kHz key Press MHz key Press GHz key Press CLEAR KYBD key	Units lights (GHz, $\mathrm{MHz}, \mathrm{kHz}, \mathrm{Hz}$) are off.1.234567890 1.234567890 GHz 1.234567 MHz 1.234 kHz 1 Hz 1.000000 MHz 1 Hz 1.000 kHz 1.000000 MHz 1.000000000 GHz 0000000000
3 $3-\mathrm{a}$ $3-\mathrm{b}$ $3-\mathrm{c}$ $3-\mathrm{d}$ 3-e	Step $\uparrow \downarrow$ register and OUT OF RNG Annunciator Check with the 86601 A RF Section. Enter 109.000000 MHz CF on keyboard. Enter 111111 Hz STEP \uparrow on keyboard Press the KYBD pushbutton Release the KYBD pushbutton Press the STEP \uparrow key until the readout shows. Note that readout has increased in steps of 111111 Hz . Press the STEP \uparrow key one more time. Place the MANUAL MODE switch in the STEP position and turn the TUNING control counterclockwise. Place the MANUAL MODE switch in the OFF position.	$\begin{aligned} & 109.000000 \mathrm{MHz} \\ & 109.111111 \mathrm{MHz} \\ & 111111 \mathrm{~Hz} \\ & 109.11111 \mathrm{MHz} \\ & 109.999999 \mathrm{MHz} \end{aligned}$ 109.999999 MHz OUT OF RNG light flashes once. Readout decreases in 111111 Hz steps.

Table 3-1. Operator's Checks (2 of 4)

\begin{tabular}{|c|c|c|}
\hline Step \& Operation \& Result

\hline $3-\mathrm{f}$

3-g \& \begin{tabular}{l}
Enter 10 kHz CF on the keyboard

Enter 1 Hz STEP \uparrow on the keyboard

Press STEP pushbutton

Press STEP \downarrow key twice

With the Model 86601A RF Section the specified lower frequency limit is 10 kHz .

NOTE

The Model 86601 A RF Section lower frequency limit is specified at 10 kHz . The output frequency is accurate down to 1 Hz and the output power level is typically accurate down to 3 kHz or less. However, the output signal should be considered unusable below 1.5 kHz .

Enter 3 kHz CF on the keyboard

Enter 100 Hz STEP \downarrow

Repeatedly press the STEP \downarrow key. Note that the CF readout decreases in 100 Hz steps. The RF output level will typically start to drop below 2 kHz .

 \&

$$
\begin{aligned}
& 10.000 \mathrm{kHz} \\
& 10.001 \mathrm{kHz} \\
& 1 \mathrm{~Hz} \\
& 9.999 \mathrm{kHz}
\end{aligned}
$$

OUT OF RNG light stays on.

$$
3.000 \mathrm{kHz}
$$

$$
2.900 \mathrm{kHz}
$$

OUT OF RNG light on
\end{tabular}

\hline 4 \& STEP $\uparrow \downarrow$ register and OUT OF RNG annunciator check with the 86602A RF Section. \&

\hline 4-a \& | Enter 1200.000000 MHz CF on keyboard. |
| :--- |
| Enter 11.111111 MHz STEP \uparrow on keyboard. | \& \[

$$
\begin{aligned}
& 1200.000000 \mathrm{MHz} \\
& 1211.111111 \mathrm{MHz}
\end{aligned}
$$
\]

\hline 4-b \& | Press KYBD pushbutton |
| :--- |
| Release KYBD pushbutton | \& \[

$$
\begin{aligned}
& 11.111111 \mathrm{MHz} \\
& 1211.111111 \mathrm{MHz}
\end{aligned}
$$
\]

\hline 4-c \& Continue pressing STEP \uparrow key until readout displays: \& 1299.999999 MHz

\hline 4-d \& Press the STEP \uparrow key one more time. \& 1299.999999 MHz OUT OF RNG light flashes once.

\hline 4-e \& Set the MANUAL MODE switch to the STEP position and turn the TUNING CONTROL counterclockwise. \& Readout decreases in 11.111111 MHz steps.

\hline 4-f \& | Enter 1 MHz CF on the keyboard |
| :--- |
| Enter 1 Hz STEP \uparrow on the keyboard |
| Press STEP pushbutton |
| Press STEP \downarrow on keyboard twice | \& \[

$$
\begin{aligned}
& 1.000000 \mathrm{MHz} \\
& 1.000001 \mathrm{MHz} \\
& 1 \mathrm{~Hz}
\end{aligned}
$$
\]

OUT OF RNG light
stays on.

\hline 5 \& STEP $\uparrow \downarrow$ register and OUT OF RNG annunciator check with the 86603A RF Section. \&

\hline 5-a \& Enter 2500.000000 MHz CF on keyboard Enter 11.111111 MHz STEP \uparrow on keyboard \& $$
\begin{aligned}
& 2500.000000 \mathrm{MHz} \\
& 2511.111110 \mathrm{MHz}
\end{aligned}
$$

\hline 5-b \& | Press KYBD pushbutton |
| :--- |
| Release the KYBD pushbutton | \& \[

$$
\begin{aligned}
& 11.111111 \mathrm{MHz} \\
& 2511.111110 \mathrm{MHz}
\end{aligned}
$$
\]

\hline \multirow[t]{2}{*}{5-c} \& Continue pressing STEP \uparrow key until readout displays: \& 2599.999998 MHz

\hline \& | NOTE |
| :--- |
| The frequency increase alternates between 11.111110 and 11.111112 MHz due to the 2 Hz resolution of center frequencies $\geqslant 1300 \mathrm{MHz}$). | \&

\hline
\end{tabular}

Table 3-1. Operator's Check (3 of 4)

\begin{tabular}{|c|c|c|}
\hline Step \& Operation \& Result

\hline 5-d
5-e

5-f \& \begin{tabular}{l}
Press the STEP \uparrow key one more time

Set the MANUAL MODE switch to the STEP position and turn the TUNING CONTROL counterclockwise.

Enter 1 MHz CF on the keyboard

Enter 1 Hz STEP \uparrow on the keyboard

Press STEP pushbutton

Press STEP \downarrow on keyboard twice

 \&

2599.999998 MHz

OUT OF RNG light

flashes once.

The readout decrease is in 11.111110 or 11.111112 MHz steps (to a minimum of .000025 MHz).

1.000000 MHz

1.000001 MHz

1 Hz .999999 MHz

OUT OF RNG light stays on.
\end{tabular}

\hline | 6 |
| :--- |
| 6-a |
| 6-b. |
| 6-c |
| 6-d | \& | MANUAL MODE - MANUAL TUNING Check (With 86601A) |
| :--- |
| NOTE |
| The upper frequency limit for $86602 A / B R F$ Section is 1299.999999 MHz ; for $86603 \mathrm{~A}, 2599.999998 \mathrm{MHz}$ |
| Set the SWEEP MODE switch to OFF and enter 0 MHz CF |
| Set the MANUAL MODE switch to COARSE and rotate the TUNING control clockwise until the readout indicates: |
| Note that the readout steps in 1 MHz increments. |
| Set the MANUAL MODE switch to MED and rotate the TUNING control clockwise until the readout indicates: |
| Note that the readout steps in 1 kHz increments. |
| Set the MANUAL MODE switch to FINE and rotate the TUNING control clockwise until the readout indicates: |
| Note that the readout steps in 1 Hz increments. |
| NOTE |
| The OUT OF RNG light flashes on when the RF Section upper frequency limit is passed. The system rejects overrange frequencies and the CF register retains the last valid entry. | \& | .000000 MHz and OUT OF RNG light is on. |
| :--- |
| 109.000000 MHz |
| 109.999000 MHz |
| 109.999999 MHz |

\hline 7

$7-\mathrm{a}$ \& | Sweep Mode Checks with 86601A RF Section. |
| :--- |
| NOTE |
| Proper operation of the instrument in the sweep mode is best verified with a spectrum analyzer. However, operation of the sweep function can be verified by front panel indications as described in steps 7-a and 7-b. |
| Set CF to 5 kHz and SWP WIDTH to 10 kHz . Place the SWEEP MODE switch in the AUTO position and the RATE switch in the SLO position. | \& SWEEP and OUT OF RNG lights on. RF Output meter level drops every 50 seconds.

\hline
\end{tabular}

Table 3-1. Operator's Check (4 of 4)

\begin{tabular}{|c|c|c|}
\hline Step \& Operation \& Result

\hline 7-b

$7-c$ \& | Set CF to 10 kHz . Other functions as in step 7-a. |
| :--- |
| Connect the RF output to the RF INPUT of the spectrum analyzer. Enter 10 MHz CF and 10 MHz SWP WIDTH and SWEEP MODE to AUTO. Position the RATE switch to MED and adjust the spectrum analyzer for a clear display. Enter 5 MHz STEP and step the frequency across the RF range. | \& | SWEEP LIGHT remains lit. OUT OF RNG light alternates, 25 seconds on, 25 off. |
| :--- |
| Readout increases in 5 MHz steps. Sweep continues to be 5 MHz on each side of the CF. |

\hline 8
$8-\mathrm{a}$

8
$8-b$

$8-c$ \& | Sweep Mode Checks with 86602 A, 86602 B or $86603 A$ RF Sections. |
| :--- |
| Set CF to 5 MHz |
| Set SWP WIDTH to 10 MHz |
| Set SWEEP MODE to AUTO and RATE switch to SLO |
| Set CF to 1 MHz |
| Set CF to 5 MHz on keyboard. |
| Set SWEEP RATE switch to MED | \& | 5.000000 MHz |
| :--- |
| 5.000000 MHz |
| 5.000000 MHz |
| OUT OF RNG light |
| flashes every 50 s . |
| RF Section meter |
| also dips. SWEEP |
| light remains on. |
| 1.000000 MHz |
| SWEEP light on. |
| OUT OF RNG light on every 25 s . |
| 5.000000 MHz |
| OUT OF RNG light |
| flashes on at 1 s rate. |

\hline 9

$9-\mathrm{a}$ \& | Manual Sweep Check |
| :--- |
| Enter 50 MHz CF and 10 MHz SWP WIDTH. |
| Place the SWEEP MODE switch in the MAN position. Rotate the MANUAL SWEEP control through its range. | \& CF is tuneable from 45 to 55 MHz .

\hline 10 10-a \& | Single Sweep Check |
| :--- |
| Enter 50 MHz CF and 20 MHz SWP WIDTH and place the SWEEP MODE switch in the SINGLE position. Press the SWP WIDTH pushbutton. Connect the RF output to the RF INPUT of the spectrum analyzer to display the 50 MHz signal. Press the SINGLE pushbutton. | \& | 50.000000 MHz |
| :--- |
| 20.000000 MHz |
| Spectrum analyzer display is swept once from 40 to 60 MHz . |

\hline
\end{tabular}

voltages, operator's checks for the modulators are not included in Table 3-1. Refer to the individual manuals for the modulator plug-in in use for applicable operator's checks.

3-27. RF Units

$3-28$. Many of the tests specified in Table 3-1 do not apply specifically to an RF Section. Those checks which are not referred to a specific RF Section apply equally to the Model 86601,86602 , and the 86603 . When procedures apply to specific RF Sections only, this information is conveyed following the procedure.

NOTE

Most of the programming tables in this section apply equally to local and remote modes.

3-29. REMOTE OPERATION

$3-30$. There are currently two means of remotely programming the Model 8660 C . They are BCD (Binary Coded Decimal) and HP-IB (HewlettPackard Interface Bus). In the text which follows, programming and other requirements which are common to both means will be discussed first, then $B C D$ requirements, and finally HP-IB requirements.

3-31. General Programming Requirements

$3-32$. There are several conventions which must be observed when remotely controlling the Model 8660C. Besides providing data with the least significant digit first, these conventions include:
a. All output levels are referenced to +13 dBm . This reference operation involves subtracting 13 from the desired output level.
b. There are three separate modulation parameters which may be programmed; source, type and \%. Source and type are combined into one number (source is the least significant digit).
c. When in the remote mode, all front panel controls except the LINE STBY/ON and FM CAL controls are inhibited.
d. Digital sweep may not be operated in the remote mode of operation.
e. When changing from the local to the remote mode of operation the temporary storage
register should be cleared before a remote entry is made.
f. The data level inputs to the Model 8660 C are as follows: approximately 0 volts (TTL LOW) $=1$ and approximately $2.8 \mathrm{~V}($ TTL HIGH $)=$ 0 (sometimes referred to as negative or ground true logic).

3-33. BCD Remote Operation

$3-34$. The following information pertaining to BCD programming, does not apply to HP-IB programming.

3-35. In BCD remote operation two four-bit parallel codes are applied to the instrument circuits through a rear panel connector (J3). These inputs, if numeric data, are converted to BCD digit serial information and clocked into a temporary storage register. If the inputs are address information they are clocked into a temporary storage register. If the inputs are address information they are used to direct a clock to strobe the data from the temporary storage register into the desired final storage register.
$3-36$. When all of the significant data entries have been stored in the temporary storage registers, the least significant digit is stored in a position to allow it to be the first digit strobed out, then the next least significant digit, etc, so that the information will be stored in the appropriate register in the same sequence in which it was received.
$3-37$. Operation of the storage registers not located in the Model 8660C mainframe is detailed in the manuals for the plug-in sections. Table 3-3 provides examples of programming the registers which may be programmed when the Model 8660C mainframe is used.
$3-38$. Refer to Figures $3-2$ and $3-3$ for timing information and to Table 3-5 for interconnection information.

NOTE

Although it is not necessary to program frequency first, then modulation (if any), then attenuation, this sequence minimizes the time required for entering data.

3-39. Data Inputs. Data inputs (logic $1=0$) must be referenced to the command pulse as shown in

Figure 3-2. Model 8660 C Data Input Timing

Figure 3-3. Model 8660C Error Output Timing

Figure 3-2. The data inputs may be terminated after the command pulse trailing edge.
$3-40$. The command pulse causes the input data to be stored in the temporary storage register or, if the data input is an address, to be stored in one of the final storage registers. These pulses are logic 1 (0 V) pulses of 100 nanoseconds minimum width, maximum frequency of 500 kHz . Pulses for low transfer frequencies may be wider if consistent with the duty cycle. The leading edge must have a fall time of 100 nanoseconds or less. Transfer occurs on the leading edge of the pulse. Note that data must be held until the command pulse terminates. The flag signal is also initiated by the falling (leading) edge of the command pulse.

3-41. Flag Signal. The flag signal indicates receipt and execution of the command pulse from the remote programming device. The flag signal will be logic 1 (0 V). Duration of the signal will depend on the function programmed.

3-42. Error Signal. Indicates frequency out of range or crystal oven temperature is not stabilized. The error signal will be at a logic $1(0 \mathrm{~V})$ for the period of the function error (see Figure 3-3).

3-43. Reset. Controls the DCU circuits in the same manner as the DCU power detect circuit does when the instrument is first turned on. It also initializes circuitry and resets the data registers. Requires a logic $1(0 \mathrm{~V})$ level which may be as short as 5 microseconds.

NOTE

When switching from remote to local operation clear the keyboard before making an entry.

3-44. HP-IB Remote Operation

$3-45$. HP-IB (Hewlett-Packard Interface Bus) is a general purpose interface system. Although the

Table 3-2. Storage Register Addresses

Name of Register	Address 0=High, 1=Low	Location	Function
Center Frequency	0000 (0)	Mainframe	To set Center Frequency
Step \uparrow	0001 (1)		To step center frequency up in any increment
Step \downarrow	0010 (2)	Mainframe DCU	To step center frequency down in any increment
Attenuator	0011 (3)	RF Section plug-in	Controls level of RF OUTPUT
AM-FM Function	0100 (4)	Modulation Section plug-in	Selects Modulation Function
AM-FM\%	0101 (5)	Modulation Section plug-in	*Selects AM \% of Modulation or FM Deviation
FM CAL 86635 or 86632 only	0110 (6)	Modulation Section plug-in	Phase locks 20 MHz FM oscillator to the reference loop 20 MHz

*The 86632 B and the 86635 A require inputs of one half of the desired deviation in remote mode.

Table 3-3. Model 8660C Programming Examples (1 of 3)

Table 3-3. Model 8660C Programming Examples (2 of 3)

EXAMPLE 4. Set 7 dB Attenuation (RF SECTION) Below +13 dBm (1 volt)		
$0=\text { High } \quad \text { Input } \quad 1=\text { Low }$	Temporary Register	Atten Register
Data: $\quad D_{1} 0000(0) D_{2} 0111$ (7) Temporary Command Data: $\quad D_{1} 0000(0) D_{2} 0000(0)$ Temporary Command Address: $\mathrm{D}_{1} 1111$ (15) $\mathrm{D}_{2} 0011$ (3) Transfer Command	0000000000 7000000000 7000000000 0070000000 0070000000 0000000000	Last Input 007
See note for Example 3		
EXAMPLE 5. Shut off Modulation (MODULATION SECTION)		
$0=\text { High } \quad \text { Input } \quad 1=\text { Low }$	Temporary Register	Function Register
Address: $\mathrm{D}_{1} 1111$ (15) $\mathrm{D}_{2} 0100$ (4) Transfer Command	0000000000 0000000000	Last Input 00
NOTE: All digits are zero - no modulation		
EXAMPLE 6. Set 3\% AM Modulation, Internal 1 kHz (MODULATION SECTION)		
$0=\text { High Input } \quad 1=\text { Low }$	Temporary Register	AM-FM \% Register
Data: $\quad D_{1} 0011$ (3) $\mathrm{D}_{2} 0000$ (0) Temporary Command Address: $\mathrm{D}_{1} 1111$ (15) $\mathrm{D}_{2} 0101$ (5) Transfer Command Data $\quad \mathrm{D}_{1} 0001$ (1) $\mathrm{D}_{2} 1000$ (8) Temporary Command Address: $\mathrm{D}_{1} 1111$ (15) $\mathrm{D}_{2} 0100$ (4) Transfer Command	0000000000 0300000000 0300000000 0000000000 0000000000 8100000000 8100000000 0000000000	Last Input Last Input Last Input 03 into \% Storage 81 into AM-FM Function Register Sets AM and 1 kHz

NOTE: See Table 3-4. for AM-FM Function Register Codes

Table 3-3. Model 8660 C Programming Examples (3 of 3)

EXAMPLE 7. Set 10 MHz STEP \dagger		
$0=\text { High } \quad \text { Input } 1 \text { Low }$	Temporary Register	INCR Register
Data: $\mathrm{D}_{1} 0000$ (0) $\mathrm{D}_{2} 0001$ (1)	0000000000	Last Input
Temporary Command	1000000000	Last Input
Data: $\mathrm{D}_{1} 0000(0) \mathrm{D}_{2} 0000(0)$	1000000000	Last Input
Temporary Command	0010000000	Last Input
Address: $\mathrm{D}_{1} 1111$ (15) $\mathrm{D}_{2} 0001$ (1)	0010000000	Last Input
Transfer Command	0000000000	0010000000

Table 3-4. AM - FM Function Register Coding

DIGIT $2\left(\mathrm{D}_{2}\right)$		$0=$ High DIGIT $1\left(\mathrm{D}_{1}\right)$	1=Low
OM	1100 (12)	EXT. AC (UNLEVELED	$\begin{aligned} & 1001 \text { (9) } \\ & 86633 \text { only } \end{aligned}$
FM X . 1	0100 (4)	EXT. DC	0100 (4)
FM X 1	0010 (2)	INT. 400 Hz	0010 (2)
FM X 10	0001 (1)	INT. 1 kHz	0001 (1)
OFF	0000 (0)		

Table 3-5. Programming Connections to J3

J3 Pin No.	To A3XA5 Pin No.	Signal	Other
1			To J3 pin 18
3	2	Error	
5	5	LCL-RMT	
9	11	Command	
13	15	Digit 1-8	
14	16	Digit 1-4	
15	17	Digit 1-2	
16	18	Digit 1-1	
17	A	Flag (Busy)	
2.4	J	Reset	
28	S	Digit 2-8	
29	T	Digit 2-4	
30	${ }^{1}$	Digit 2 - 2	
31	V	Digit 2-1	
36			Ground
J3 pins not listed are also wired to A3XA5. See the rear interface board schematic diagram for wiring information.			

HP-IB uses many of the operational parameters (coding, handshake, etc.), the terms HP-IB and ASCII should not be used interchangeably because they are not completely compatible.

3-46. The HP-IB interface systems use seventeen lines to effect the transfer of data between the instruments connected to the bus. Eight of these lines are used for the actual transfer of data, one line is ground and the remaining eight lines are used for control.

3-47. Table 3-6 illustrates the HP-IB bus interface line designations. The ground line, being selfexplanatory, is not shown.
$3-48$. The structure and operation of the bus is analogous to an old-fashioned party line, and many of the conventions which apply to a party line apply to the HP-IB interface as well. For instance, at any given time only one person may talk on the party line, while many people may listen, and most will not be using the party line at all.

3-49. Similarly, on the HP-IB interface, only one instrument may talk (send data) at any given time, although many instruments may listen (receive data), and most instruments will not interact with the bus at all.

3-50. In order to determine which instruments are to "talk", which are to "listen", and which are to remain inactive, some sort of a controller is required. This controller, which might be a calculator, assigns functions to the various instruments by sending data over the eight lines to all instruments. Any instrument becomes a listener when its listen address is placed on the bus and remains a listener until the "unlisten" command is transmitted. Talkers, on the other hand, stop functioning as talkers whenever another talk address is put on the data lines. This prevents more than one device from talking at any given time.
$3-51$. In order for the instrument to distinguish between data and addresses, both of which are sent over the eight data lines, an "address mode/data mode" selector called the Multiple Response Enable (MRE) line is driven by the controller. When this line is low, all instruments listen to the eight data lines and interpret the information being transmitted by the controller as addresses. When the MRE line is high, information on the eight data lines is interpreted as data and the instruments talk, listen or remain inactive as determined during the time they were addressed when MRE was low.

3-52. Three-Wire Handshake. Information, whether addresses, measurement results, or other data is transferred on the data lines under control of a technique called the three-wire handshake. The handshake involves the use of three control lines, and operates as follows:
a. A listener indicates that it is ready to accept data by letting the Ready for Data (RFD) line go high. Listeners are connected to the RFD line in a logical AND configuration so the RFD line does not go high until all active listeners are ready for data.
b. After RFD has gone high, the talker indicates that it has placed a data byte on the eight data lines by setting the Data Valid (DAV) line low.
c. After DAV has gone low, each listener pulls RFD low, accepts the data, and then lets the data accepted (DAC) line go high. Again, all listeners are logically ANDed and DAC does not go high until all listeners have accepted the data.
d. After the DAC line has gone high, the talker can let DAV go high again and take the data off the lines. When DAV goes high, the listeners set DAC back to low and the sequence is ready to repeat with step 1 of Figure 3-4.
$3-53$. As can be seen from the description, data transfer is asynchronous, proceeding only as fast as the slowest active (addressed to talk or listen) device on the line.

NOTE

Figure 3-4 illustrates a flow chart of the three-wire handshake operation.
$3-54$. The four remaining control lines operate as follows:
a. The Remote Enable (REN) line allows the controller to put all instrument on the bus in the remote mode. When this line is low, all instruments will go into remote as soon as they are addressed, and remain in remote until the line goes high again.
b. The End Output (EOP) line, when pulled low by the system controller, will halt all activity on the bus and cause all instruments to unaddress themselves.

Table 3-6. HP-IB Interface Lines

	Name	Abbreviation	Description
$\begin{aligned} & D \\ & A B \\ & T U \\ & A S \end{aligned}$	$\left\{\begin{array}{l} \text { Data Input/Output } 1 \\ \text { Data Input/Output } 8 \end{array}\right.$	DI01	These lines carry address data, basic measurement data, control and program data, and status data.
$\begin{array}{ll} \mathrm{T} & \mathrm{~B} \\ \mathrm{R} & \mathrm{U} \\ \mathrm{~A} & \mathrm{~S} \end{array}$	$\left\{\begin{array}{l} \text { Data Valid } \\ \text { Ready for Data } \\ \text { Data Accepted } \end{array}\right.$	$\begin{aligned} & \text { DAV } \\ & \text { RFD } \\ & \text { DAC } \end{aligned}$	These lines control the transfer of data over the DI01-DI08 lines.
$\begin{aligned} & N \\ & S \\ & \mathrm{~F} \\ & \mathrm{E} \\ & \mathrm{R} \end{aligned}$	(Multiple Response Enable	MRE	Indicates whether information on DI01DI08 should be interpreted as data common to all instruments (addresses) or data directed to selected instruments.
$\begin{array}{ll} \mathrm{M} \\ \mathrm{~A} & \mathrm{~B} \end{array}$	Remote Enable	REN	Switches all instruments between remote and local mode.
$\begin{array}{ll} N & U \\ A & S \\ G & \end{array}$	End Output	EOP	Allows controller to halt communication over the bus.
$\begin{aligned} & E \\ & M \end{aligned}$	Service Request	SRQ	Allows instruments on the bus to get the attention of the controller.
$\begin{aligned} & \mathrm{E} \\ & \mathrm{~N} \\ & \mathrm{~T} \end{aligned}$	End or Identify	EOI	Enables the controller to determine which instrument requested service through the SRQ line.

c. The Service Request (SRQ) line allows instruments to get the attention of the controller. The Model 8660C does not use this line, so its function will not be described here.
d. The End OR Identify (EOI) line is used to identify which instrument pulled the SRQ line low. The Model 8660C does not use this line.

3-55. When a standard Model 8660 C is modified to accept the HP-IB interface the instructions contained in the modification kit must be followed to install the two new circuit boards.
$3-56$. In addition to following the modification instructions, special care should be taken to observe jumper positions on the HP-IB boards.

3-57. Before installing the HP-IB circuit boards check the address jumpers, and change if required. It should be noted that if more than one Model

8660C is used in a system, it is not likely that operational parameters will be the same for each, so different addresses will probably be required for each instrument.

3-58. When used in the Model 8660C, jumper J2 must not be connected.

3-59. Jumper J1 is installed at the operator's choice. With it in place the internally generated BUSY signal is used to delay the RFD response. Without it, the operator must make allowances in programming for the necessary settling time of the Model 8660C.

3-60. The information contained in this section of this manual applies only to Model 8660C Option 005 HP-IB instruments. Refer to Table 3-7 for HP-IB codes. Information contained in this section for other types of remote control does not apply to Option 005 instruments.

3-61. Local control operation of Option 005 instruments is the same as that described for the Model 8660C in other parts of this section.

3-62. Basically, the Model 8660C Option 005 instruments are the same as the standard Model 8660C instruments except that the capability of remote operation using the HP-IB interface is added and BCD interface is deleted. Basic information about HP-IB is included in the General Information Section of this manual.

3-63. Option 005 allows remote programming via the HP-IB interface of all 8660C front panel controls except LINE, (POWER), SWEEP MODE, and MANUAL MODE. All front panel controls except LINE AND FM CAL are locked out when the Model 8660C is in remote.

3-64. The Model 8660 C HP-IB interface will recognize an internally preset "listen" address and accept bit-parallel, word serial HP-IB information. When addressed to listen, the Model 8660 C shifts incoming data into a temporary storage register. This data must be presented to the interface least significant digit first to satisfy the internal logic
requirements of the Model 8660 C . When a programming code is detected in the input data, the contents of the temporary storage register are shifted into the register selected by the internal address character. The temporary register is then cleared to make way for more data.

3-65. There are three separate modulation parameters which may be programmed; source, type and \%. Source and type are combined into one number (source is the least significant digit) and this number is followed by the address "\$". To turn off the modulation section, code \emptyset for modulation type. When programming AM, \% modulation refers to percentage of full scale. Thus the FM X 10 range is 1000 kHz full scale, and 20% would mean 200 kHz deviation. With this setup the deviation of the 86632 B or the 86635 A would be 400 kHz .
$3-66$. One last convention is that after the Model 8660 C is placed in remote, the first output of the HP-IB interface should be a false address which serves to clear the temporary storage register. This can be accomplished by first addressing the Model 8660 C to listen, then placing " $/$ " on the HP-IB line.

Figure 3-4. Handshake Flow Chart

Table 3-7. HP-IB Code Allocations

$\dagger_{\text {Figure 3-5. HP-IB Address Switch S1 with Factory Set ASCII Address Code } 3 \text { Selected (1910) }}$. (Shown as mounted in 8660 C on A3A2 assembly.)

Table 3-8. 8660 HP-IB Coding Table

SECTION IV PERFORMANCE TESTS

4-1. INTRODUCTION

4 -2. The procedures in this section test the instrument's electrical performance using the specifications of Table 1-1 as the performance standards. A simpler operations test is included in Section III under Operator's Checks.

4-3. EQUIPMENT REQUIRED

4-4. Equipment required for the performance tests is listed in the Recommended Test Equipment table in Section I. Any equipment that satisfies the
critical specifications given in the table may be substituted for the recommended models(s).

4-5. TEST RECORD

4-6. Results of the performance tests may be tabulated on the Test Record at the end of the procedures. The Test Record lists all of the tested specifications and their acceptable limits. Test results recorded at incoming inspection can be used for comparison in periodic maintenance and troubleshooting and after repairs or adjustments.

PERFORMANCE TESTS

4-7. INTERNAL CRYSTAL OSCILLATOR AGING RATE

SPECIFICATION:

Reference Oscillator Internal: 10 MHz quartz oscillator. Aging rate less than ± 3 parts in 10^{-8} per 24 hours after 72 hour warmup. (± 3 parts in 10^{-9} per 24 hours after 30 day warmup, Option 001).

DESCRIPTION:

This test verifies the reference oscillator aging rate after the instrument has been connected to the ac line for 72 hours.

Figure 4-1. Crystal Oscillator Aging Rate Test Setup

EQUIPMENT:

```
Frequency Standard

\section*{PERFORMANCE TESTS}

\section*{4-7. INTERNAL CRYSTAL OSCILLATOR AGING RATE (Cont'd)}

\section*{PROCEDURE:}
1. Set the rear panel REFERENCE switch to INT.
2. Connect the equipment as shown in Figure 4-1.
3. Adjust the oscilloscope controls for a stable display of the 10 MHz output.
4. Measure the time required for a phase change of \(360^{\circ}\). Record the time ( \(\mathrm{T}_{1}\) ) in seconds.
\[
\mathrm{T}_{1}=
\]
\(\qquad\)
5. Wait for a period of time (from 3 to 24 hours) and re-measure the phase change time ( \(\mathrm{T}_{2}\) ). Record the period of time between measurements ( \(\mathrm{T}_{3}\) ) in hours.
\[
\begin{aligned}
& T_{2}=\square \mathrm{s} \\
& \mathrm{~T}_{3}=\square
\end{aligned}
\]
6. Calculate the aging rate from the following equation:
\[
\text { Aging Rate }=\left|\left(\frac{1 \text { cycle }}{f}\right)\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)\left(\frac{T}{T_{3}}\right)\right|
\]
where: 1 cycle \(=\) the phase change reference for the time measurement 1 in this case \(360^{\circ}\) )
\[
\begin{aligned}
\mathrm{f} & =\text { Synthesizer's reference output frequency }(10 \mathrm{MHz}) \\
\mathrm{T} & =\text { specified time for aging rate }(24 \mathrm{~h}) \\
\mathrm{T}_{1} & =\text { initial time measurement(s) for a } 360^{\circ}(1 \text { cycle }) \text { change } \\
\mathrm{T}_{2} & =\text { final time measurement(s) for a } 360^{\circ}(1 \text { cycle }) \text { change } \\
\mathrm{T}_{3} & =\text { time between measurement }(\mathrm{h})
\end{aligned}
\]
for example:
if \(\quad T_{1}=351 \mathrm{~s}\)
\(\mathrm{T}_{2}=349 \mathrm{~s}\)
\(\mathrm{T}_{3}=3 \mathrm{~h}\)
then Aging Rate \(=\left|\left(\frac{1 \text { cycle }}{10 \mathrm{MHz}}\right)\left(\frac{1}{351 \mathrm{~s}}-\frac{1}{349 \mathrm{~s}}\right)\left(\frac{24 \mathrm{~h}}{3 \mathrm{~h}}\right)\right|\)
\[
=1.306 \times 10^{-11}
\]

\section*{PERFORMANCE TESTS}

\section*{4-8. REFERENCE TEST}

\section*{SPECIFICATION:}

At 5 or 10 MHz from 0.75 to 1.5 Vrms into 170 ohms.

\section*{DESCRIPTION:}

This test verifies proper operation of the reference amplifier and relay switching circuits.


Figure 4-2. Internal Reference Test Setup

\section*{TEST EQUIPMENT:}

> RF Voltmeter . . . . . . . . . . . . . . . . . . . . HP 3400A

\section*{PROCEDURE:}
1. Connect the RMS Voltmeter to the REFERENCE OUTPUT-(rear panel) jack and set the SELECTOR switch (rear panel) to the INT position.
2. The RMS Voltmeter should display a signal from 0.75 to 1.5 Vrms.

Table 4-1. Performance Test Record
\begin{tabular}{lc}
\begin{tabular}{l} 
Hewlett-Packard Model 8660C \\
Synthesized Signal Generator
\end{tabular} & Tests performed by \\
Serial No. & Date \\
\hline Crystal Oscillator Aging Rate & Actual \\
OPT 001 & Actual \\
Output Reference Level & Actual \\
\hline
\end{tabular}

\section*{SECTION V ADJUSTMENTS}

\section*{5-1. INTRODUCTION}
\(5-2\). This section describes adjustments and checks required to return the Model 8660C to peak operating capability when repairs have been made. Included in this section are test setups and procedures.

5-3. Except for the power supply adjustment procedures, which should be performed before repairs are made to any part of the instrument, the adjustment procedures are arranged in the same sequence as the service sheets to which they refer.

\section*{5-4. EQUIPMENT REQUIRED}

5-5. Each adjustment procedure in this section contains a list of test equipment and accessories required to perform the procedure. Each test setup identifies test equipment and accessories by callouts.

5-6. Minimum specifications for test equipment used in the adjustment procedures are detailed in Table 1-2. Because the Model 8660 C is an extremely accurate instrument, minimum specifications in Table 1-2 are particularly important in perfoming these adjustment procedures.

\section*{5-7. ADJUSTMENT AIDS}
\(5-8\). The HP 11672A Service Kit is an accessory item available from Hewlett-Packard for use in maintaining the Model 8660C Synthesized Signal Generator. Table 1-2 contains a detailed description of the Service Kit. Any item in the kit may be ordered separately.

\section*{5-9. FACTORY SELECTED COMPONENTS}
\(5-10\). Some component values are selected at the time of final checkout at the factory. Usually these values are not extremely critical; they are selected to provide optimum compatibility with associated components.

5-11. Factory selected components and suggested range of values are listed in Table 5-1.
\(5-12\). The recommended procedure for replacing a factory selected component is as follows:
a. Try the original value, then perform the test specified in Section V of this manual for the circuit being repaired.
b. If the specified test cannot be satisfactorily performed, try the typical value shown in the parts list and repeat the test.
c. If the test results are still not satisfactory, substitute various values within the tolerances specified in Table 5-1 until the desired result is achieved.

\section*{5-13. RELATED ADJUSTMENTS}
\(5-14\). Most of the adjustments within any given phase lock loop are interrelated. This is especially true in digital-to-analog converters. Adjustments should be made in the order in which they appear for any given loop.
\(5-15\). Generally, it will not be necessary to adjust any of the phase lock loops except the one in which the component failure occurred. An exception to this will be when adjustment to any phase lock loop has been attempted while the reference section is not functioning properly.

\section*{5-16. ADJUSTMENT LOCATIONS}
\(5-17\). Adjustment locations are identified pictorially on Section VIII foldout service sheets referred to in the individual procedures and in Figures listed in the individual procedures.

\section*{5-18. CHECKS AND ADJUSTMENTS}

5-19. Data taken while following the adjustment procedures should be recorded in spaces provided. This information may then be used as reference in later tests.

Table 5-1. Factory Selected Components (1 of 2)
\begin{tabular}{|c|c|c|c|}
\hline Designation & Location & Purpose & Range of Values \\
\hline A4A2C11 & Reference Loop & A variable 10 MHz signal (at -45 dB ) is connected in parallel with the 10 MHz reference signal to A 4 J 5 . The frequency is varied to show the 3 dB points. The capacitor is selected for the reference loop 3 dB bandwidth of 60 to \(160 \mathrm{kHz}( \pm 30\) to \(\pm 80 \mathrm{kHz}\) ) measured at the 100 MHz output. & 38 to 72 pF \\
\hline A4A4L12 & Reference Loop & To control output level of 100 MHz & 0.34 to \(1.0 \mu \mathrm{H}\) \\
\hline A4A4R29 & Reference VCO and Divider & To compensate for variations in the 100 MHz reference output level. Selected for an output level of +11 to +13 dBm into a 50 ohm load at the output of A4A8. & 42.2 to 196 ohms \\
\hline A4A5R38, 40 , and 42 (50 ohm pad) & HF VCO & To compensate for variations in the \(350 / 450 \mathrm{MHz}\) output level. Selected for a level of +10 to +13 dBm . & See Note 1 \\
\hline A4A5R37, 39 , and 41 (50 ohm pad) & HF Loop & To compensate for variation in the \(350 / 450 \mathrm{MHz}\) output level to the \(\phi\) detector. Selected for a level of +10 to +12 dBm . & See Note 1 \\
\hline A4A6R18 & HF Loop & To center range of associated potentiometer & 100 to 200 ohms \\
\hline A4A6R19 & HF Loop & To center the travel of A4A6R20 Profile Adjust & 287 to 422 ohms \\
\hline A4A6R26 & HF Loop & & 60 to 250 ohms \\
\hline A4A6R33 & HF Loop & & 100 to 300 ohms \\
\hline A4A6R38 & HF Loop & & 100 to 500 ohms \\
\hline A4A6R43 & HF Loop & To center range of associated potentiometer & 200 to 700 ohms \\
\hline A4A6R47 & HF Loop & & 200 to 900 ohms \\
\hline A4A6R51 & HF Loop & & 500 to 1500 ohms \\
\hline A4A6R55 & HF Loop & & 1.2 K to 3.1 K \\
\hline A4A6R59 & HF Loop & & 2 K to 7 K \\
\hline A 4 A 4 T & Reference Loop & To optimize performance of 500 MHz tuned amplifier & \\
\hline A4A4Q8 & Reference Loop & To optimize performance of \(100 \mathrm{MH} /\) tuned amplifier & \\
\hline A8R18 & N3 Oscillator & To aid in balancing Summing loop for Varactor tuning & 19.6 K to 25 K \\
\hline A8R25 & N3 Oscillator & & 4 K to 6K \\
\hline A13R60 & N2 VCO & To compensate for variations in the Varactor diode by reducing phase error output of the N2 assembly. Selected for an output at A2TP10 \(\phi\) monitor of 0.000 \(\pm 0.350 \mathrm{Vdc}\). & 68 to 120 K ohms \\
\hline A19R55 & SL1 Oscillator & To set the SL1 Oscillator output between \(-3 \&-5 \mathrm{dBm}\). & 681 to 1470 ohms \\
\hline A4A4C10 & Reference VCO & To set reference loop bandwidth and capture range. Interacts with A4A2C11. & 15 to 56 pF \\
\hline
\end{tabular}

Table 5-1. Factory Selected Components (2 of 2)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Designation & Location & & & Purpo & & & & Range of Values \\
\hline A4A6C6 & HF Loop & To ensure tu signal. & g ran & fficie & to tra & \[
10
\] & & 16 to 24 pF \\
\hline \[
\begin{aligned}
& \text { A4A5C7, C8, } \\
& \text { C13, C14, } \\
& \text { C19, C20 }
\end{aligned}
\] & \begin{tabular}{l}
HF Loop \\
VCO
\end{tabular} & If one or mo tuned ampli quency harm the drive to the appropri sure there is & \begin{tabular}{l}
f the \\
stage \\
c spu \\
over \\
сара \\
ficien
\end{tabular} & \begin{tabular}{l}
plifier \\
over \\
ll tra \\
n stag \\
Aft \\
tput
\end{tabular} & \begin{tabular}{l}
the \\
en, a \\
he ou \\
y dec \\
electi \\
rive
\end{tabular} & \begin{tabular}{l}
to 45 \\
half \\
sign \\
ing th \\
cap \\
mpli
\end{tabular} & \begin{tabular}{l}
Hz \\
Reduce alue of r, be
\end{tabular} & 7.5 to 24 pF \\
\hline \multirow[t]{3}{*}{Note 1. Range} & values & 2 dB & 3 dB & 4 dB & 5 dB & 6 dB & 7 dB & 8 dB \\
\hline & \multicolumn{2}{|r|}{R37, R38 (R41, R42)} & 287 & 315 & 178 & 147 & 133 & 115 \\
\hline & \multicolumn{2}{|l|}{R39 (R40)} & 17.8 & 23.7 & 28.7 & 34.8 & 46.4 & 51.1 \\
\hline
\end{tabular}

\section*{NOTE}
a. In the following tests it is assumed that at the start of the test the output frequency is set to 0 .
b. An RF Section output plug-in section must be in place during the tests.
c. A Modulator Section or an Auxiliary Section must be in place in the modulator compartment.
d. All tests in which a counter is used should be made with the Model 8660C and the counter referenced to the same source. The Model 8660 C internal reference may be used as the source.

\section*{5-20. SAFETY CONSIDERATIONS}
\(5-21\). Although this instrument has been designed in accordance with international safety standards, this manual contains information and warnings, which must be followed to ensure safe operation and to retain the instrument in a safe condition (see Section II). Service and adjustments should be performed only by qualified service personnel.

\section*{WARNING}

Any interruption of the protective (grounding) conductor inside or outside the instrument or disconnection of the protective earth terminal is !ikely to make the apparatus dangerous. Intentional interruption is prohibited.
5.22. Any adjustment, maintenance, and repair of the opened instrument under voltage should be avoided as much as possible and, when inevitable, should be carried out only by a skilled person who is aware of the hazards involved. The opening of covers or removal of parts may expose live parts, and also accessible terminals may be live.
\(5-23\). Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply.
\(5-24\). Make sure that only fuses with the required rated current and of the specified type (normal blow, time delay, etc.) are used for replacement. The use of repaired fuses and the short-circuiting of fuseholders must be avoided.
\(5-25\). Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any unintended operation.

\section*{NOTE}

When repairs or adjustments to the instrument are required, such work should not be performed, even by a skilled technician, unless another person is in the same general area. This is not to be interpreted to mean that two persons are required to perform the necessary work, but only that another person should be available, should the need for assistance arise.

\section*{ADJUSTMENTS}

\section*{5-26. POWER SUPPLY}

\section*{REFERENCE:}

Service Sheet 41

\section*{DESCRIPTION:}

The power supplies in the Model 8660 C provide regulated outputs of \(+20 \mathrm{~V}, ~+5.25 \mathrm{~V},-10 \mathrm{~V}\) and -40 V . Unregulated supplies provide \(+30 \mathrm{~V},+21 \mathrm{~V},+4 \mathrm{~V}\) and -21 V . These checks verify proper operation of the power supply.


Figure 5-1. Power Supply Test Setup

\section*{TEST EQUIPMENT:}
\[
\begin{aligned}
& \text { Digital Voltmeter . . . . . . . . . . . . . . . . . . . . . . . . . HP 3465A } \\
& \text { AC Voltmeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HP 400F } \\
& \text { Variable Voltage Transformer . . . . . . . . . . . General Radio W5MT3A }
\end{aligned}
\]

\section*{PROCEDURE:}
1. Remove the top and bottom covers of the Model 8660C and connect the instrument to the ac line through the variable voltage transformer.
2. Use the digital voltmeter and the ac microvoltmeter to check voltages, tolerances and ripple at A20 test points specified in Table 5-2. Adjust the variable voltage transformer to check tolerance of the power supplies at \(\pm 10 \%\) line voltage variations.
3. Use the digital voltmeter and the ac microvoltmeter to check for voltages, tolerances and 120 Hz ripple at A5 test points specified in Table 5-3. Adjust the dc levels shown in Table 5-3 with controls specified in Table 5-3, then adjust the variable voltage transformer to check tolerance of the power supplies at \(\pm 10 \%\) of the normal line voltage.

\section*{ADJUSTMENTS}

\section*{5-26. POWER SUPPLY (Cont'd)}

Table 5-2. Unregulated Power Supplies
\begin{tabular}{|c|c|c|c|}
\hline Test Location & Voltage at normal line & Tolerance high to low line (from normal line) & 120 Hz Ripple (at normal line) \\
\hline + side of A20C7 & Typical +3.67V & Specified \(\pm 0.6 \mathrm{~V}\) & Typical . 31 Vrms \\
\hline & Actual & Actual & Actual \\
\hline + side of A20C4 & Typical +21 V & Specified \(\pm 2.4 \mathrm{~V}\) & Typical 1.1 Vrms \\
\hline & Actual & Actual & Actual \\
\hline - side of A20C5 & Typical -21V & Specified \(\pm 2.4 \mathrm{~V}\) & Typical 1.15 Vrms \\
\hline & Actual & Actual & Actual \\
\hline + side of A20C1 & Typical +33 V & Specified \(\pm 4 \mathrm{~V}\) & Typical 1.0 Vrms \\
\hline & Actual & Actual & Actual \\
\hline
\end{tabular}

Table 5-3. Regulated Power Supplies
\begin{tabular}{|c|l|l|l|l|}
\hline Test Point & \begin{tabular}{c} 
Adjust \\
Control
\end{tabular} & \begin{tabular}{c} 
Voltage \\
at Normal Line \\
Specified
\end{tabular} & \begin{tabular}{c}
\multicolumn{1}{c|}{\begin{tabular}{c} 
Tolerance \\
High to Low Line \\
Specified
\end{tabular}}
\end{tabular} & \begin{tabular}{c} 
RMS Ripple \\
\(\mathbf{1 2 0 ~ H z}\) \\
(Normal Line)
\end{tabular} \\
\hline A5TP4 & A5R24 & +5.25 V & \(\pm 20 \mathrm{mV}\) & \(125 \mu \mathrm{~V}\) \\
\hline & +5.25 ADJ & Actual & Actual & Actual - \\
\hline A5TP2 & A5R26 & -10.0 V & \(\pm 5 \mathrm{mV}\) & \(50 \mu \mathrm{~V}\) \\
\hline A5TP3 & -10 ADJ & Actual & Actual & Actual - \\
\hline A5R21 & +20.0 V & \(\pm 10 \mathrm{mV}\) & \(50 \mu \mathrm{~V}\) \\
\hline A5TP1 & A5R28 & -40.0 V & \(\pm 20 \mathrm{mV}\) & \(50 \mu \mathrm{~V}\) \\
\hline & -40 ADJ & Actual & Actual & Actual - \\
\hline
\end{tabular}

\section*{ADJUSTMENTS}

\section*{5-27. REFERENCE SECTION}

\section*{REFERENCE:}

Service Sheets 2 and 3

\section*{DESCRIPTION:}

The reference section contans a voltage controlled master oscillator from which all RF signals generated in the Model 8660 C mainframe are derised. The master oscllator is phase locked to an internal temperature controlled crystal oscillator or to an extemal standard. The reference section provides outputs of 500 MHz , \(100 \mathrm{MHz}, 20 \mathrm{MHz}, 10 \mathrm{MHz}, 2 \mathrm{MHz}, 400 \mathrm{kHz}\) and 100 kHz . These checks verify proper operation of the circuits within the reference section


Figure 5-2. Reference Accuracy Adjustment Test Setup

\section*{EQUIPMENT}
\begin{tabular}{|c|c|}
\hline Frequency Standard & HP 5065A \\
\hline Oscilloscope (with 10:1 divider probes) & HP 180A/1801A/1821A \\
\hline Spectrum Analyzer & HP 140/8554B/8552 \\
\hline Frequency Counter & HP 5328A Option 030 \\
\hline 50 Ohm Feedthru Termination & HP 11048C \\
\hline
\end{tabular}

\section*{PROCEDURE:}
1. Internal Reference Accuracy Adjustment (see Figure 5-2). (Allow adequate warmup time.)
a. Use the signal source to trigger the oscilloscope at the SYNC INPUT and connect the reference output from the Model 8660 C rear panel reference output to the oscilloscope vertical input.
b. Observe the 10 MHz sine wave on the oscilloscope and adjust the A21 oscillator until the oscilloscope display stops drifting.
c. Set the oscilloscope to sweep at \(0.1 \mu\) Sec Division and the sweep magnifier to X10. If drift is observed readjust the A21 oscillator.

\section*{ADJUSTMENTS}

\section*{5-27. REFERENCE SECTION (Cont'd)}

\section*{NOTE}

When the oscilloscope display drift is less than 1 division in 10 seconds the Model 8660 reference oscillator is set within 1 part in \(10^{9}\) of the signal source.
2. 100 MHz Output Adjustment.
a. Connect the frequency counter to the 100 MHz output on the A4A4 assembly (see Figure 5-3).
b. If the internal reference is being used, place the rear panel INT/EXT switch in the EXT position to open the 100 MHz phase lock loop. (If an external reference is being used, disconnect the source.)
c. Allow at least 15 minutes warmup time for the oscillator to stabilize and adjust A 4 A 4 C 2 for a counter readout of \(100.000 \mathrm{MHz} \pm 20 \mathrm{kHz}\). Disconnect the frequency counter.


Figure 5-3. 100 MHz Adjustment Test Setup
d. Connect the Spectrum Analyzer RF INPUT to the 100 MHz output of the A4A4 assembly and tune the Spectrum Analyzer CENTER FREQUENCY to 100 MHz . The 100 MHz signal should be \(>+10 \mathrm{dBm}\) (see Figures 5-4 and 5-5).


Figure 5-4. RF Level Checks Test Setup

\section*{ADJUSTMENTS}

\section*{5-27. REFERENCE SECTION (Cont'd)}

\section*{TYPICAL WAVEFORM}


Figure 5-5. RF Level Checks Typical Waveform
e. Disconnect the Spectrum Analyzer and enable the 100 MHz phase lock loop be returning the INT/EXT switch to INT or by reconnecting the external standard.

\section*{NOTE}

Steps \(f\) through \(p\) need to be performed only if the 100 MHz output signal is low or if the total harmonic distortion in the FM mode is \(>1 \%\).
f. Use a standard flathlade screwdriver to loosen the fastener which locks the At assembly in place. Rotate A4 up and to the right until it locks into position.
g. Disconnect \(W 6\) and A 23 W 9 from the A 4 A 8100 MHz Band-pass Filter Assembly. Connect W6 to A23W9.

\section*{ADJUSTMENTS}

\section*{5-27. REFERENCE SECTION (Cont'd)}
h. Set the Synthesized Signal Generator controls for a center frequency of 100 MHz at +10 dBm .
i. Set the spectrum analyzer controls as follows:
\[
\text { Center Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 100 \text { MHz }
\]

Frequency Span Per Division. . . . . . . . . . . . . . . . . . . . . . . 5 MHz
Resolution Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 kHz
Input Attenuation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 dB
Vertical Sensitivity Per Division . . . . . . . . . . . . . . . . . . . . . . 10 dB
Reference Level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +10 dBm
Sweep Time Per Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 ms
j. Connect the equipment as shown in Figure 5-6. If necessary, readjust the analyzer controls to center the 100 MHz signal on the display.


Figure 5-6. 100 MHz Band-pass Filter Adjustment Test Setup
k. With a non-conducting alignment tool, adjust A 4 A 8 C 1 and C 2 for peak output at 100 MHz .
1. Set the spectrum analyzer vertical sensitivity to 2 dB per division or linear.

\section*{ADJUSTMENTS}

\section*{5-27. REFERENCE SECTION (Cont'd)}
m. Set the Synthesized Signal Generator sweep width to 50 MHz .
n. Verify that the flatness is 3 dB for a bandwidth of \(>4 \mathrm{MHz}\).
o. Check that the insertion loss is \(\leqslant 1 \mathrm{~dB}\). Bypass the 100 MHz Band-pass Filter and measure the output directly from the signal source. Compare the direct signal with the signal level through the filter. To achieve the 1 dB maximum insertion loss, flatness may be compromised slightly.
p. Reconnect \(W 6\) to the A4A8 Assembly. Monitor the 100 MHz output level of the A4A8 Assembly with the RF Voltmeter (into \(50 \Omega\) ).
q. Adjust A4C'41 for the maximum output level. Verify that the level is between +11 and +13 dBm .
r. If the level is incorrect, change A4R29 to a lower value ( 42.2 ? minimum) and peak the output level. Continue until one output level is \(12 \pm 1 \mathrm{dBm}\).
s. Reconnect A23W9 to the output of the A4A8 Assembly. Unlock At and return it to the original position. Lock A4 into place.

\section*{3. 500 MHz Output Adjustment}
a. Connect the Spectrum Analyzer RF INPUT to the 500 MHz output connector on the A4A4 assembly and tune the analyzer to 500 MHz . Set the analyzer scan width to 50 MHz per division and other analyzer controls for a clear display (see Figure 5-5).
b. Adjust A4A4C17, A4A4C23 and A4A4C31 for a peak amplitude of the 500 MHz signal. The 500 MHz signal amplitude should be +3 dBm . The 400 MHz signal observed at the 500 MHz output is typically -10 dBm . The 600 MHz signal observed at the 500 MHz output is typically \(<-20 \mathrm{dBm}\). Disconnect the analyzer.
\[
\begin{aligned}
& 500 \mathrm{MHz} \mathrm{dBm} \\
& 400 \mathrm{MHz} \mathrm{dBm} \\
& 600 \mathrm{MHz} \mathrm{dBm}
\end{aligned}
\]

\section*{ADJUSTMENTS}

\section*{5-27. REFERENCE SECTION (Cont'd)}
4. 20 MHz Output Check
a. Connect the Spectrum Analyzer RF INPUT to the 20 MHz output on the A4A4 assembly and tune the analyzer to 20 MHz . The 20 MHz signal should be \(>-6 \mathrm{dBm}\) and \(<-2 \mathrm{dBm}\). Disconnect the analyzer.

20 MHz \(\qquad\) dBm
5. Reference Section Outputs Not Previously Checked
a. Check the outputs listed in Table 5-4 for the levels shown (see Figure 5-7).

HP 8660C


Figure 5-7. Oscilloscope Level Checks Test Setup

Table 5-4. Reference Section Output Levels
\begin{tabular}{|c|c|l|c|}
\hline Test Point & Frequency & Specified Level & Actual Level \\
\hline A4J6 & 10 MHz & \(>1 \mathrm{Vp}-\mathrm{p}\) & - \\
\hline A4J1 & 2 MHz & \(>2.2 \mathrm{Vp}-\mathrm{p}\) & - \\
\hline A4J3 & 400 kHz & \(>2.2 \mathrm{Vp}-\mathrm{p}<5.0 \mathrm{~V}\) & - \\
\hline A4J2 & 100 kHz & \(>2.2 \mathrm{Vp}-\mathrm{p}<5.0 \mathrm{~V}\) & - \\
\hline A4J4 & 100 kHz & \(>2.2 \mathrm{Vp-p}<5.0 \mathrm{~V}\) & - \\
\hline
\end{tabular}

\section*{ADJUSTMENTS}

\section*{5-28. 10 MHz BANDPASS FILTER ADJUSTMENT (AFTER REPAIR)}

\section*{NOTE}

It is necessary to remove this assembly from the mainframe in order to perform the adjustments. Therefore, this adjustment is to be performed ONLY if the Reference Assembly is repaired.

\section*{DESCRIPTION:}

The 700 Hz sidehands are set at least 20 dB down from the 10 MHz reference oscillator signal.
TEST EQUIPMENT:
\begin{tabular}{|c|c|}
\hline Synthesizer & HP 8660 or HP 3320B \\
\hline RF Voltmeter & HP 3400A \\
\hline BNC Tee & UG 274B/U \\
\hline hm & HP 11593A \\
\hline
\end{tabular}


Figure 5-8. A22A1 Adjustment Test Setup (After Repair)

\section*{PROCEDURE:}
1. Connect equipment as shown in Figure \(5-8 .+5.25 \mathrm{Vdc}\) must be connected to the junction of the inductor and feedthrough capacitor. The ground return must be connected to the chassis and the feedthrough capacitor.
2. Release and rotate the A4 assembly up and out of the chassis. Locate A21 output cable J1 (white) and disconnect from reference oscillator A21. Connect external synthesizer to cable. Set Reference Synthesizer to \(10.000000 \mathrm{MHz},+13 \mathrm{dBm}\).
3. Set the unit under test reference switch to INTERNAL.
4. Adjust A22A1C3 for maximum RF Voltmeter reading (use a non-metallic adjustment tool).
5. Adjust A22A1R2 for an RF Voltmeter reading of 270 mVrms .
6. Set the Reference Synthesizer to 10.000700 MHz , record RF Voltmeter reading in dBm .
7. Set the Reference Synthesizer to 0.999300 MHz ; record RF Voltmeter reading in dBm .
8. Establish the higher of the power levels in steps 6 and 7 as a reference. Reset the REference Synthesizer to 10.000000 MHz . Adjust A22A1R6 for a voltmeter reading 20 dB above the reference.

\section*{ADJUSTMENTS}

\section*{5-28. 10 MHz BANDPASS FILTER ADJUSTMENT (AFTER REPAIR) (Cont'd)}
\[
\text { Example: Reference level } \begin{aligned}
& -18 \mathrm{dBm} \\
& \frac{+20 \mathrm{dBm}}{+2 \mathrm{dBm}}
\end{aligned}
\]
9. Reinstall the A22 Assembly.
10. Perform the adjustments found in paragraph 5-29.

\section*{5 -29. 10 MHz BANDPASS FILTER ADJUSTMENT}

\section*{NOTE}

It is recommended that this procedure, along with the Reference Section procedure, be performed at least every six months.

\section*{DESCRIPTION:}

The A22A1 sub-assembly is adjusted to the internal 10 MHz reference frequency. The assembly level is adjusted for 270 mV into 50 ohms.

\section*{TEST EQUIPMENT:}
```

RF Voltmeter . HP 3400A
BNC Tee . UG 274B/U
50 ohm Termination . HP 11593A

```


Figure 5-9. A22A1 Adjustment Test Setup

\section*{PROCEDURE:}
1. Perform Test Procedure 5-27.
2. Remove 8660 left side and top covers. Turn power ON and allow 8660 to operate for 2 hours to ensure reference stability. Set INT/EXT Reference switch to INT.
3. Remove 10 MHz Reference input cable from A4J5. Connect the cable to the RF Voltmeter as shown in Figure 5-9.
4. Adjust A22A1C3 (using a non-metallic tool) accessible through hole in A22 assembly for maximum reading on the RF Voltmeter.
5. Adjust A22A1R2 (accessible through a hole in the A22 assembly) for an RF Voltmeter reading of 270 mVrms .
6. Reconnect the Reference Input cable to A4J5.

\section*{ADJUSTMENTS}

\section*{5-30. HIGH FREQUENCY SECTION}

\section*{REFERENCE:}

Service Sheets 4,5 , and 6 .

\section*{DESCRIPTION:}

The High Frequency Section contains a voltage controlled oscillator which provides eleven discrete output frequencies from 350 to 450 MHz in 10 MHz steps. The output of the voltage controlled oscillator is phase locked to a 10 MHz reference derived from the master oscillator in the reference section. The output from the HF section is used in the RF Section plug-in or in the internal frequency extension plug-in module. These checks verify proper operation of the High Frequency Section circuits.


Figure 5-10. Phase Detector Response Adjustment Test Setup

\section*{TEST EQUIPMENT:}
\begin{tabular}{|c|c|c|}
\hline Frequency Counter & & HP 5328A Option 030 \\
\hline Digital Voltmeter & & HP 3465A \\
\hline Pulse Generator & & HP 8011A \\
\hline Spectrum Analyzer & & HP 140/8554B/8552/8553 \\
\hline Oscilloscope (with 1 & :1 divider probes) & HP 180A/1801A/1821A \\
\hline Signal Generator/Sw & eper & HP 8601A \\
\hline
\end{tabular}

\section*{ADJUSTMENTS}

\subsection*{5.30. HIGH FREQUENCY SECTION (Cont'd)}

PROCEDURE:
1. Phase Detector Response Adjustments (see Figure 5-10).
a. Disconnect the coaxial cable from VCO INPUT A4J11. Connect the PULSE OUTPUT of the Pulse Generator to A4J11. Set the Pulse Generator for 100 kHz pulse rate, \(0.035 \mu\) Sec pulse width, 0.5 volt amplitude and + polarity.
b. Connect the Spectrum Analyzer RF INPUT to the "phase error" signal at A4TP1 outside A4A6. Set the analyzer controls as follows:
```

CENTER FREQUENCY5 MHzSCAN WIDTH PER DIVISION . 1 MHzSCAN TIME PER DIVISION . 1 ms
Gain and Attenuation . as required

```
c. Adjust EFFiciency control A4A7R18 for a flat response to approximately 5 MHz with very slight peaking ( \(1 \mathrm{~dB} \pm 1 \mathrm{~dB}\) ). See the waveform in Figure \(5-10\) for typical response.
d. Disconnect the Pulse Generator and the Spectrum Analyzer.
2. Balance Adjustment
a. Connect the digital voltmeter to "phase error" TP.
b. Adjust the BALance control (A4A7R22) for a reading of 0 volts \(\pm .05\) volt. Disconnect the digital voltmeter.
3. Voltage Controlled Oscillator Adjustment (see Figure 5-11).
a. Remove the A4A6 cover. With the output cable of the A4A5 assembly disconnected from the VCO OUTPUT (A4J10), connect the Digital Voltmeter to the A4A6 FREQuency control output (white/black/violet lead).
b. Adjust the A4A6 " 0 " control (A4A6R13) for a Digital Voltmeter reading of -34 volts (voltage should be adjustable from about -33 to -35 volts).
c. Connect the Frequency Counter to the A4A5 voltage controlled oscillator output, A4J12. Replace the A4A6 assembly cover.

\section*{ADJUSTMENTS}

\section*{5-30. HIGH FREQUENCY SECTION (Cont'd)}


Figure 5-11. Voltage Controlled Oscillator Adjustments Test Setup
d. The Counter should desplay \(450 \mathrm{MHz}=1 \mathrm{MHIz}\) If the corres: reading is obtained proceed to step f. If the frequency reading is not correct, proceed to step e.
e. Adjust A 4 A 5 C 3 for a \(450 \mathrm{MHz} \pm 1 \mathrm{MHz}\) reading.
 the phase detector.
g. Conner: the digrial voltmeter to the "phase errur" TP. Connec: the frequency counter to A4J12 (350-450 MHz OL"TPL'T, white-yellow cable).
h. Set the center frequenctes as shown in Tante 5-5 and set the digtal to analog controls on the \(A 4 A 0\) assembly for \(0=0.1\) volt for eah frequency lisied. Note that the counter displays the output frequency listed for each center frequency setting.

\section*{NOTE}

When the 86602 or 86603 is installed in the mainframe the 350 MHz output of :he High Frequemes: stetwon is not ased in hen thes situatton extses, the adjustment procedure for A4A6R15 " 10 " is not valid and the following procedure should be substituted.
1. Ground the collector for A4A6Q1.
2. Adjust A4A6R15 " 10 " for 350 MHz
3. Remove the ground from the collector of \(A 4 A 6 Q 1\).

\section*{ADJUSTMENTS}

\section*{5-30. HIGH FREQUENCY SECTION (Cont'd)}

Table 5-5. Pretune Adjustments
\begin{tabular}{|l|l|l|}
\hline Center Frequency & Adjust Control & Counter Readout \\
\hline 0 MHz & A4A6R13 "0"" & 450.000000 MHz \\
10 MHz & A4A6R60 "1" & 440.000000 MHz \\
20 MHz & A4A6R56 "2" & 430.000000 MHz \\
30 MHz & A4A6R52 "3" & 420.000000 MHz \\
40 MHz & A4A6R48 "4" & 410.000000 MHz \\
50 MHz & A4A6R44 "5" & 400.000000 MHz \\
60 MHz & A4A6R40 "6" & 390.000000 MHz \\
70 MHz & A4A6R35 "7", & 380.000000 MHz \\
80 MHz & A4A6R28 "8", & 370.000000 MHz \\
90 MHz & A4A6R22 "9", & 360.000000 MHz \\
100 MHz & A4A6R15 "10", & 350.000000 MHz \\
\hline
\end{tabular}

\section*{NOTE}

The adjustments shown in Table 5-5 should be made with the counter time base connected to the synthesizer REFERENCE OUTPUT.
i. If any of the controls listed in Table \(5-5\) cannot be adjusted to 0 volts. adjust A4-A6R20 "profile" to obtain additional range. Repeat all pretune adjustments until satisfactory results are obtained. Disconnect the digital voltmeter and the frequency counter.
4. Loop Gain Adjustment (see Figure 5-12).
a. With the center frequency set to 0 MHz connect the Spectrum Analyzer RF INPUT to A4J12 ( \(350-450 \mathrm{MHz}\) OUTPUT) and set the analyzer controls as follows:

b. Disconnect the reference input to A 4 J 13 and reconnect it together with the RF output of the Signal Generator/Sweeper.
c. Set the Signal Generator/Sweeper to 11.5 MHz CW at -35 dBm and symmetrical sweep width to 3 MHz . The analyzer display should be approximately as shown in the typical waveform shown in Figure 5-12. Adjust the A4A6 GAIN control (A4-A6R2) for the response shown.
d. Disconnect the Analyzer and the Generator/Sweeper. Reconnect the reference signal to A4J13.

\section*{ADJUSTMENTS}

\section*{5-30. HIGH FREQUENCY SECTION (Cont'd)}


Figure 5-12. Loop Gain Adjustment Test Setup
5. 10 MHz Trap Adjustment (see Figure 5-13).

\section*{NOTE}

This adjustment is necessary only if the A4A6 10 MHz trap has been repaired.
a. Disconnect the coaxial cable from A4J10 \((350 / 450 \mathrm{MHz}\) to \(\emptyset\) detector).
b. Disconnect the 10 MHz reference signal from A 4 J 13 and reconnect it using a TEE connector. Connect the 10 MHz reference signal from the other TEE port to the \(\emptyset\) input of the A4A6 assembly (white wire from the A4A7 assembly).
c. Connect the Spectrum Analyzer RF INPUT to the A4A6 FREQuency control output (white-black-violet wire). Set the analyzer controls as follows:

d. Adjust A4A6C5 trap for minimum 10 MHz amplitude.

\section*{ADJUSTMENTS}

\section*{5-30. HIGH FREQUENCY SECTION (Cont'd)}
e. Reconnect \(\emptyset\) input to A4A6.
f. Replace all High Frequency Section Covers.


Figure 5-13. 10 MHz Trap Adjustment Test Setup
6. Output Frequency and Amplitude Check (see Figure 5-14).
a. Set the 8660 C CF to 6 MHz .
b. Connect the Spectrum Analyzer RF INPUT to A4J12. Set the analyzer controls as required to view the 450 MHz signal. The output should be +13 dBm to +15 dBm . To increase or decrease output, change resistors A4A5R38, R40, R42. See Table 5-1 for suggested sets of values.
\(\qquad\) dBm
c. Switch digits 9 and 8 from 00 through 10 . The frequency should decrease in 10 MHz steps (amplitude at +13 dBm minimum).
\begin{tabular}{lll}
440 MHz & dBm & 430 MHz \\
410 MHz & dBm & \(420 \mathrm{MHz} \quad \mathrm{dBm}\) \\
40 MHz & 400 \\
380 MHz & dBm & \(390 \mathrm{MHz} \quad \mathrm{dBm}\) \\
350 MHz & dBm & \(370 \mathrm{MHz} \quad \mathrm{dBm}\) \\
360 MHz
\end{tabular}

\section*{ADJUSTMENTS}

\section*{5-30. HIGH FREQUENCY SECTION (Cont'd)}


Figure 5-14. Output Amplitude Check Test Setup

\section*{5-31. N1 PHASE LOCK LOOP}

\section*{REFERENCE:}

Service Sheets 7 and 8 .

\section*{DESCRIPTION:}

The N1 phase lock loop produces digitally controlled RF signals from 19.8 to 29.7 MHz in 100 kHz steps. The output frequency is selected by digits 6 and 7 . These checks verify proper operation of the loop circuits.


Figure 5-15. N1 Loop Test Setup

\section*{ADJUSTMENTS}

\section*{5-31. N1 PHASE LOCK LOOP (Cont'd)}

\section*{TEST EQUIPMENT:}

Digital Voltmeter . . . . . . . . . . . . . . . . . . . . . . . . . . HP 3465A
Frequency Counter . . . . . . . . . . . . . . . . . HP 5328A Option 030
PROCEDURE: (see Figure 5-15).
1. Enter 0 MHz center frequency and ground motherboard test point A2TP16 with one of the jumper plugs provided. Connect the digital voltmeter to A2TP18.
2. Adjust A17R31 or A17R28 for a voltmeter reading of -30 volts and disconnect the digital voltmeter.
3. Connect the frequency counter to the N1 oscillator output on the A2 mother board and adjust A17C17 for a counter reading as close as possible to 29.7 MHz (must be within \(\pm 200 \mathrm{kHz}\) ).
4. Enter 500 kHz center frequency and adjust A17R28 or A17R31 for a counter reading of 29.2 MHz .
5. Enter 9.5 MHz center frequency and record the counter readout.

MHz \(\qquad\)
6. Determine the frequency difference between the readout for step 5 and 20.2 MHz and record.

MHz \(\qquad\)
7. Enter 500 kHz center frequency.
a. If the reading in step 5 was higher than 20.2 MHz adjust A17R28 for a counter readout of 29.2 MHz plus the difference frequency recorded in step 6 .
b. If the reading in step 5 was lower than 20.2 MHz adjust A17R28 for a counter readout of 29.2 MHz minus the difference frequency recorded in step 6.
8. Adjust A17R31 for an output frequency readout of 29.2 MHz .
9. Repeat steps 5 through 8 until the counter readout is \(29.2 \mathrm{MHz} \pm 20 \mathrm{kHz}\) for a 500 kHz center frequency and \(20.2 \mathrm{MHz} \pm 20 \mathrm{kHz}\) for a 9.5 MHz center frequency.
10. Remove the ground jumper from A2TP16.
11. Disconnect the 400 kHz reference signal by disconnecting the cable from A4J3 and connect the digital voltmeter to A2TP17. Adjust A16R38 for a digital voltmeter readout of \(0 \mathrm{~V} \pm 10 \mathrm{mV}\). Reconnect the 400 kHz reference signal.
12. Enter center frequencies shown in Table 5-6. The counter readings should be as shown in the table.

\section*{ADJUSTMENTS}

\section*{5-31. N1 PHASE LOCK LOOP (Cont'd)}

Table 5-6. N1 Loop Output Frequency Checks
\begin{tabular}{|c|c|}
\hline Center Frequency & Counter Readout \\
\hline 0 & 29.700000 MHz \\
1.1 MHz & 28.600000 MHz \\
2.2 MHz & 27.500000 MHz \\
3.3 MHz & 26.400000 MHz \\
4.4 MHz & 25.300000 MHz \\
5.5 MHz & 24.200000 MHz \\
6.6 MHz & 23.100000 MHz \\
7.7 MHz & 22.000000 MHz \\
8.8 MHz & 20.900000 MHz \\
9.9 MHz & 19.800000 MHz \\
\hline
\end{tabular}

The adjustments shown in Table 5-6 should be made with the counter time base connected to the synthesizer REFERENCE OUTPUT.

\section*{5-32. N2 PHASE LOCK LOOP}

\section*{NOTE}

Option 004 instruments use a different N2 programmable divider designated as N2a. In the following procedure the frequencles shown in parenthesis apply to \(N 2 a\).

REFERENCE:

Service Sheets 9 and 10 .
DESCRIPTION:
The N2 phase lock loop produces controlled RF signals from 19.80 to 29.79 MHz in 10 kHz increments. The output frequency selected by the \(100 \mathrm{~Hz}, 1 \mathrm{kHz}\) and 10 kHz steps. These checks verify proper operation of the loop circuits.

\section*{ADJUSTMENTS}

\section*{5-32. N2 PHASE LOCK LOOP (Cont'd)}


Figure 5-16. N2 Loop Test Setup

\section*{TEST EQUIPMENT:}
```

Digital Voltmeter HP 3465A
Frequency Counter . HP 5328A Option 030

```

PROCEDURE: (see Figure 5-16).
1. Set the center frequency to 0 MHz and ground A2TP12 on the mother board with one of the jumper plugs provided.
2. Connect the digital voltmeter to A2TP9 and adjust A13R37 or A13R39 to - 30 volts. Disconnect the digital voltmeter.
3. Connect the frequency counter to the N2 oscillator output at XA13-1-4. Adjust A13C19 for a counter reading as close as possible to 29.79 MHz ( N 2 a 30.00 MHz ) must be within \(\pm 200 \mathrm{kHz}\).
4. Set the center frequency to 5.5 kHz . Adjust A13R37 or A13R39 for an output frequency reading of 29.240 MHz . ( N 2 a 29.450 MHz .)
5. Set the center freuqency to 95.5 kHz and record the counter readout.
\[
\mathrm{MHz}
\]
\(\qquad\)
6. Determine the frequency difference between step 5 and 20.240 MHz (N2a 20.450 MHz ) and record:
\[
\mathrm{MHz} \text {. }
\]
7. Set the center frequency to 5.5 kHz .
a. If the reading in step 5 was more than 20.240 MHz ( N 2 a 20.45 MHz ) adjust A13R39 to 29.240 MHz ( N 2 a 29.45 MHz ) plus the difference frequency recorded in step 6.

\section*{ADJUSTMENTS}

\section*{5-32. N2 PHASE LOCK LOOP (Cont'd)}
b. If the reading in step 5 was less than \(20.240 \mathrm{MHz}(\mathrm{N} 2 \mathrm{a} 20.45 \mathrm{MHz}\) ) adjust A13R39 to \(29.240 \mathrm{MHz}(\mathbb{N}\) a 29.45 MHz ) minus the difference frequency recorded in step 6.
8. Adjust A13R37 for an output frequency of \(29.240 \mathrm{MHz}(\mathrm{N} 2 \mathrm{a} 29.45 \mathrm{MHz})\).
9. Repeat steps 4 through 7 until the counter readout is \(29.240 \mathrm{MHz}(.2\) a 29.45 MHz\() \cdot 20 \mathrm{kHz}\) for a center frequency of 5.5 kHz and \(20.240 \mathrm{MHz} \mid \mathrm{N}^{2}\) a \(20.45 \mathrm{MHz}-20 \mathrm{kHz}\) for a center frequency of 95.5 kHz .
10. Remove the ground from A2TP12.
11. Set center frequency as shown in Table 5-7. The counter readings should be as shown in the table.

Table 5-7. N2 Oscillator Output Frequency Checks
\begin{tabular}{|c|c|c|}
\hline Center Frequency & Counter Readout N2 & Counter Readout N2a \\
\hline 0 & 29.790000 MHz & 30.000000 MHz \\
11.1 kHz & 28.680000 MHz & 28.890000 MHz \\
22.2 kHz & 27.570000 MHz & 27.780000 MHz \\
33.3 kHz & 26.460000 MHz & 26.670000 MHz \\
44.4 kHz & 25.350000 MHz & 25.560000 MHz \\
55.5 kHz & 24.240000 MHz & 24.450000 MHz \\
66.6 kHz & 23.130000 MHz & 23.340000 MHz \\
77.7 kHz & 22.020000 MHz & 22.230000 MHz \\
88.8 kHz & 20.910000 MHz & 21.120000 MHz \\
99.9 kHz & 19.800000 MHz & 20.010000 MHz \\
\hline
\end{tabular}

5-33. N3 PHASE LOCK LOOP

\section*{NOTE}

Option 004 instruments do not include the N3 loop.

\section*{ADJUSTMENTS}

\section*{5-33. N3 PHASE LOCK LOOP (Cont'd)}

\section*{REFERENCE:}

Service Sheets 11 and 12.

\section*{DESCRIPTION:}

The N3 phase lock loop produces digitally controlled RF signals from 2.001 to 2.100 MHz in 1 kHz increments. The output frequency is selected by 1 Hz and 10 Hz steps. These checks verify proper operation of the loop circuits.


Figure 5-17. N3 Loop Test Setup

\section*{TEST EQUIPMENT:}

> Digital Voltmeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34284 AP Aption 030 Frequency Counter . . . . .

PROCEDURE: (see Figure 5-17).
1. Set center frequency to 0 MHz and ground A 2 TP 4 on the mother board with one of the jumper plugs provided.
2. Connect the counter to the N3 oscillator output at XA8-1-4 on the mother board. Adjust A8R26 or A8R24 for a counter readout of 2.100 MHz .
3. Set the center frequency to 5 Hz . Adjust A8R24 for a counter reading of 2.095 MHz . (must be within \(\pm 20 \mathrm{kHz}\).)
4. Set the center frequency to 95 Hz , and record the frequency displayed on the counter.
\[
\mathrm{MHz}
\]
\(\qquad\)
5. Determine the frequency difference between that recorded in step 4 and 2.005 MHz and record.

\section*{ADJUSTMENTS}

\section*{5-33. N3 PHASE LOCK LOOP (Cont'd)}
6. Set the center frequency to 5 Hz .
a. If the reading in step 4 was less than 2.005 MHz adjust A 8 R 24 to 2.095 MHz minus the frequency difference recorded in step 5.
b. If the reading in step 4 was more than 2.005 MHz adjust A 8 R 24 to 2.095 MHz plus the frequency difference recorded in step 5 .
7. Adjust A8R26 for an output frequency of 2.095 MHz .
8. Repeat steps 3 through 6 until the counter readout is \(2.095 \mathrm{MHz} \pm 20 \mathrm{kHz}\) for a 5 Hz center frequency, and \(2.005 \mathrm{MHz} \pm 20 \mathrm{kHz}\) for a 95 Hz center frequency.
9. Remove the ground from A2TP4.
10. Set center frequencies as shown in Table 5-8. The counter readings should be as shown in the table.

Table 5-8. N3 Oscillator Output Frequency Checks
\begin{tabular}{|c|c|}
\hline Center Frequency & Counter Readout \\
\hline 0 Hz & 2.1000000 MHz \\
11 Hz & 2.0890000 MHz \\
22 Hz & 2.0780000 MHz \\
33 Hz & 2.0670000 MHz \\
44 Hz & 2.0560000 MHz \\
55 Hz & 2.0450000 MHz \\
66 Hz & 2.0340000 MHz \\
77 Hz & 2.0230000 MHz \\
88 Hz & 2.0120000 MHz \\
99 Hz & 2.0010000 MHz \\
\hline
\end{tabular}

\section*{5-34. SUMMING LOOP 2 (SL2)}

\section*{NOTE}

Option 004 instruments do not include SL2.

\section*{ADJUSTMENTS}

\section*{5-34. SUMMING LOOP 2 (SL2) (Cont'd)}

\section*{REFERENCE:}

Service Sheets 13 and 14.

\section*{DESCRIPTION:}

SL2 is a phase lock loop that provides a digitally controlled RF output to Summing Loop 1. This output, which is from 20.0001 to 30.000 MHz in 100 Hz steps, is controlled by \(100 \mathrm{~Hz}, 1 \mathrm{kHz}\) and 10 kHz steps, it is also indirectly controlled by 1 Hz and 10 Hz steps. These checks verify proper operation of the loop circuits.


Figure 5-18. SL1 and SL2 Test Setup

\section*{TEST EQUIPMENT:}

> Digital Voltmeter . . . . . . . . . . . . . . . . . . . . . . . . . . HP 3465A Frequency Counter Oscilloscope (with 10:1 divider probes)

PROCEDURE: (see Figure 5-18).
1. Set center frequency to 55.5 kHz .
a. With the digital voltmeter connected to A2TP8, adjust A11R15 or A11R19 to \(0.00 \pm\) 10 millivolts.
b. With the oscilloscope connected to A2TP7 adjust A12R37 for \(50 / 50\) symmetry.
c. Disconnect the digital voltmeter and the oscilloscope.
2. Connect the digital voltmeter to varactor test point A2TP5, ground mother board test point A2TP8 with a clip lead, and set center frequency to 0 MHz .

\section*{ADJUSTMENTS}

\section*{5-34. SUMMING LOOP 2 (SL2) (Cont'd)}
a. Adjust A11R15 or A11R19 to read about -30 volts on the digital voltmeter and then disconnect the digital voltmeter.
b. Connect the counter to test point A 2 TP 6 and adjust A11C17 for a counter readout as close to 30 MHz as possible (must be within \(\pm 300 \mathrm{kHz}\) ).
3. Set renter frequency to 4.5 kHz . Adjust A11R15 or A11R19 for a counter reading of 29.550 MHz .
4. Set center frequency to \(9 \cdot 4.5 \mathrm{kHz}\). Record the output at \(A 2 \mathrm{TP} 6\) as read on the counter.

MHz \(\qquad\)
5. Determine the difference frequency between that recorded in step 4 and 20.5500 MHz and record.

MHz \(\qquad\)
a. Set center frequency to 4.5 kHz .
b. If the frequency readout in step 4 was higher than 20.5500 MHz adjust A11R15 to 29.550 MHz plus the difference frequency determined in step 5.
c. If the frequency readout in step 4 was lower than 20.5500 MHz adjust A11R15 to 29.550 MHz minus the difference frequency determined in step 5.
6. Reset the frequency to 29.550 MHz with A11R19.
7. Repeat steps \(3,4,5\) and 6 until the counter indicates \(20.550 \mathrm{MHz} \pm 20 \mathrm{kHz}\) for a center frequency of 94.5 kHz and \(29.550 \mathrm{MHz} \pm 20 \mathrm{kHz}\) for a center frequency of 4.5 kHz .
8. Set center frequency as shown in Table 5-9. Adjust the controls listed for counter readouts shown.

Table 5-9. SL2 Oscillator Output Frequency Adjustments
\begin{tabular}{|c|c|c|}
\hline Center Frequency & Adjust & Counter Readout \\
\hline 84.5 kHz & A11R39 "8" & \(21.55 \mathrm{MHz} \pm 20 \mathrm{kHz}\) \\
74.5 kHz & A11R54 "7" & \(22.55 \mathrm{MHz} \pm 20 \mathrm{kHz}\) \\
64.5 kHz & A11R60 "6" & \(23.55 \mathrm{MHz} \pm 20 \mathrm{kHz}\) \\
54.5 kHz & A11R67" " " & \(24.55 \mathrm{MHz} \pm 20 \mathrm{kHz}\) \\
44.5 kHz & A11R73 "4" & \(25.55 \mathrm{MHz} \pm 20 \mathrm{kHz}\) \\
34.5 kHz & A11R77 "3" & \(26.55 \mathrm{MHz} \pm 20 \mathrm{kHz}\) \\
24.5 kHz & A11R83 " 2 " & \(27.55 \mathrm{MHz} \pm 20 \mathrm{kHz}\) \\
14.5 kHz & A11R90 "1" & \(28.55 \mathrm{MHz} \pm 20 \mathrm{kHz}\) \\
\hline
\end{tabular}

\section*{ADJUSTMENTS}

\section*{5-34. SUMMING LOOP 2 (SL2) (Cont'd)}
9. Disconnect the counter, remove the ground from A2TP8 and connect the oscilloscope to A2TP7.
10. Set center frequencies as shown in Table 5-9 and adjust the associated potentiometers for \(50 / 50\) symmetry as seen on the oscilloscope (all must be within \(40 / 60\) ).

\section*{5-35. SUMMING LOOP 1 (SL1)}

\section*{REFERENCE:}

Service Sheets 15,16 and 17.

\section*{DESCRIPTION:}

SL1 is a phase lock loop that provides a digitally controlled RF output to the RF Section plug-in. This output, which is from 20.000001 to 30.000000 MHz in 1 Hz steps is pretuned by \(1 \mathrm{MHz}, 100 \mathrm{kHz}\) and 10 kHz steps and is also indirectly controlled by 1 kHz to 1 Hz steps. These checks verify proper operation of the loop circuits.

\section*{NOTE}

In Option 004 instruments the SL1 output is 100 Hz steps.


Figure 5-19. SL1 Test Setup

\section*{TEST EQUIPMENT:}

Oscilloscope (with 10:1 divider probes) . . . . . . . HP 180A/1801A/1821A

\section*{ADJUSTMENTS}

\section*{5-35. SUMMING LOOP 1 (SL1) (Cont'd)}

PROCEDURE: (See Figure 5-19).
1. Set center frequency to 5.55 MHz .
a. With the digital voltmeter connected to A2TP14, adjust A19R3 or A19R9 to 0.00 volt \(\pm\) 10 millivolts.
b. With the oscilloscope connected to A2TP13, adjust A15R14 for 50/50 symmetry.
c. Disconnect the digital voltmeter and the oscilloscope.
2. Connect the digital voltmeter to varactor test point A2TP21, ground mother board test point A2TP14 with the jumper provided, and set center frequency to 0 .
a. Adjust A19R3 or A19R9 to about - 30 volts and disconnect the digital voltmeter.
b. Connect the counter to SL1 OSC at XA19-1-2 and adjust A19C18 for a counter readout as close as possible to 30 MHz (must be within \(\pm 300 \mathrm{kHz}\) ).
3. Set center frequency to 450 kHz . Adjust A19R3 or A19R9 for a counter reading of 29.550 MHz .
4. Set center frequency to 9.45 MHz . Record frequency of output at SL1 OSC at XA19-1-2.

MHz \(\qquad\)
5. Determine the difference frequency between that recorded in step 4 and 20.550 MHz and record:
\[
\mathrm{MHz}
\]
a. Set center frequency to 450 kHz .
b. If the frequency readout in step 4 was higher than 20.550 MHz adjust A 19 R 3 to 29.550 MHz plus the difference frequency recorded in step 5.
c. If the frequency readout in step 4 was lower than 20.550 MHz adjust A19R3 to 29.550 MHz minus the difference recorded in step 5.
6. Reset the frequency to 29.550 MHz with A19R9.
7. Repeat steps 3 through 6 until the counter indicates \(20.550 \mathrm{MHz} \pm 20 \mathrm{kHz}\) for a center frequency of 9.45 MHz and \(29.550 \mathrm{MHz} \pm 20 \mathrm{kHz}\) for a center frequency setting of 450 kHz .
8. Set center frequency as shown in Table 5-10. Adjust controls listed for counter readouts shown.
9. Disconnect the counter, remove the ground from A2TP14 and connect the oscilloscope to A2TP13.
10. Set center frequencies as shown in Table 5-10 and adjust the controls listed for \(50 / 50\) symmetry as seen on the oscilloscope. Disconnect the oscilloscope. (All settings must be within \(40 / 60\) symmetry.)

\section*{ADJUSTMENTS}

\section*{5-35. SUMMING LOOP 1 (SL1) (Cont'd)}

Table 5-10. SL1 Oscillator Output Frequency Adjustments
\begin{tabular}{|c|c|c|}
\hline Center Frequency & Adjust & Counter Readout \\
\hline 8.45 MHz & A18R35 " 8 " & \(21.550 \mathrm{MHz} \pm 20 \mathrm{kHz}\) \\
7.45 MHz & A18R40 "7" & \(22.550 \mathrm{MHz} \pm 20 \mathrm{kHz}\) \\
6.45 MHz & A18R44 "6" & \(23.550 \mathrm{MHz} \pm 20 \mathrm{kHz}\) \\
5.45 MHz & A18R51 " \(5 "\) & \(24.550 \mathrm{MHz} \pm 20 \mathrm{kHz}\) \\
4.45 MHz & A18R55 "4" & \(25.550 \mathrm{MHz} \pm 20 \mathrm{kHz}\) \\
3.45 MHz & A18R62 "3" & \(26.550 \mathrm{MHz} \pm 20 \mathrm{kHz}\) \\
2.45 MHz & A18R67 "2" & \(27.550 \mathrm{MHz} \pm 20 \mathrm{kHz}\) \\
1.45 MHz & A18R74 "1" & \(28.550 \mathrm{MHz} \pm 20 \mathrm{kHz}\) \\
\hline
\end{tabular}

\section*{5-36. DCU SWEEP OUTPUT}

\section*{REFERENCE:}

Service Sheet 18.

\section*{DESCRIPTION:}

The Model 8660C sweep output may be used to drive the horizontal sweep of an oscilloscope while the RF output is used to determine the characteristics of a device being tested. This procedure provides information required to properly adjust the sweep ramp.

\section*{TEST EQUIPMENT:}

Digital Voltmeter
HP 3480B/3482
1. Remove the top and bottom covers from the 8660 C. Remove the four DCU retaining screws (one at each corner inside).
2. With the 8660 C inverted, gently slide the DCU out of the mainframe to the extent of connecting cables and connect the DVM to the 0 to +8 V output.
3. Enter 1.000500 MHz center frequency and 1 kHz sweep width.
4. Set to manual sweep.
5. Using the MANUAL SWEEP control set frequencies shown in Table 5-11 and make the indicated adjustments. All adjustments must be \(\pm 1\) millivolt.

5-36. DCU SWEEP OUTPUT (Cont'd)

Table 5-11. Adjustments
\begin{tabular}{|c|c|c|}
\hline Step & Frequency & \multicolumn{1}{c|}{ Adjust } \\
\hline 1 & 1.000799 & \begin{tabular}{l} 
Note DVM output reading typical 6.392V \\
R29 for an output 8 mV greater than above \\
reading is typically 6.4 V
\end{tabular} \\
2 & 1.000800 & 1.000999 \\
3 & 1.000000 & \begin{tabular}{l} 
R11 for an output of 7.992 V \\
R28 for an output of 0.000 V
\end{tabular} \\
4 & 1.001000 & Repeat steps 1 through 4 \\
5 & R30 for an output of 8.000 V \\
\hline
\end{tabular}

Table 5-12. Frequency Versus Exact Output Levels
\begin{tabular}{|c|c|}
\hline Frequency & Output Level \\
\hline 1.000000 MHz & 0.000 V \\
1.000799 MHz & 6.392 V \\
1.000800 MHz & 6.400 V \\
1.000999 MHz & 7.992 V \\
1.001000 MHz & 8.000 V \\
Nominal step size \(-8 \mathrm{mV} / \mathrm{Hz}\) & \\
\hline
\end{tabular}

\title{
SECTION VI REPLACEABLE PARTS
}

\section*{6-1. INTRODUCTION}

6-2. This section contains information for ordering parts. Table 6-2 lists abbreviations used in the parts list and throughout the manual. Table 6-3 lists all replaceable parts in reference designator order. Table 6-4 contains the names and addresses that correspond to the manufacturer's code numbers.

\section*{6-3. EXCHANGE ASSEMBLIES}

6-4. Exchange assemblies are no longer available for the Model 8660C.

\section*{6-5. ABBREVIATIONS}

6-6. Table 6-2 lists abbreviations used in the parts list, schematics and throughout the manual. In some cases, two forms of the abbreviation are used, one all in capital letters, and one partial or no capitals. This occurs because the abbreviations in the parts list are always all capitals. However, in the schematics and other parts of the manual, other abbreviation forms are used with both lower case and uuper case letters.

\section*{6-7. REPLACEABLE PARTS LIST}
\(6-8\). Table \(6-3\) is the list of replaceable parts and is organized as follows:
a. Electrical assemblies and their components in alpha-numerical order by reference designation.
b. Chassis-mounted parts in alpha-numerical order by reference designation.
c. Miscellaneous parts.
\(6-9\). The information given for each part consists of the following:
a. The Hewlett-Packard part number.
b. Part number check digit (CD).
c. The total quantity (Qty) in the instrument.
d. The description of the part.
e. A typical manufacturer of the part in a five-digit code.
f. The manufacturer's number for the part.
\(6-10\). The total quantity for each part is given only once-at the first appearance of the part number in the list.

\section*{NOTE}

Total quantities for optional assemblies are totaled by assembly and not integrated into the standard list.

\section*{6-11. ORDERING INFORMATION}

6-12. To order a part listed in the replaceable parts table, quote the Hewlett-Packard part number (with the check digit), indicate the quantity required, and address the order to the nearest Hewlett-Packard office (see note below). The check digit well ensure accurate and timely processing of your order.
\(6-13\). To order a part that is not listed in the replaceable parts table, include the instrument model number, instrument serial number, the description and function of the part, and the number of parts required. Address the order to the nearest HewlettPackard office.

\section*{NOTE}

Within the USA, it is better to order directly from the HP Parts Center in Mt. View, California. Ask your nearest HP office for information and forms for the "Direct Mail Order System".

\section*{6-14. SPARE PARTS KIT}

6-15. Stocking spare parts for an instrument is often done to insure quick return to service after a malfunction occurs. Hewlett-Packard has a "Spare Parts Kit" available for this purpose. The kit consists of selected replaceable assemblies and components for this instrument. The contents of the kit and the "Recommended Spares" list are
based on failure reports and repair data, and parts support for one year. A complimentary "Recommended Spares" list for this instrument may be obtained on request and the "Spare Parts Kit" may be ordered through your nearest Hewlett-Packard office.

6-16. ILLUSTRATED PARTS BREAKDOWNS
\(6-17\). Figure \(6-1\) provides a breakdown of Cabinet Parts. The parts are not identified by part
numbers or descriptions. These parts are identified by MP (miscellaneous part) numbers which are further identified in Table 6-3 of this section.

6-18. Figure 6-2 provides a breakdown of DCU front panel parts. The parts are identified by MP numbers or assembly numbers which are further identified in Table 6-3 of this section.

Table 6-1. Reference Designations


Table 6-2. Abbreviations (1 of 2)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{. . . ampere}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{C} \\
\hline \multicolumn{2}{|l|}{DJ} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{AF . . . . . audio frequency} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{AFC . . . ..... automatic frequency control}} \\
\hline & \\
\hline \multicolumn{2}{|r|}{omatic gain} \\
\hline & \\
\hline \multicolumn{2}{|r|}{} \\
\hline \multicolumn{2}{|l|}{C . . . . . automatic level} \\
\hline & \\
\hline \multicolumn{2}{|l|}{. . . amplitude modulation} \\
\hline \multicolumn{2}{|l|}{MPL . . . . . . . amplifier} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{APC . . . . automatic phase control}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{SSY} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{AUX . ......... auxiliary}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{AWG .... American wire} \\
\hline & \\
\hline \multicolumn{2}{|l|}{BAL .......} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{BCD ....... binary coded}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{CU ..... beryllium} \\
\hline & \\
\hline \multicolumn{2}{|r|}{beat frequency oscillator} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{BKDN} \\
\hline \multicolumn{2}{|l|}{BP . . . . . . . . . bandpass} \\
\hline \multicolumn{2}{|l|}{BPF ..... bandpass filter} \\
\hline \multicolumn{2}{|l|}{BRS} \\
\hline \multicolumn{2}{|l|}{O . . . . . backward-wave oscillator} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{CAL . . . . . .... calibrate}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{ER} \\
\hline CHAN & \\
\hline \multicolumn{2}{|l|}{cm . . . . . . . . . centimeter} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{. . cabinet mount only}} \\
\hline & \\
\hline
\end{tabular}



in parts list)
MET FLM . . . . metal film MET OX . . metallic oxide MF . . . medium frequency: microfarad (used in parts list)
MFR ...... manufacturer mg . . . . . . . . . milligram MHz . . . . . . . megahertz \(\mathrm{mH} . . . . . . .\). millihenry
mho ............ mho
MIN ........ minimum
min ..... minute (time) minute (plane angle)
MINAT ....... miniature

\section*{NOTE}

All abbreviations in the parts list will be in upper-case.

Table 6-2. Abbreviations (2 of 2)


\section*{NOTE}

All abbreviations in the parts list will be in upper-case.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{TD . . . . . . . . tinue delay} \\
\hline \multicolumn{2}{|l|}{ERM} \\
\hline \multicolumn{2}{|l|}{TFT . thin-film t} \\
\hline \multicolumn{2}{|l|}{TGL . . . . . . . . . toggle} \\
\hline \multicolumn{2}{|l|}{THD . . . . . . . . thread} \\
\hline \multicolumn{2}{|l|}{THRU'....... through} \\
\hline \multicolumn{2}{|l|}{TI . . . . . . . titanium} \\
\hline \multicolumn{2}{|l|}{TOL . . . . . . . . tulerance} \\
\hline \multicolumn{2}{|l|}{TRIM ....... trimmer} \\
\hline \multicolumn{2}{|l|}{TSTR ...... transistur} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{TTL. . . transistor-transistur
logac}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{TV. ........ television} \\
\hline \multicolumn{2}{|l|}{TVI television interference} \\
\hline \multicolumn{2}{|l|}{TWT . . traveling wave tube} \\
\hline \multicolumn{2}{|l|}{(* . . . micro ( \(10^{-6}\) ) (used} \\
\hline & n parts \\
\hline & microfarad (used in parts list) \\
\hline \multicolumn{2}{|l|}{UHF . . ultrahigh frequency} \\
\hline \multicolumn{2}{|l|}{UNREG .... unregulated} \\
\hline \multicolumn{2}{|l|}{V . . . . . . . . . . voit} \\
\hline \multicolumn{2}{|l|}{VA . . voltampere} \\
\hline \multicolumn{2}{|l|}{Vac} \\
\hline \multicolumn{2}{|l|}{\(V\) V} \\
\hline \multicolumn{2}{|l|}{VくO} \\
\hline \multicolumn{2}{|r|}{uscillator} \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Vac } \\
& \text { VDCW }
\end{aligned}
\]} & olts, dc \\
\hline & olts, de, working \\
\hline & (used in parts list) \\
\hline V(F) & \%olts, filtered \\
\hline VFO & variable-frequency \\
\hline \multicolumn{2}{|r|}{oscillator} \\
\hline VHF & very-high fre- \\
\hline \multicolumn{2}{|r|}{quency} \\
\hline Vok & volts, peak \\
\hline V; p & volis, peak-to-peak \\
\hline Vrims & lts, rms \\
\hline VSWR & voltage standing \\
\hline \multicolumn{2}{|r|}{wave ratio} \\
\hline V「0) & voltage-tuned \\
\hline \multicolumn{2}{|r|}{oscillator} \\
\hline V1VM & \\
\hline \multicolumn{2}{|r|}{voltmeter} \\
\hline \(V(X)\) & volts, switched \\
\hline W & \\
\hline W & \\
\hline \multirow[t]{2}{*}{WIV} & working inverse \\
\hline & bultage \\
\hline WW & wirewound \\
\hline W.0) & ut \\
\hline Y1G & yttrium-iron-garnet \\
\hline \(Z_{0}\) & characteristic \\
\hline & pedan \\
\hline
\end{tabular}

\section*{MULTIPLIERS}
\begin{tabular}{|c|c|c|}
\hline Abbreviation & Prefix & Multiple \\
\hline I & tera & \(11^{12}\) \\
\hline ( & giga & \(10^{9}\) \\
\hline M & mega & \(10^{6}\) \\
\hline k & kilo & \(10^{3}\) \\
\hline da & deka & 10 \\
\hline d & deci & 10 ! \\
\hline , & centı & \(10^{-2}\) \\
\hline m & milli & \(10^{-3}\) \\
\hline \(\mu\) & micro & \(10^{-6}\) \\
\hline n & nano & \(10^{9}\) \\
\hline p & pico & \(10 \quad 12\) \\
\hline \(f\) & femto & \(10^{-15}\) \\
\hline a & atto & \(10^{18}\) \\
\hline
\end{tabular}

Table 6-3. Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & \[
\begin{aligned}
& \mathrm{C} \\
& \mathrm{D}
\end{aligned}
\] & Qty & Description & Mfr Code & Mfr Part Number \\
\hline A1 & \[
\begin{aligned}
& 08860-60272 \\
& 08660-60304
\end{aligned}
\] & 4 & 1
1 & \begin{tabular}{l}
dIGITAL CONTROL ASSEMBLY \\
DIGITAL CONTROL ASSEMBLY(OPT 004 ONLY)
\end{tabular} & \[
\begin{aligned}
& 28480 \\
& 28480
\end{aligned}
\] & \[
\begin{aligned}
& 08660-80272 \\
& 08660-60304
\end{aligned}
\] \\
\hline \({ }_{\text {A1C1 }}^{\text {A1C2 }}\) ¢ & \[
\begin{aligned}
& 0160-3448 \\
& 0160-0127
\end{aligned}
\] & 6 & 1 & CAPACITOR-FXD \(1000 \mathrm{PF}+-10 \%\) 1KUDC CER
CAPACITOR-FXD 1 l
1 & \[
\begin{aligned}
& 28480 \\
& 28480
\end{aligned}
\] & \[
\begin{aligned}
& 0160-3448 \\
& 0160-0127
\end{aligned}
\] \\
\hline A1J1 & 1250-0118 & 3 & 1 & COMNECTOR-RF BNC FEM SGL-HOLE-FR 50-OHM & 28480 & 1250-0118 \\
\hline Alli & 9100-3354 & 6 & 1 & COIL-FXD 4MH e 0.5A:4V:800 HZ:0.4 OHM & 28480 & 9100-3354 \\
\hline A151 & 3101-1655 & 2 & 1 & SWITCH-RKR SURMIN SPDT SA 115VAC/DC PC & 28480 & 3101-1655 \\
\hline A1W1 & 08660-60116 & 5 & 1 & CABLE ASSEMBLY, SWITCH
CABLE ASSEMBLY, KEYBOARD & 28480 & \(88660-60116\)
\(08660-60117\) \\
\hline A1w2 & 08660-60117
\(08660-60118\) & 6
7 & 2 & CABLE ASSEMBLY, KEYBOARD
CABLE ASSEMBLY, READOUT & 28480
28480 & \(08660-60117\)
\(08660-60118\) \\
\hline A1 \({ }^{\text {a }}\) & 08660-60118 & 7 & & CABLE ASSEMBLY, READOUT & 28480 & 08660-60118 \\
\hline Alws & 08660-60124 & 5 & 1 & CABLE, D/A OUTPUT & 28480 & 08660-60124 \\
\hline \[
\begin{aligned}
& \text { A1W6 } \\
& \text { A1W6 P7 }
\end{aligned}
\] & \(08660-60126\)
\(1251-1017\) & 7 & 1 & WIRING HARNESS
CONNECTOR 4-PIN WINCH JF & 28480
28480 & 08660-60126
\(1251-1017\) \\
\hline A1 \({ }^{\text {d }}\) & 08660-60129 & 0 & 1 & CABLE ASSEMELY, 4U FILTER A1 Miscellaneous & 28480 & 08660-60129 \\
\hline & \(0900-0023\)
\(08660-00069\) & 7 & 1 & D-RING, 239-IN-ID .07-IN-XSECT-DIA NTRL & 07322
28480 & \[
8010
\] \\
\hline & 08660-00669 & 2 & 1 & SHIELD, R,F.I, & 28480
28480 & 08660-00069 \\
\hline & 08660-00103 & 4 & 1 & SUPPORT, DIGITAL ROTTOM & 28480 & 08860-00103 \\
\hline & 08660-00110 & 3 & 1 & INSULATOR, INTERCONNECT & 28480 & 08660-00110 \\
\hline & \(08660-20121\)
\(08660-20152\) & 8
5 & 1 & SUB-PANEL, FRONT
FRONT PANEL, KEYBOARD & 28480
28480 & 08660-20121 \\
\hline & 08660-20160 & 5 & 1 & RETAINER, P, C. BOARD & 28480 & 086660-20160 \\
\hline & 08660-201161 & 6 & 1 & SPACER, ROD & 28480 & 08660-20161 \\
\hline & 08660-40105 & 0 & 1 & FREQUENCY RANGE INDICATOR & 28480 & 08660-40105 \\
\hline & 08660-40108 & 3 & 1 & PUSHBUTTON, READOUT & 28480 & 08660-40108 \\
\hline A1A1 & 08660-60200 & - & 1 & ROARD ASSEMBLY, SWITCH CONTRDL (EXCEPT OPTION 004) & 28480 & 08660-60200 \\
\hline A1A1 & 08660-60305 & 4 & 1 & BOARD ASSEMBLY, SWITCH CONTROL (OPTION 004 ONLY) & 28480 & 08660-60305 \\
\hline A1A1C1 & 0180-2206 & 4 & 1 & CAPACITOR-FXD 60UF+-10\% GUDC TA & 56289 & 1500606×9006B2 \\
\hline A1A1C2
A1A1C3
AlA1C4 & \(0160-3536\)
\(0180-1714\) & 3
7 & 2 & CAPACITOR-FXD
CAPACITOR-FXD
630PF +-5\%
100 & 28480
56289 & \(0160-3536\)
\(1500337 \times 900652\) \\
\hline A1A1C3
A1A1C4 & 0180-1714 & 7
8 & 2
58 &  & 56289
56289 & \(150 \mathrm{D} 337 \times 900652\)
150 D 25598020 A \\
\hline A1A1CS & 0180-0197 & 8 & & CAPACITOR-FXD \(2.2 U F+-10 \% ~ 20 U D C\) TA & 56289
56289 & \(150 \mathrm{D} 225 \times 9820 \mathrm{A2}\)
\(150 \mathrm{D} 225 \times 9020 \mathrm{~A}\) \\
\hline A1A1C6
A1A1C7 & 0180-0197 & 8 8 & & CAPACITOR-FXD
2. 2 2 & 56289
56289 & \(1500225 \times 902042\)
15002259902042 \\
\hline A1A1C7
A1A1CB & 0180-0197 & 8 8 & & CAPACITOR-FXD
CAPACITOR-FXD
2. 2 UF \(+-10 \%\)
2UF \(+10 \%\)
20UDC & 56289
56289 & \(150 \mathrm{D} 225 \times 9020 \mathrm{AL}\)
\(150 \mathrm{D} 225 \times 9020 \mathrm{~A}\) \\
\hline A1A1C9 & 0180-0197 & 8 & & CAPACITOR-FXD \(2.2 U F+-10 \%\) 20UDC TA & 56289 & \(150 \mathrm{D} 225 \times 9020 \mathrm{~A}\) \\
\hline A1A1CR1 & 1901-0040 & 1 & 3 & DIODE-SWITCHING 30U 50MA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A1A1R1 & 0698-7228 & 7 & 4 & RESISTOR \(4641 \%\). 05 W F TC \(=0+-100\) & 24546 & C3-1/8-T0-464R-G \\
\hline A1A1R2 & 0698-7272 & & 1 & RESISTOR 31.6K 1\% , 05W F TC=0+-100 & 24546 & C3-1/8-T0-3162-G \\
\hline A1A1R3 & 0698-7253 & 8 & 16 & RESISTOR 5.11k \(1 \%\). 05 W F TC= \(=0+100\) & 24546 & C3-1/8-T0-5111-G \\
\hline A1A1R4 & 0698-7253 & 8 & & RESISTOR \(5.11 \mathrm{~K} 1 \%\), 05W F TC=0+-100 & 24546 & C3-1/8-T0-5111-G \\
\hline A1A1R5 & 0698-7253 & 8 & & RESISTOR \(5.11 \mathrm{~K} 1 \%\). 05 W F TC= \(0+-100\) & 24546 & C3-1/8-T0-5111-G \\
\hline A1A1R6
A1A1R7 & 0698-7253 & 8 & & RESISTOR 5.11K 1\% .05W F TC \(=0+-100\) & 24546 & C3-1/8-T0-5111-G \\
\hline A1A1R7
A1A1R8 & \(0698-7253\)
\(0698-7253\) & 8 & & RESISTOR 5.11 K
RESISTOR
5.11 K
R & 24546
24546 & C3-1/8-T0-5111-G
\(\mathrm{C} 3-1 / 8-\mathrm{T} 0-5111-\mathrm{G}\) \\
\hline A1A1R9 & 0698-7253 & 8 & & RESISTOR 5. \(11 \mathrm{~K} 1 \%\). 05 W F \(\mathrm{TC}=0+-100\) & 24546 & C3-1/8-T0-5111-6 \\
\hline AlA1R10 & 0698-7253 & 8 & & RESISTOR 5.11K 1\% .05W F TC=0+-100 & 24546 & C3-1/8-T0-5111-G \\
\hline A1A1R11 & 0698-7253 & 8 & & RESISTOR 5.11 K 1 z . 05 W F TC=0+-100 & & C3-1/8-T0-5111-G \\
\hline AlA1R12 & 0698-7253 & 8 & & RESISTOR 5. \(11 \mathrm{~K} 1 \%\). 05 LJ F TC= \(=0+-100\) & 24546 & C3-1/8-T0-5111-G \\
\hline A1A1R13 & 0698-7253 & 8 & & RESISTOR 5. \(11 \mathrm{~K} 1 \%\). O5W F TC= \(=0+-100\) & 24546 & C3-1/8-T0-5111-G \\
\hline A1A1R14 & 0698-7222 & 1 & 1 & RESISTOR \(2611 \%\). 051 W F TC=0+-100 & 24546 & C3-1/8-T0-261R-G \\
\hline A1A1R15 & 0698-7228 & 7 & & RESISTOR \(4641 \%\). O5W F TC= \(=0+-100\) & 24546 & C3-1/8-T0-464R-G \\
\hline A1A1R16 & 0698-7253 & 8 & & RESISTIR \(5.11 \mathrm{~K} 1 \%\). 05 W F TC=0+-100 & 24546 & C3-1/8-T0-5111-G \\
\hline A1A1R17 & 0698-7253 & 8 & & RESISTOR 5.11K 1\% . 0 W F F TC=0+-100 & 24546 & C3-1/8-T0-5111-G \\
\hline AlAIR18 & \(0698-7253\)
\(0698-7253\) & 8 & & RESISTOR 5.11 K
RESISTOR
5.11 K
R & 24546
24546 & C3-1/8-T0-5111-G
\(\mathrm{C} 3-1 / 8-\mathrm{TO} 5111-\mathrm{G}\) \\
\hline Alalred & 0698-7253 & 8 & & RESISTOR \(5.11 \mathrm{~K} 1 \%\). 05 W F \(\mathrm{C}=0+\mathrm{C}=100\) & 24546 & C3-1/8-T0-5111-G \\
\hline A1A1R21 & 0698-7212 & 9 & 2 & RESISTOR \(1001 \%\). 05W F TC=0+-100 & 24546 & C3-1/8-T0-100R-G \\
\hline AlA1R22 & 0698-7212 & 9 & & RESISTOR \(1001 \%\), O5W F TC \(=0+-100\) & 24546 & C3-1/8-T0-100R-G \\
\hline A1A1R23 & 0698-7228 & 7 & & RESISTOR \(4641 \%\). 05 W F \(\mathrm{TC}=0+\cdots 100\) & 24546 & C3-1/8-T0-464R-C \\
\hline A1A1R24
A1A1R25 & \(0698-7228\)
\(0698-7249\) & 7 & & RESISTOR \(4641 \%\), \(05 W\) F TC \(=0+-100\) & 24546 & C3-1/8-T0-464R-G \\
\hline \({ }^{\text {AlalR2S }} \dagger\) & 0698-7249 & 2 & 1 & RESISTOR 3.48K \(1 \% .05 \mathrm{~W}\) F TC= \(0+-100\) & 24546 & C3-1/8-T0-3481-G \\
\hline
\end{tabular}

Table 6-3. Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & \[
\left.\begin{aligned}
& C \\
& D
\end{aligned} \right\rvert\,
\] & Qty & Description & Mfr Code & Mfr Part Number \\
\hline AIA1TP1 & 0360-1514 & 7 & 15 & TERMINAL-STUD SGL-PIN PRESS-MTG & 28480 & 0360-1514 \\
\hline A1A1TP2 & 0360-1514 & 7 & & TERMINAL-STUD SGL-PIN PRESS-MTG & 28480 & 0360-1514 \\
\hline A1A1U1 & 1820-1422 & 3 & 3 & If mu ttl ls monostbl retrig & 01295 & SN74LS122N \\
\hline Alalue & 1820-0174 & 0 & 17 & IC INU TTL HEX & 01295 & SN7404N \\
\hline Alalu3 & 1820-0256 & 9 & 3 & 1 BFR DTL NAND QUAD 2-INP & 01295 & SN15858N \\
\hline AlAlu4 & 1820-1490 & 5 & 6 & IC CNTR TTL LS DECD ASYNCHRO & 01295 & SNTALS90N \\
\hline Alalus & 1820-1490 & 5 & & IC CNTR TTL LS DECD ASYNCHRO & 01295 & SN74LS90N \\
\hline Alalue & 1820-1490 & 5 & & IC CNTR TTL LS dECD ASYNChRO & 01295 & SN74L890N \\
\hline Alalu7 & 1820-1490 & 5 & & IC CNTR TTL LS DECD ASYNCHRD & 01295 & SN74LS90N \\
\hline Alalus & 1820-1490 & 5 & & IC CNTR TTL LS DECD ASYNCHRO & 01295 & SNTALS90N \\
\hline Alalug & 1820-1490 & 5 & & IC CNTR TTL LS DECD ASYNCHRO & 01295 & SNTHLS90N \\
\hline Alaluio & 1820-0054 & 5 & 37 & IC GATE TTL NAND QUAD 2-INP & 01295 & SN7400N \\
\hline Alaluil & 1820-1574 & 6 & 5 & IC FF TTL LS J-K Pulse clear dual & 01295 & SN74LST3AN \\
\hline Alaluiz & 1820-0174 & 0 & & IC INU TTL HEX & 01295 & SN7404N \\
\hline AtAlul3 & 1820-0372 & 0 & 8 & IC GATE TTL H AND TPL 3-INP & 01295 & SN74H11N \\
\hline Alaluia & 1820-1202 & 7 & 6 & IC GATE TTL LS NAND TPL 3-INP & 01295 & SNTALSITON \\
\hline AlAlU15 & 1820-1112 & 8 & 4 & IC FF TTL LS D-TYPE POS-EDGE-TRIG & 01295 & SNTALST4AN \\
\hline AlAluis & 1820-1574 & 6 & & IC FF TTL LS J-K pulse clear dual & 01295 & SNTALST3AN \\
\hline A1A1U17 & 1820-0174 & 0 & & IC INU TTL HEX & 01295 & SNT404N \\
\hline A1A1U18 & 1820-0054 & 5 & & IC GATE TTL MAND QUAD 2-1NP & 01295 & SNTAOON \\
\hline A1A1U19 & 1820-0374 & 2 & 1 & IC GATE TTL H AND DUAL 4 -INP & 01295 & SN74H21N \\
\hline A1A1U20 & 1820-0511 & 9 & 14 & IC GATE TTL AND QUAD 2-INP & 01295 & SN7408N \\
\hline A1A1U21 & 1820-0077 & 2 & 5 & IC FF TTL D-TYPE POS-EDGE-TRIG CLEAR & 01295 & SNTAT4N \\
\hline Alalue2 & 1820-1202 & 7 & & IC GATE TTL LS NAND TPL 3-INP & 01295 & SNTALSION \\
\hline A1A1U23 & 1820-1574 & 6 & & IC FF TTL LS J-K PULSE CLEAR DUAL & 01295 & SN74LSTJAN \\
\hline Alalues & 1820-0328 & \(\stackrel{6}{5}\) & 11 & IC GATE TTL NOR QUAD 2 -IMP & 01295 & SN7402N \\
\hline A1A1U25 & 1820-0054 & 5 & & It GATE TTL NAND QUAD \(2-1\) - & 01295 & SN7400N \\
\hline Alaluz6 & 1820-0495 & 8 & 4 & IC DCDR TTL A-T0-16-LINE 4-IMP & 01295 & SN74154N \\
\hline A1Aluz2 & 1820-0054 & 5 & & If GATE TTL NAND QUAD 2-INP & 01295 & SN7400N \\
\hline Alaluze & 1820-1112 & 8 & & IC FF TTL LS D-TYPE POS-EDGE-TRIG & 01295 & SNTALSTAAN \\
\hline Alaluas & 1820-0077 & 2 & & IC FF TTL D-TYPE POS-EDGE-TRIG CLEAR & 01295 & SN7474N \\
\hline AlAlu30 & 1820-0661 & 0 & 11 & IC GATE TTL OR QUAD 2-INP & 01295 & SN7432N \\
\hline A1A1U33 & 1820-0054 & 5 & & IC GATE TTL NAND QUAD 2-1NP & 01295 & SN7400N \\
\hline A1Alu32 & 1820-1112 & 8 & & IC FF TTL LS D-TYPE POS-EDGE-TRIG & 01295 & SNTALST4AN \\
\hline Alalu33 & 1820-0511 & 9 & & IC GATE TTL AND QUAD 2-INP & 01295 & SN7400n \\
\hline AlalXal & 1200-0507 & \(\bigcirc\) & 10 & SOCKET-IC 16-CONT DIP-SLDR & 28480 & 1200-0507 \\
\hline A1A2 & 08660-60176 & 7 & 1 & BOARD ASSEMBLY, KEY CONTROL (EXCEPT OPTION 004) & 28480 & 08660-60176 \\
\hline A1A2 & 08660-60161 & 0 & 1 & BOARD ASSENBLY, XEY CONTROL (OPTION OOA ONLY) & 28480 & 08660-60161 \\
\hline A1A2C1 & 0160-0945 & 2 & 1 & CAPACITOR-FXD 910PF *-5\% 100 UDC MICA & 28480 & 0160-0945 \\
\hline A1 A2C2 & 0160-2204 & 0 & 1 & CAPACITOR -FXD \(100 \mathrm{PF}+-5 x 300 \mathrm{VDC} \mathrm{HICA}\) & 28480 & 0160-2204 \\
\hline A1 A2C3 & 0160-0157 & 8 & 1 & CAPACITOR-FXD 4700PF +-1082000 DC POLYE & 28480 & 0160-0157 \\
\hline A1 A2C4 & 0140-0199 & \({ }_{6}\) & 2 & CAPACITOR-FXD 240PF *-5X 300UDC MICA & 72136
56289 & DM13F241J0300WVICR
\(150 \mathrm{D} 225 \times 9020 \mathrm{Az}\) \\
\hline Al A2C5 & 0180-0197 & 8 & & CAPACITOR-FXD 2.2UF+-10\% 20UDC TA & 56289 & \(150 \mathrm{D} 225 \times 9020 \mathrm{Az}\) \\
\hline A1A2C6 & 0180-0197 & 8 & & CAPACITOR-FXD 2.2UF+-10\% 20UDC TA & 56289 & \(150 \mathrm{D} 225 \times 9020 \mathrm{AL}\) \\
\hline A1 A2C7 & 0180-0197 & 8 & & CAPACITOR-FXD 2. 2UF \(+10 x\) 20UDC TA & 56289 & 150D225x9020A2 \\
\hline A 1 A2C8 & 0180-0197 & 8 & & CAPACITOR-FXD 2.2UF+-10z 20UDC TA & 56289 & \(150 \mathrm{D} 225 \times 9020 \mathrm{~A} 2\) \\
\hline Alazci & 0180-0197 & 8 & & CAPACITOR-FXD 2.2UF*-10z 20UDC TA & 56289 & \(150 \mathrm{D} 225 \times 9020 \mathrm{AZ}\) \\
\hline A1 A2Ci0 & 0180-0197 & 8 & & CAPACITOR-FXD 2.2UF+-10x 20UDC TA & 56289 & \(150 \mathrm{D} 225 \times 9020 \mathrm{A2}\) \\
\hline A1A2C11 & 0180-0197 & 8 & & CAPACITOR-FXD 2.2UF+-10X 20UDC TA & 56289 & 1500225x9020A2 \\
\hline A1A2C12 & 0140-0199 & 6 & & CAPACITOR-FXD 240PF +-5\% 300UDC MICA & 72136 & DM15F241J0300WVICR \\
\hline A1A2C13 & 0160-3533 & 0 & 1 & CAPACITOR-FXD 470PF +-52 30OUDC MICA (OPTION 004 ONLY) & 28480 & 0160-3533 \\
\hline A1A2C14 & 0160-0161 & 4 & 4 & CAPACITOR-FXD . 01 UF +-10z 200UDC POLYE & 28480 & 0160-0161 \\
\hline A1A2Ci5 & 0160-0161 & 4 & & CAPACITOR-FXD . \(01 \mathrm{UF}+-10 x\) 200UDC POLYE & 28480 & 0160-0161 \\
\hline A1A2C16 & 0160-0161 & 4 & & CAPACITOR-FXD O1UF -10\% 200UDC POLYE & 28480 & 0160-0161 \\
\hline A1 A2C17 & 0180-0197 & 8 & & CAPACITOR-FXD 2.2UF+-10X 20UDC TA & 56289 & \(150 \mathrm{D} 225 \times 9020 \mathrm{~A}\) \\
\hline A1A201 & 1853-0020 & 4 & 2 & TRANS 1STOR PNP SI PD \(=300 \mathrm{MW}\) FT \(=150 \mathrm{MHZ}\) & 28480 & 1853-0020 \\
\hline A 1 A2R1 & 0757-0419 & 0 & 1 & RESISTOR 681 \(1 \% .125 \mathrm{~W}\) F \(\mathrm{TC}=0+-100\) & 24546 & C4-1/8-T0-681R-F \\
\hline Al A2R2 & 0757-0428 & 1 & 1 & RESISTOR \(1.62 \mathrm{~K} \quad 1 \chi^{\text {a }}\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1621-F \\
\hline Alazrs & 0698-0082 & 7 & 5 & RESISTOR 464 1\%.1254 F TC=0*-100 & 24546 & C4-1/8-T0-4640-F \\
\hline A1A2R 4 & 0757-0280 & 3 & 7 & RESISTOR \(1 \mathrm{~K} 1 \% \quad 125 \mathrm{~F}\) F TC=0 +-100 & 24546 & C4-1/8-T0-1001-F \\
\hline A IARRS & 0698-3430 & 5 & 6 & RESISTOR 21.5 \(1 \%\). 125 W F \(\mathrm{TC}=0+-100\) & 03888 & PME55-1/8-T0-21R5-F \\
\hline A1A2R6 & 0698-3430 & 5 & & RESISTOR \(21.51 x\). 125 W F \(\mathrm{TC}=0+-100\) & 03888 & PME5S-1/8-T0-21R5-F \\
\hline Al A2R 7 & 0757-0280 & 3 & & RESISTOR \(1 \mathrm{~K} 1 \chi\), 125W F TC \(=0+-100\) & 24546 & CA-1/8-T0-1001-F \\
\hline A1A2R B & 0698-3430 & 5 & & RESISTOR 21.5 ix . 125 W F \(\mathrm{TC}=0+-100\) & 03888 & PME55-1/8-T0-21RS-F \\
\hline A1A2R9 & 0698-3430 & 5 & & RESISTOR \(21.51 \%\), 125 W F \(\mathrm{TC}=0+-100\) & 03888 & PMES5-1/8-T0-21RS-F \\
\hline A1ARR10 & 0757-0280 & 3 & & RESISTOR 1K 12 , 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1001-F \\
\hline A1ACR 11 & 0757-0438 & 3 & 10 & RESISTOR \(5.11 \mathrm{~K} 1 \%\). 125 W F TC=0 +-100 & 24546 & C4-1/8-70-5111-F \\
\hline A1A2R 12 & 0757-0395 & 1 & 1 & RESISTOR \(56.21 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-56R2-F \\
\hline A1 A2R 13 & 0698-3430 & 5 & & RESISTOR \(21.51 \%\), 125w F \(T C=0+-100\) & 03888 & PMESS-1/8-T0-21R5-F \\
\hline A1ARR 14 & 0698-3160 & 8 & 3 & RESISTOR 31.6K 1\% , 125W F TC=0 +-100 & 24546 & C4-1/8-70-3162-F \\
\hline A1ARR15 & 0698-3160 & 8 & & RESISTOR 31.6K 1\% , 125W F TC= \(=0+-100\) & 24546 & C4-1/8-T0-3162-F \\
\hline
\end{tabular}

Table 6-3. Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & C & Oty & Description & Mfr Code & Mfr Part Number \\
\hline A1A2R16 & 0698-3430 & 5 & & RESISTOR \(21.51 \%\). 125 W F TC \(=0+-100\) & 03888 & PRE55-1/8-T0-21RS-F \\
\hline A1A2R17 & 0698-3159 & 5 & 2 &  & 24546 & C4-1/8-T0-2612-F \\
\hline A1 A2R 18 & 0698-3159 & 5 & & RESISTOR 26.1K \(1 \chi\), 125 F TC \(=0+-100\) & 24546 & C4-1/8-T0-2612-F \\
\hline A1A2R19 & 0757-0439 & 3 & & RESISTOR 5.11K 1\% , 125W F TC= \(0+-100\) & 24546 & C4-1/8-T0-5111-F \\
\hline A1 A2R20 & 0698-3132 & 4 & 3 & RESISTOR 2611 X . 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-2610-F \\
\hline A1A2R21 & 0757-0438 & 3 & & RESISTOR \(5.11 \mathrm{~K} 1 \%\), 125W F TC=0+-100 & 24546 & C4-1/8-T0-5111-F \\
\hline A1A2R 22 & 0757-0288 & 1 & 1 & RESISTOR 9.09K 1x, 125W F TC \(=0+-100\) & 19701 & MF4C1/8-T0-9091-F \\
\hline A1A2R23 & 0757-0280 & 3 & & RESISTOR \(1 \mathrm{~K} 1 \%, 125 \mathrm{~W}\) F TC=0+-100 & 24546 & C4-1/8-T0-1001-F \\
\hline A1A2R24 & 0698-3132 & 4 & & RESISTOR \(2611 \%, 125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-2610-F \\
\hline A1A2R25 & 0698-3132 & 4 & & RESISTOR 261 1\%. 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-2610-F \\
\hline A1A2TPI & 0360-1514 & 7 & & TERMINAL-STUD SGL-PIN PRESS-MTG & 28480 & 0360-1514 \\
\hline A1A2TPL & 0360-1514 & 7 & & TERMINAL-STUD SGL-PIN PRESS-MTG & 28480 & 0360-1514 \\
\hline A1A2U1 & 1820-0174 & 0 & & IC INU TTL HEX & 01295 & SNT404N \\
\hline A1A2U2 & 1820-0661 & 0 & & IC GATE TTL OR QUAD 2-INP & 01295 & SN7432N \\
\hline A1ALU3 & 1820-0054 & 5 & & IC GATE TTL NAND QUAD 2 -INP & 01295 & SN7400N \\
\hline A1 A2U4 & 1820-0709 & 7 & 10 & IC SHF-RGTR TTL L R-S SERIAL-IN & 07263 & \(93128 P \mathrm{C}\) \\
\hline A1 A2U5 & 1820-0659 & 6 & 17 & IC SHF-RGTR TTL L D-TYPE PRL-IN PRL-OUT & 07263 & 93L00PC \\
\hline A1A2U6 & 1820-0709 & 7 & & IC SHF-RGTR TTL L R-S SERIAL-IN & 07263 & \(93 \mathrm{L28PC}\) \\
\hline A1 A2U7 & 1820-0281 & 0 & 1 & IC FF TTL J-K M/S PULSE CLEAR DUAL & 01295 & SN74107N \\
\hline A1 A2U8 & 1820-0511 & 9 & & IC GATE TTL AND QUAD 2-INP & 01295 & SN7408N \\
\hline A1 A2U9 & 1820-0054 & 5 & & IC GATE TTL NAND QUAD 2-INP & 01295 & SN7400N \\
\hline A1A2U10 & 1820-0511 & 9 & & IC GATE TTL AND QUAD 2-INP & 01295 & SN7408N \\
\hline A1A2U11 & 1820-0710 & 0 & 6 & IC MUXR/DATA-SEL TTL L 2 -TO-1-LINE QUAD & 07263 & 93L_2apc \\
\hline A1A2U12 & 1820-0710 & 6 & & IC MUXR/DATA-SEL TTL L \(2-T O-1-L I N E\) QUAD & 07263 & \(93 \mathrm{LL22PC}\) \\
\hline A1A2U13 & 1820-0659 & 6 & & IC SHF-RGTR TTL L D-TYPE PRL-IN PRL-OUT & 07263 & 93L00PC \\
\hline A1A2U14 & 1820-0859 & 6 & & IC SHF-RGTR TTL L D-TYPE PRL-IN PRL-OUT & 07263 & 93 LOOPC \\
\hline A1A2U15 & 1820-0710 & 0 & & IC mUXR/DATA-SEL TTL L 2-TO-1-LINE QUAD & 07263 & 93L2EPC \\
\hline A1A2U16 & 1820-0054 & 5 & & IC GATE TTL NAND QUAD \(2-1 N P\) & 01295 & SN7400N \\
\hline A1 A2U17 & 1820-0596 & 0 & 1 & IC FF TTL L D-TYPE POS-EDGE-TRIG & 27014 & DM74L74N \\
\hline A1A2U18 & 1820-0174 & 0 & & IC INU TTL HEX & 01295 & SN7404N \\
\hline A1 A2U19 & 1820-1422 & 3 & & IC MU TTL LS MONOSTBL RETRIG & 01295 & SN74LS122N \\
\hline A1A2U20 & 1826-0055 & 8 & 1 & IC COMPARATOR GP DUAL 14-DIP-C PKG & 07263 & UA711DC \\
\hline A1A2U21 & 1820-0069 & 2 & 5 & IC GATE TTL NAND DUAL 4 -INP & 01295 & SN7420N \\
\hline A1A2U22 & 1820-0174 & , & & IC INU TTL HEX & 01295 & SN7404N \\
\hline A1 A2U23 & 1820-0214 & 9 & 4 & IC DCDR TTL BCD-TO-DEC 4-TO-10-LINE & 01295 & SN7442AN \\
\hline A1A2U24 & 1820-0661 & 0 & & IC GATE TTL OR QUAD 2 -INP & 01295 & SN7432N \\
\hline A1 A2U25 & 1820-0055 & 6 & 2 & IC CNTR TTL DECD SYNCHRD POS-EDGE-TRIG & 01295 & SN7490AN \\
\hline A1A2U26 & 1820-0491 & 4 & 1 & IC DCDR TTL BCD-T0-DEC 4-T0-10-LINE & 01295 & SN74145N \\
\hline A1 A3 & 08660-60191 & 6 & 1 & BOARD ASSEMBLY, READOUT CONTROL (EXCEPT OPTION O04) & 28480 & 08680-60191 \\
\hline A1A3 & 08660-60338 & 3 & 1 & BOARD ASSEMBLY, READOUT CONTROL (OPTION 004 ONLY) & 28480 & 08660-60338 \\
\hline A1A3C1 & 0180-0197 & 8 & & CAPACITOR-FXD 2.2UF+-10\% 20UDC TA & 56289 & 150D225x9020A2 \\
\hline A1 A3C2 & 0180-0197 & 8 & & CAPACITOR-FXD 2.2UF+-10\% 2OUDC TA & 56289 & \(1500225 \times 9020 \mathrm{AL}\) \\
\hline A1 A3C3 & 0180-0197 & 8 & & CAPACITOR-FXD 2.2UF+-10\% 20UDC TA & 56289 & 150D225x9020A2 \\
\hline A1A3C4 & 0180-0197 & 8 & & CAPACITOR-FXD 2.2UF+-10x 2OUDC TA & 56289 & \(150 \mathrm{D} 225 \times 9020 \mathrm{~A}\) \\
\hline A1 A3C5 & 0180-0197 & 8 & & CAPACITOR-FXD 2.2UF+-10X 20UDC TA & 56289 & \(150 \mathrm{D} 225 \times 9020 \mathrm{~A}\) \\
\hline A1AJC6 & 0180-0197 & 8 & & CAPACITOR-FXD 2.2UF+-10\% 20UDC TA & 56289 & 150D225x9020A2 \\
\hline A1 A3C7 & 0180-0197 & 8 & & CAPACITOR-FXD 2.2UF+-10\% 20UDC TA & 56289 & \(150 \mathrm{D} 225 \times 9020 \mathrm{~A}\) \\
\hline A1A3C8 & 0180-0197 & 8 & & CAPACITOR-FXD 2.2UF+-10\% 20UDC TA & 56289 & 150D225x9020A2 \\
\hline A1 A3C9 & 0160-3534 & 1 & 1 & CAPACITOR-FXD \(510 \mathrm{PF}+-5 \% 100 \cup D C\) MICA & 28480 & 0160-3534 \\
\hline AlA3C10 & 0160-0161 & 4 & & CAPACITOR-FXD .01UF +-10\% 200UDC POLYE & 28480 & 0160-0161 \\
\hline A1A3C11* & 0160-2208 & & 1 & CAPACITOR-FXD 330PF +-5\% 300UDC MICA & 28480 & 0160-2208 \\
\hline A1A3C12 & 0140-0196 & 3 & 2 & CAPACITOR-FXD 150PF +-5\% 300UDC MICA & 72136 & DH15F151J0300WU1CR \\
\hline A1A3R1 & 0698-3447 & 4 & 11 & RESISTOR \(4221 \%\). 125 W F TC=0+-100 & 24546 & C4-1/8-T0-422R-F \\
\hline A1A3R2 & 0698-3447 & 4 & & RESISTOR \(4221 z \cdot 125 W\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-422R-F \\
\hline A1A3R3 & 0698-3447 & 4 & & RESISTOR \(4221 \chi\). 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-422R-F \\
\hline A1A3R4 & 0698-3447 & 4 & & RESISTOR \(4221 \% .1254\) F TC=0 +-100 & 24546 & C4-1/8-T0-422R-F \\
\hline A1A3R5 & 0698-3447 & 4 & & RESISTOR \(4221 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-422R-F \\
\hline A1A3R6 & 0698-3447 & 4 & & RESISTOR \(4221 z\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-422R-F \\
\hline A1A3R7 & 0698-3447 & 4 & & RESISTOR \(4221 \%\).125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-422R-F \\
\hline A1A3R8 & 0698-3447 & 4 & & RESISTOR 4221 z . 125W F TC=0+-100 & 24546 & C4-1/8-T0-422R-F \\
\hline A 1 A3R9 & 0698-3447 & 4 & & RESISTOR 422 \(1 \% .125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-422R-F \\
\hline A1A3R10 & 0698-3447 & 4 & & RESISTOR 422 1\% , 125W F TC=0 +-100 & 24546 & C4-1/8-T0-422R-F \\
\hline \[
\begin{aligned}
& \text { A1 A3R } 11 \dagger \\
& \text { A1A3R12 }
\end{aligned}
\] & 0698-3160 & 8
0 & 1 &  & 24546
24546 & \[
\begin{aligned}
& \text { C4-1/8-T0-3162-F } \\
& \text { C4-1/B-T0-101-F }
\end{aligned}
\] \\
\hline AIASR13 & 0698-3447 & 4 & & RESISTOR \(4221 \%\). 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-422R-F \\
\hline AIASR 14 & 0757-0346 & 2 & 2 & RESISTOR \(101 \%, 125 \mathrm{~W}\) F TC=0+-100 & 24546 & C4-1/8-T0-10R0-F \\
\hline A1A3R15 & 0757-0346 & 2 & & RESISTOR \(101 \% .125 W\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-10R0-F \\
\hline \begin{tabular}{l}
AIA3U1 \\
Al A3UZ
\end{tabular} & 1820-0661 & 0 & & IC GATE TTL OR QUAD 2-INP NOT ASSIGNED & 01295 & SN7432N \\
\hline A1A3U3 & 1820-0725 & 7 & 1 & IC TTL 16-BIT RAM STAT 45-NS D-C & 01295 & SN74170J \\
\hline A1 A3U4 & 1820-0054 & 5 & & IC GATE TTL NAND QUAD 2 -INP & 01295 & SN7400N \\
\hline A1A3U5 & 1820-0054 & 5 & & IC GATE TTL NAND QUAD 2 -INP & 01295 & SN7400N \\
\hline
\end{tabular}

Table 6－3．Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & \begin{tabular}{l}
HP Part \\
Number
\end{tabular} & \[
\begin{aligned}
& C \\
& D
\end{aligned}
\] & Qty & Description & Mfr Code & Mfr Part Number \\
\hline A1AJU6 & 1820－0174 & 0 & & IC INU TTL HEX & 01295 & SN7404N \\
\hline A1 A3U7 & 1820－0214 & 9 & & IC DCDR TTL BCD－TO－DEC A－TO－10－LINE & 01295 & SN7442AN \\
\hline A1 A3U8 & 1820－0659 & 6 & & IC SHF－RGTR TTL L D－TYPE PRL－IN PRL－OUT & 07263 & 93LOOPC \\
\hline A1 A3U9 & 1820－0054 & 5 & & IC GATE TTL NAND QUAD 2－INP & 01295 & SN7400N \\
\hline A1A3U10 & 1820－1422 & 3 & & IC MU TTL LS MONOSTBL RETRIG & 01295 & SN74LS122N \\
\hline A1A3U11 & 1820－0904 & 4 & 1 & IC COMPTR TTL L MAGTD 5－BIT & 07263 & 93 LzapC \\
\hline Ala3ule & & & & NOT ASSIGNED & & \\
\hline AiA3U13 & 1820－0328 & 6 & & IC GATE TTL NOR QUAD 2－INP & 01295 & SN7402N \\
\hline Ala3u14 & 1820－1112 & 8 & & IC FF TTL LS D－TYPE POS－EDGE－TRIG & 01295 & SN74LST4AN \\
\hline Ala3uls & 1820－0054 & 5 & & IC GATE TTL NAND QUAD \(2-I N P\) & 01295 & SNT700N \\
\hline A1A3U16 & 1820－0054 & 5 & & IC GATE TTL NAND QUAD 2－INP & 01295 & SNT400N \\
\hline A1A3U17 & 1820－0710 & 0 & & IC MUXR／DATA－SEL TTL L 2－TO－1－LINE QUAD & 07263 & 93L22PC \\
\hline A1A3U18 & 1820－0372 & － & & 1C GATE TTL H AND TPL 3－INP & 01245 & SN74H11N \\
\hline Al A3U19 & 1820－0328 & 6 & & IC GATE TTL NOR GUAD \(2-1 \mathrm{NP}\) & 01295 & SNT402N \\
\hline Al A3U20 & 1820－0055 & 6 & & IC CNTR TTL DECD SYNCHRO POS－EDGE－TRIG & 01295 & SN7490AN \\
\hline A1A3U2i & 1820－0661 & 0 & & IC GATE TTL OR QUAD 2－INP & 01295 & SN7432N \\
\hline A1A3U22 & 1820－0372 & 0 & & IC GATE TTL H AND TPL 3－INP & 01.95 & SN74H11N \\
\hline A1 A3U23 & 1820－0661 & 0 & & IC GATE TTL OR QUAD 2 －INP & 01295 & SN7432N \\
\hline A1A3U24 & 1820－0174 & － & & IC INU TTL MEX & 01.295 & SN7404N \\
\hline A1A3U25 & 1820－0511 & 9 & & IC GATE TTL AND QUAD 2－INP & 01295 & SN7408N \\
\hline A1 A3U26 & 1820－0256 & 9 & & IC BFR DTL NAND QUAD \(2-I N P\) & 01295 & SN158S8N \\
\hline Al A3U27 & 1820－0659 & 6 & & IC SHF－RGTR TTL L D－TYPE PRL－IN PRL～OUT & 07263 & 93100 PC \\
\hline Al A3U28 & 1820－1433 & 6 & 6 & IC SHF－RGTR TTL LS R－S SERIAL－IN PRL－OUT & 01295 & SN74LS164N \\
\hline A1 A3U29 & 1820－0065 & 8 & 2 & IC FF TTL J－K POS－EDGE－TRIG CLEAR & 01295 & SN7470N \\
\hline Ala3u30 & 1820－0054 & 5 & & IC GATE TTL NAND QUAD 2－InP & 01295 & SN7400N \\
\hline A1AJU3i & 1820－0174 & 0 & & IC INU TTL HEX & 01295 & SN7404N \\
\hline A1A3U32 & 1820－0511 & 9 & & IC GATE TTL AND QUAD 2－INP & 01595 & SN740日N \\
\hline A1A3033 & 1820－0069 & 3 & & IC GATE TTL NAND DUAL A－INP & 01.395 & SNT420N \\
\hline Al A3U3A & 1820－0054 & 5 & & IC GATE TTL NAND QUAD Z－INP & 01.295 & SNT300N \\
\hline A1A3U35 & 1820－0068 & ， & 10 & IC GATE TTL NAND TPL 3－INP & 01295 & SN7410N \\
\hline A1A3U36 & 1820－1433 & 6 & & If SHF－RGTR TTL LS R－S SERIAL－IN PRL－OUT & 01295 & SNTALSIGAN \\
\hline A1 A3U37 & 1820－1433 & 6 & & IC SHF－RGTR TTL LS R－S SERIAL－IN PRL－DUT & \(01: 95\) & SNTALSIG4N \\
\hline A）A3U38 & 1820－1433 & 6 & & IC SHF－RGTR TTL LS R－S SERTAL－IN PRL－OUT & 01395 & SNTALSIGAN \\
\hline A1A3U39 & 1820－0659 & 6 & & IC SHF－RGTR TTL L D－TYPE PRL－IN PRL－OUT & 02263 & 93LOOPC \\
\hline A1A4 & 08660－60197 & 2 & ， & ROARD ASSEMBLY，ROM INPUT & 28480 & 08660－60197 \\
\hline A 1 AsC1 & 0180－0197 & 8 & & CAPACITOR－FXD 2． 2 UF＋－10x 2OUDC TA & 56.389 & 150D225x9020A2 \\
\hline A 1 A4CL & 0180－0197 & 8 & & CAPACITOR－FXD 2． 2 UF＊－10x 2OUDC TA & － 6.189 & \(150 \mathrm{D} 225 \times 9020 \mathrm{~A}\) 2 \\
\hline A A A C3 & 0180－0197 & в & & CAPACITOR－FXD 2．2UF＋－10\％20UDC TA & 56.884 & \(150 \mathrm{D} 225 \times 9020 \mathrm{AL}\) \\
\hline Al A4C4 & 0180－0197 & 8 & & CAPACITOR－FXD 2 ZUF． 102 ZOUDC TA & 56.878 & \(150 \mathrm{D} 225 \times 9020 \mathrm{~A}\) \\
\hline Alascs & 0180－0197 & 8 & & CAPACITOR－FXD 2．2UF＊－10X 2OUDC TA & 56289 & 150D225x9020A2 \\
\hline A1A4CR1 & 1901－0040 & 1 & & DIDDE－SWITCHING 30U SOMA 2 SS DO－35 & 28480 & 1901－0040 \\
\hline A1A4DS 1 & 1990－0326 & 3 & 7 & LED－UISIPLE LUM－INT＝300UCD IF＝50MA－MAX & 28480 & 5082－4444 \\
\hline A1AADSE & 1990－0326 & 3 & & LED－UISIBLE LUM－INT＝300UCD IF＝50MA－MAX & 28480 & 5002－4444 \\
\hline A1AADE3 & 1990－0326 & 3 & & LED－VISIBLE LUM－1NT＝300UCD IF＝50MA－MAX & 28480 & 5002－4444 \\
\hline AlAADS 4 & 1990－0326 & 3 & & LED－VISIBLE LUM－INT＝300UCD IFasoma－max & 28480 & 5082－4444 \\
\hline A1 AADS 5 & 1990－0326 & 3 & & LED－UISIBLE LUM－INT＝300UCD IFe5OMA－MAX & 28480 & 5082－4444 \\
\hline A1A4DS6 & 1990－0326 & 3 & & LED－UISIBLE LUM－INT \(=300 \cup C D\) IF \(=50 \mathrm{MA}\) MAX & 28480 & 5082－4444 \\
\hline A1 A4DS 7 & 1990－0326 & 3 & & LED－UISIELE LUM－INT＝300UCD IF＝50MA－MAX & 28480 & 5082－4444 \\
\hline AlA4R1 & 0698－3153 & 9 & 10 & RESISTOR 3．83K \(1 \%\) ．125W F TC＝ \(0+-100\) & 24546 & C4－1／8－T0－3031－F \\
\hline A1A4R2 & 0698－3445 & 2 & 19 & RESISTOR \(3481 \%\) ． 125 W F TC \(=0+-100\) & 245，46 & C4－1／8－T0－348日－F \\
\hline A1A AR3 & 0698－3153 & 9 & & RESISTOR 3． 33 K i\％． 125 W F TC＝0 \(0+100\) & 24546 & C4－1／8－T0－3031－F \\
\hline AIAARA & 0698－3153 & 9 & & RESISTOR 3．83K \(1 \%\) ． 125 W F TC \(=0+100\) & 245，46 & C4－1／8－T0－3831－F \\
\hline AsAARS & 0698－3153 & 9 & & RESISTOR 3．83K 3 K ． 125 W F \(\mathrm{TC}=0+-100\) & 24546 & C4－1／8－T0－3831－F \\
\hline AlAAR6 & 0698－3445 & 2 & & RESISTOR \(3481 \%\) ． 125 W F \(\mathrm{TC}=0+-100\) & 24546 & C4－1／8－T0－348R－F \\
\hline A1AAR 7 & 0698－3153 & 9 & & RESISTOR 3．83k 1\％． 125 W F TC＝\(=0+-100\) & 24546 & C4－1／8－T0－3831－F \\
\hline A 1 A4R 8 & 0698－3445 & 2 & & RESISTOR 348 1 x ，125W F TC \(=04-100\) & 24546 & C4－1／8－T0－348R－F \\
\hline A A A R 9 & 0698－3153 & 9 & & RESISTOR 3．83k \(1 \% .125 \mathrm{~W}\) F \(\mathrm{TC}=0+-100\) & 245，46 & C4－1／8－T0－3831－F \\
\hline A1AAR10 & 0698－3445 & 2 & & RESISTOR 348 1x．125w F TC \(=0+-100\) & 24546 & C4－1／8－Y0－348R－F \\
\hline A1AAR11 & 0698－3153 & 9 & & RESISTOR 3.83 K 1 X ． 125 W F \(\mathrm{YC}=04-100\) & 24546 & C4－1／8－T0－3831－F \\
\hline AlAsR12 & 0698－3445 & 2 & & RESISTOR 3481 x ，125W F \(\mathrm{TC}=0+-100\) & 24546 & C4－1／8－T0－34日R－F \\
\hline A1A4R13 & 0698－3153 & 9 & & RESISTOR 3．83K 1\％．125w F TC \(=04-100\) & 24：46 & C4－1／8－T0－3831－F \\
\hline Al AAR14 & 0698－3445 & 2 & & RESISTOR \(34812 \cdot 125 W\) F TC \(=0+100\) & 24546 & C \(4-1 / 8-\mathrm{TO} 0-348 \mathrm{R}-\mathrm{F}\) \\
\hline AIAARIS & 0698－3153 & 9 & & RESISTOR 3． 33 K 1\％，125W F TC＝0＋－100 & 24546 & C4－1／8－T0－3831－F \\
\hline A1A4R16 & 0698－3445 & 2 & & RESISTOR \(34812.125 W\) F TC \(=0+-100\) & 24546 & C4－1／8－T0－348R－F \\
\hline A1AAR 17 & 0698－3153 & 9 & & RESISTOR 3．83k 1 x ．125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－3931－F \\
\hline A1AAR18 & 0698－3445 & 2 & & RESISTOR 348 ix．125W F \(T C=0 *-100\) & 24546 & C4－1／8－T0－348R－F \\
\hline A1A4S1 & 3101－0137 & 3 & 4 & SWITCH－SENS SPDT SURMIN ．SA E8UDC & 28480 & 3101－0137 \\
\hline AIAATPI & 0360－1514 & 7 & & TERMINAL－STUD SGL－PIN PRESS－MTG & 28480 & 0360－1514 \\
\hline ASAATP？ & 0360－1514 & 7 & & TERAINAL－STUD SGL－PIN PRESS－MTG & 28480 & 0360－1514 \\
\hline AlAATP3 & 0360－1514 & 7 & & TERMINAL－STUD SGL－PIN PRESS－MTG & 28480 & 0360－1514 \\
\hline AIAATP4 & 0360－1514 & 7 & & TERMINAL－STUD SGL－PIN PRESS－MTG & 28480 & 0360－1514 \\
\hline A1AATPS & 0360－1514 & 7 & & TERMINAL－STUD SGL－PIN PRESS－MTG & 28480 & 0360－1514 \\
\hline
\end{tabular}

Table 6-3. Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & \[
\begin{aligned}
& C \\
& D
\end{aligned}
\] & Qty & Description & Mfr Code & Mfr Part Number \\
\hline A1A4TPG & 0360-1514 & 7 & & TERHINAL-STUD SGL-PIN PRESS-MTG & 28480 & 0360-1514 \\
\hline A1A4TP7 & 0360-1514 & 7 & & TERMINAL-STUD SGL-PIN PRESS-MTG & 28480 & 0360-1514 \\
\hline A1A4TP8 & 0360-1514 & 7 & & TERMINAL-STUD SGL-PIN PRESS-MTG & 28480
28480 & \(0360-1514\)
\(0360-1514\) \\
\hline A1A4TP9 \({ }_{\text {A1A4TP }}\) & \(0360-1514\)
\(0360-1514\) & 7 & & TERMINAL-STUD SGL-PIN PRESS-MTG
TERHINAL-STUD SGL-PIN PRESS-MTG & 28480
28480 & \(0360-1514\)
\(0360-1514\) \\
\hline AIA4UI & 1820-0070 & 5 & 5 & IC GATE TTL NAND B-INP & 01295 & SN7430N \\
\hline Alatue & 1820-0511 & 9 & & IC GATE TTL AND QUAD z-INP & 01295 & SN7408N \\
\hline Ai A4U3 & 1820-0174 & 0 & & IC INU TTL HEX & 01295 & SN7404N \\
\hline A1A4U4 & 1820-0076 & 1 & 4 & IC FF TTL J-K PULSE PRESET/CLEAR DUAL & 01295 & SN7476N \\
\hline aitaus & 1820-0076 & 1 & & IC FF TTL J-K Pulse preset/clear dual & 01295 & SN7476N \\
\hline A1A4U6 & 1820-0076 & 1 & & IC FF TTL J-K PULSE PRESET/CLEAR DUAL & 01295 & SN7476N \\
\hline A1A4U7 & 1820-0076 & 1 & & IC FF TTL J-K PULSE PRESET/CLEAR DUAL & 01295 & SNT476N \\
\hline A1A4U8 & 1820-0054 & 5 & & IC GATE TTL NAND QUAD 2-INP & 01295 & SN7400N \\
\hline A1 A4U9 & 1820-0640 & 5 & 7 & IC MUXR/DATA-SEL TTL 16-T0-1-LINE 16-INP & 01295 & SN74150N \\
\hline A1A4USO & 1820-0214 & 9 & & IC DCDR TTL BCD-TO-DEC 4-TO-10-LINE & 01295 & SN7442AN \\
\hline A1A8U11 & 08660-80020 & 2 & 1 & IL, PROM MACH. STATE & 28480 & 08660-80020 \\
\hline A1A4U12 & 08660-80021 & 3 & 1 & IC, PROM MACH. STATE & 28480 & 08660-80021 \\
\hline Alatuis & 1820-0174 & & & IC. INU TTL HEX & 01295 & SN7404N \\
\hline A1A4U15 & 1820-1574 & 6 & & IC FF TTL LS J-K Pulse clear dual & 01295 & SN74LS73AN \\
\hline A1A4U16 & 1820-1731 & 7 & 1 & IC FF TTL L J-K PULSE CLEAR dual & 01295 & SN74L73N \\
\hline A1A4U17 & 08660-80022 & 4 & 1 & IC, PROM OUTPUT INSTRUCTIONS & 28480 & 08660-80022 \\
\hline A1A4U18 & 1820-0640 & 5 & & IC MUXR/DATA-SEL TTL 16-T0-1-LINE 16-INP & 01295 & SN74150N \\
\hline A1 A4U19 & 1820-0640 & 5 & & IC MUXR/DATA-SEL TTL 16-T0-1-LINE 16-INP & 01295 & SN74150N \\
\hline A1A4U20 & 1820-0640 & 5 & & IC MUXR/DATA-SEL TTL 16-T0-1-LINE 16-INP & 01295 & SN74150N \\
\hline Al A4U21 & 1820-0640 & 5 & & IC MUXR/DATA-SEL TTL 16-T0-1-LINE 16-INP & 01295 & SN74158N \\
\hline A1A4U22 & \(1820-0640\)
\(1820-0640\) & 5
5 & & IC MUXR/DATA-SEL TTL 16 -T0-1-LINE 16 -INP & 01295 & SN74150N \\
\hline A1 A4U23 & 1820-0640 & 5 & & IC MUXR/DATA-SEL TTL 16-T0-1-LINE 16-INP & 01295 & SN74150N \\
\hline A1A5 & 08660-60259 & 7 & 1 & BUARD ASSEMBLY, ROM OUTPUT & 28480 & 08660-60259 \\
\hline A1 ASC1 & 0180-0197 & 8 & & CAPACITOR-FXD 2.2UF+-10\% 20UDC TA & 56289 & 150D225x9020A2 \\
\hline Al ASC2 & 0180-0197 & B & & CAPACITOR-FXD 2.2UF+-10\% 20UDC TA & 56289 & \(150 \mathrm{D} 225 \times 9020 \mathrm{AZ}\) \\
\hline A 1 A5C3 & 0180-0197 & 8 & & CAPACITOR-FXD 2.2UF+-10\% 20UDC TA & 56289 & 150D225x9020A2 \\
\hline A1ASC4 & 0180-0197 & 8 & & CAPACITOR-FXD 2.2UF+-10\% 20UDC TA & 56289 & 150D225×9020A2 \\
\hline A1 A5C5 & 0180-0197 & B & & CAPACITOR-FXD 2.2UF+-10z 20VDC TA & 56289 & 150D225x9020A2 \\
\hline A1A5C6 & 0180-0197 & 8 & & CAPACITOR-FXD 2.2UF+-10\% 20UDC TA & 56289 & 150D225X9020A2 \\
\hline A1 A5C7 \(\dagger\) & 0160-2534 & 9 & 1 & CAPACITOR-FXD 300PF +-12 300 UDC MICA & 28480 & 0160-2534 \\
\hline A1A5U1 & 1820-0661 & 0 & & IC GATE TTL OR QUAD 2-INP & 01295 & SN7432N \\
\hline A1 A5U2 & 1820-0054 & 5 & & IC GATE TTL NAND QUAD \(2-I N P\) & 01295 & SN7400N \\
\hline A1A5U3 & 1820-0054 & 5 & & IC GATE TTL NAND QUAD Z-INP & 01295 & SN7400N \\
\hline A1 A5U4 & 1820-0174 & 0 & & IC INU TTL HEX & 01295 & SN7404N \\
\hline A1A5U5 & 1820-0068 & 1 & & IC Gate trl nand tpl 3-InP & 01295 & SN7410N \\
\hline A1A5U6 & 1820-0372 & 5 & & IC GATE TTL H AND TPL 3 -INP & 01295 & SN74HITM \\
\hline A1 A5U7
A1 ASUB & \(1820-0070\)
\(1820-0495\) & 5
8
8 & & IL GATE TTL NAND 8-INP & 01295 & SN7430N
SN74154m \\
\hline A1 A5U8 & 1820-0495 & 8 & & IC DCDR TTL 4-TO-16-LINE 4-INP & 01295 & SN74154N \\
\hline A1A5U9 & 1820-0068 & 1 & & IC GATE TTL NAND TPL 3-INP & 01295 & SN7410N \\
\hline A1A5U10 & 1820-0174 & 0 & & IC INU TTL HEX & 01295 & SN7404N \\
\hline A1ASU11 & 1820-0511 & 9 & & IC GATE TTL AND QUAD 2-INP & 01295 & SN7408N \\
\hline A 145012 & 1820-0661 & 0 & & IC GATE TTL OR QUAD 2 -INP & 01295 & SN7432N \\
\hline A1A5U13 & 1820-0511 & 9 & & IC GATE TTL AND QUAD 2-INP & 01295 & SN7408N \\
\hline A1 A5U14 & 1820-0511 & 9 & & IC GATE TTL AND QUAD 2-INP & 01295 & SN7408N \\
\hline A1ASU15 & 1820-0069 & 2 & & IC GATE TTL NAND DUAL A-INP & 01295 & SN7420N \\
\hline A1A5U16 & 1820-0070 & 5 & & IC GATE TTL NAND 8-INP & 01295 & SN7430N \\
\hline A1A5U17 & 1820-0495 & 8 & & IC DCDR TTL 4-TO-16-LINE 4-INP & 01295 & SN74154N \\
\hline AlASU18 & 1820-0716 & 8 & 1 & IC CNTR TTL BIN SYNCHR & 01295 & SN74161N \\
\hline A1A5U19 & 1820-0054 & 5 & & IC GATE TTL NAND QUAD 2-INP & 01295 & SN7400N \\
\hline A1A5U20 & 1820-1202 & 7 & & IC GATE TTL LS NAND TPL 3-INP & 01295 & SNT4LSION \\
\hline A1ASU21 & 1820-1202 & 7 & & IC GATE TTL LS NAND TPL 3-INP & 01295 & SNT4LSION \\
\hline A1A5U22 & 1820-0511 & 9 & & IC GATE TTL AND QUAD 2-INP & 01295 & SN7408N \\
\hline A1 A5U23 & 1820-0069 & 2 & & IC GATE TTL NAND DUAL 4-INP & 01295 & SN7420N \\
\hline A1ASU24 & 1820-0070 & 5 & & IC GATE TTL NAND 8-INP & 01295 & SN7430N \\
\hline Alasuz5 & 1820-0495 & 8 & & IC DCDR TTL 4-TO-16-LINE 4-INP & 01295 & SN74154N \\
\hline A1A6 & 08660-60198 & 3 & 1 & BOARD ASSEMBLY, REGISTER & 28480 & 08660-60198 \\
\hline A1A6C1 & 0180-0197 & 8 & & CAPACITOR-FXD 2.2UF+-10\% 20UDC TA & 56289 & 150D225×9020A2 \\
\hline A1A6C2 & 0180-0197 & 8 & & CAPACITOR-FXD 2. 2UF+-10\% 20UDC TA & 56289 & 150D225x9020A2 \\
\hline A1AbC3 & 0180-0197 & 8 & & CAPACITOR-FXD 2.2UF+-10\% 20UDC TA & 56289 & 150D225×9020A2 \\
\hline A1 A6C4 & 0180-0197 & 8 & & CAPACITOR-FXD 2. \(2 \mathrm{UF}+-10 \%\) 20UDC TA & 56289 & \(150 \mathrm{D225} \mathrm{\times 9020A2}\) \\
\hline A1AbC5 & 0180-0197 & 8 & & CAPACITOR-FXD 2.2UF+-10\% 20UDC TA & 56289 & \(150 \mathrm{D} 225 \times 9020 \mathrm{AL}\) \\
\hline \begin{tabular}{l}
A1A6C6 \\
A1A6C7
\end{tabular} & \[
\begin{aligned}
& 0180-0197 \\
& 0180-0197
\end{aligned}
\] & 8
8
8 & & \(\begin{array}{lll}\text { CAPACITOR-FXD } & 2.2 U F+-10 \% & 20 \cup D C\end{array}\) & 56289
56289 & \[
\begin{aligned}
& 150 \mathrm{D} 225 \times 9020 \mathrm{~A} 2 \\
& 150 \mathrm{D} 25 \times 9020 \mathrm{AZ}
\end{aligned}
\] \\
\hline A1 AbCb & 0180-0197 & 8 & & CAPACITOR-FXD \(2.2 \mathrm{UF}+-10 \%\) 20UDC TA & 56289 & \(150 \mathrm{D} 225 \times 9020 \mathrm{AL}\) \\
\hline A1A6C9 & 0180-1735 & 2 & 2 & CAPACITOR-FXD . \(22 \mathrm{UF}+-10 \%\) 35UDC TA & 56289 & \(150 \mathrm{D} 224 \times 9035 \mathrm{~A}\) \\
\hline A1AbC10 & 0180-1735 & 2 & & CAPACITOR-FXD .22UF+-10\% 35UDC TA & 56289 & \(150 \mathrm{D} 224 \times 9035 \mathrm{~A}\) \\
\hline
\end{tabular}

Table 6-3. Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & \[
\begin{aligned}
& C \\
& D \\
& \hline
\end{aligned}
\] & Qty & Description & Mfr Code & Mfr Part Number \\
\hline A1A6R1 & 0698-7236 & 7 & 2 & RESISTOR 1 K 12 K . O5W F TC \(=0+-100\) & 24546 & C3-1/8-T0-1001-6 \\
\hline AlAbR2 & 0698-7236 & 7 & & RESISTOR 1K 1\% , 05W F TC \(=0+-100\) & 24546 & C3-1/8-T0-1001-G \\
\hline A1 Abul & & & & NOT ASSIGNED & & \\
\hline A1A6U2 & 1820-0379 & 7 & 1 & IC GATE TTL H AND-OR & 01295 & SN74H52N \\
\hline A 1 A6U3 & 1820-1433 & 6 & & 1 C SHF-RGTR TTL LS R-S SERIAL-IN PRL-OUT & 01295 & SN74LS164N \\
\hline Alabu4 & 1820-1433 & 6 & & IC SHF-RGTR TTL LS R-S SERIAL-IN PRL-OUT & 01295 & SN74LS164N \\
\hline Alagus & 1820-0661 & 0 & & IC GATE TTL OR QUAD \(2-I N P\) & 01295 & SN7432N \\
\hline Alagu6 & 1820-0328 & 6 & & IC GATE TTL WOR QUAD 2-INP & 01295 & SN7402N \\
\hline A 1 A6U7 & 1820-0709 & 7 & & IC SHF-RGTR TTLL R-S SERIAL-IN & 07263 & \(93128 P C\) \\
\hline Alague & 1820-0709 & 7 & & IC SHF-RGTR TTL L R-S SERIAL-IN & \(\cdots{ }^{\text {¢ }}\) & 93 L 28 PC \\
\hline alabug & 1820-0709 & 7 & & IC SHF-RGTR TTL L R-S SERIAL-IN & 07263 & \(93 L 288 P C\) \\
\hline A1A6U10 & 1820-0372 & 0 & & IC GATE TTL H AND TPL 3-IMP & 01295 & SN74H11N \\
\hline Alabuil & 1820-0077 & 2 & & IC FF TTL D-TYPE POS-EDGE-TRIG CLEAR & 01295 & SN7474M \\
\hline A1AbU12 & 1820-0903 & 3 & 2 & IC SHF-RGTR TTL L R-8 SERIAL-IN PRL-OUT & 01295 & SN74L164N \\
\hline A 1 A6U13 & 1820-0903 & 3 & & IC SHF-RGTR TTL L R-S SERIAL-IN PRL-OUT & 01295 & SN74LI64N \\
\hline Alabula & 1820-0328 & 6 & & IC GATE TTL NOR QUAD 2-INP & 01295 & SN7402N \\
\hline Alaguis & 1820-0054 & 5 & & IC GATE TTL NAND QUAd 2-INP & 01295 & SN7400N \\
\hline Alabul6 & 1820-0709 & 7 & & IC SHF-RGTR TTL L R-S SERIAL-IN & 07263 & 93128 PC \\
\hline A1 A6U17 & 1820-0709 & 7 & & IC SHF-RGTR TTL L R-S SERIAL-IN & 07263 & \(93128 P \mathrm{C}\) \\
\hline A1 AbUls & 1820-0789 & 7 & & IC SHF-RGTR TTL L R-6 SERIAL-IN & 07263 & \(93128 P \mathrm{C}\) \\
\hline Al Abuls & 1820-0068 & 8 & & IC GATE TTL NAND TPL 3-INP & 01295 & SN7410N \\
\hline Alabuzo & 1828-0054 & 5 & & IC GATE TTL NAND QUAD 2 -IMP & 01295 & SN7400N \\
\hline Alabuzi & 1820-0511 & 9 & & IC GATE TTL AND QUAD 2-INP & 01295 & SN7408N \\
\hline Alabuzz & 1820-0372 & 0 & & IC GATE TTL H AND TPL 3-INP & 01295 & SN74H11N \\
\hline Al abuez & 1820-0328 & 6 & & IC GATE TTL NOR QUAD Z-INP & 01295 & SN7402N \\
\hline Alabuz 4 & 1820-1197 & 9 & 4 & IC GATE TTL LS NAND QUAD 2-1NP & 01295 & SNTALSOON \\
\hline A1A6U25 & 1820-0068 & 1 & & IC GATE TTL NAND TPL 3-INP & 01295 & SNTA10N \\
\hline A1A6U26 & 1820-0659 & 6 & & IC SHF-RGTR TTL L D-TYPE PRL-IN PRL-OUT & 07263 & 93100 PC \\
\hline A 1 A6U27 & 1820-0659 & 6 & & IC SHF-RGTR TTL L D-TYPE PRL-IN PRL-OUT & 07263 & 93100 PC \\
\hline Alabuzs & 1820-0659 & 6 & & IC SHF-RGTR TTL L D-TYPE PRL-IN PRL-OUT & 07263 & 93100 PC \\
\hline A1 A6U29
A1 A 63 & \(1820-0054\)
\(1820-0054\) & 5
5
5 & & IC GATE TTL NAND QUAD \(2-I N P\)
IC GATE TTL NAND QUAD \(2-I M P\) & 01295
01295 & SN7400N
SN740
S \\
\hline Al AbU30 & 1820-0054 & & & IC GATE HTL NAND Quad \(2-1\) InP & & \\
\hline A1A6U31 & 1820-0661 & 0 & & IC GATE TTL OR QUAD 2-INP & 01295 & SN7432N \\
\hline A1A6U32 & 1820-1197 & 9 & & IC GATE TTL LS NAND QUAD 2-INP & 01295 & SN74LS00N \\
\hline A 1 A6U33 & 1820-1202 & 7 & & IC GATE TTL LS NAND TPL 3-INP & 01295 & SNT4LSIION \\
\hline Alabu34 & 1820-0054 & 5 & & IC GATE TTL NAND QUAD 2 -INP & 01295 & SN7400 \\
\hline A 1 A6U35 & 1820-0054 & 5 & & IC GATE TTL NAND QUAD \(2-I N P\) & 01295 & SN7400N \\
\hline A1A6U36 & 1820-0659 & 6 & & IC SHF-RGTR TTL L D-TYPE PRL-IN PRL-OUT & 07263 & 93100 PC \\
\hline A1 AbU37 & 1820-0659 & 6 & & IC SHF-RGTR TTL L D-TYPE PRL-IN PRL-DUT & 07263 & 93 LOOPC \\
\hline Al AbU38 & 1820-0659 & 6 & & IC SHF-RGTR TTL L D-TYPE PRL-IN PRL-OUT & 07263 & 93LOOPC \\
\hline A 1 A6U39 & \(1820-0511\)
\(1820-0174\) & 9 & & IC GATE TTL AND QUAD 2-INP
IC INU TTL HEX & 01295
01295 & SN7408N \\
\hline A) A6U40 & 1820-0174 & 0 & & IC INU TTLL HEX & 01295 & \\
\hline A1A7 & 08660-60151 & 8 & \(!\) & BOARD ASSEMBLY, ALU(EXCEPT OPTION ODA) & 28480 & \(08660-60151\)
\(08660-60184\) \\
\hline A1A? & 08660-60184 & 7 & 1 & BOARD ASSEMBLY, ALU(OPTION 004 ONLY) & 28480 & 08660-60184 \\
\hline A 1 A7C1 & 0180-0197 & 8 & & CAPACITOR-FXD 2.2UF+-10\% 2OUDC TA & 56289 & 1500225x9020A2 \\
\hline A1A7C2 & 0180-0197 & 8 & & CAPACITOR-FXD 2.2UF*-10z 20UDC TA & 56289 & \(1500225 \times 9020 \mathrm{AL}\) \\
\hline A 1 A7C3 & 0180-0197 & - & & CAPACITOR-FXD 2.2UF+-10\% 20VDC TA & 56289 & \(150 \mathrm{D} 225 \times 9020 \mathrm{~A}\) \\
\hline A1A7R 1 & 0757-0438 & 3 & & RESISTOR 5.11K 1\% . 125 H F TC \(=0+-100\) & 24546 & C4-1/8-70-5111-F \\
\hline A 1 A 7 R 2 & 0757-0438 & 3 & & RESISTOR 5.11K \(1 \%\). 125 W F \(T C=0+-100\) & 24546 &  \\
\hline A 1 A 7 R 3 & 0757-0438 & 3 & & RESISTOR S.11K 1\%.125W F TC \(=0+-100\) & 24546 & CA-1/8-T0-5111-F \\
\hline A 1 A Pra & 0757-0438 & 3 & & RESISTOR 5.11K 1\%, 125H F TC \(=0+100\) & 24546 &  \\
\hline A1A7R5 & 0698-0082 & 7 & & RESISTOR 464 1X . 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-4640-F \\
\hline Alatrg & 0698-0082 & 7 & & RESISTOR 464 ix.125世 F TC=0*-130 & 24546 & C4-1/8-70-4640-F \\
\hline Alayul & 1820-0174 & 0 & & IC INU TTL HEX & 01295 & SN7404N \\
\hline A1 A7U2 & 1820-0778 & 0 & 1 & IC CNTR TTL L BIN SYNCHRO POS-EDGE-TRIG & 07263 & \(93116 P C\) \\
\hline A1A7U3 & 1820-0068 & 1 & & IC GATE TTL NAMD TPL 3-1NP & 01295 & SN7410N \\
\hline Ala7ua & 1820-0068 & 1 & & IC GATE TTL NAND TPL 3-INP & 01295 & SN7410N \\
\hline A1ATU5 & 1820-0305 & 9 & 3 & IC ADDR TTL FULL ADDER 4-8IT & 01295 & SN74B3AN \\
\hline Ala7ug & 1820-0305 & 9 & & IC ADDR TTL FULL ADDER A-EIT & 01295 & SN7483AN \\
\hline A1ATU7 & 1820-0511 & - & & IC GATE TTL AND QUAD 2-INP & 01295 & SN7408N \\
\hline Ala7ue & 1820-0710 & 0 & & IC MUXR/DATA-SEL TTL L \(2-T 0-1-L I N E\) QUAD & 07263 & 93L22PC \\
\hline A1a7U9 & 08660-80019 & ? & 1 & IC, PROM MANUAL TUNING & 28480
01295 & \(08660-80019\)
SN7400N \\
\hline Ala7U10 & 1820-0054 & 5 & & IC GATE TTL NAND QUAD \(2-I N P\) & 01295 & SN7400N \\
\hline Alapuli & 1820-0068 & 1 & & IC GATE TTL NAND TPL 3 -INP & 01295 & SN7410N \\
\hline A1A7U12 & 1820-0740 & 6 & 2 & IC HISC TTL H A-BIT & 01295
01295 & \[
\begin{aligned}
& \text { SN74H87N } \\
& \text { SN7432N }
\end{aligned}
\] \\
\hline Ala
AlA
Ald
a & \(1820-0661\)
\(1820-0740\) & 0 & & IC GATE TTL OR QUAD 2 -INP & 01295
01295 & \begin{tabular}{l}
SN7432N \\
SN74M87N
\end{tabular} \\
\hline Ala
Alalaia
ald & \(1820-0740\)
\(1820-0054\) & 5 & & IC MISC TTL
IC GATE TTL NAND QUAD \(2-I N P\) & 01295
01295 & SN7 4 H87N
SN740
SN \\
\hline A1A7U16 & 1820-0054 & 5 & & IC GATE TTL NAND QUAD 2-INP & 01295 & SN7400N \\
\hline A1A7U17 & 1820-0054 & 5 & & IC GATE TTL NAND QUAD 2-INP & 01295 & SN7400N \\
\hline A1ATU18 & 1820-0068 & 1 & & IC GATE TTL NAND TPL 3 -INP & 01295 & SN7410N \\
\hline Ala7U19 & 1820-0077 & 2 & & IC FF TTL D-TYPE POS-EDGE-TRIG CLEAR & 01295 & SNT474N \\
\hline Ala7uzo & 1820-0054 & 5 & & IC GATE TTL NAND QUAD \(2-I N P\) & 01295 & SNT400N \\
\hline
\end{tabular}

Table 6-3. Replaceable Parts


Table 6-3. Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reference \\
Designation
\end{tabular} & \begin{tabular}{l}
HP Part \\
Number
\end{tabular} & C & Qty & Description & Mfr Code & Mfr Part Number \\
\hline A1A9U11 & 1820-0372 & 0 & & IC GATE TTL H AND TPL J-INP & 01295 & SN74H11N \\
\hline Al A9012 & 1820-0372 & 5 & & IC GATE TTL H AND TPL 3-INP & 01295 & SN74H11N \\
\hline A1AYU13 & 1820-0054 & 5 & & IC GATE TTL NAND QUAD 2~INP & 01295 & SN7400N \\
\hline AlAgula & 1820-0054 & 5
5
5 & & IC GATE TTL NAND QUAD 2 -INP & 01295
01295 & SNT7400N
SN7400N \\
\hline AlA9U15 & 1820-0054 & 5 & & IC GATE TTL NAND QUAD 2 -INP & 11295 & SN7400N \\
\hline A1A9U16 & 1820-0174 & 0 & & IC InU TTL HEX & 01295 & SN7404N \\
\hline A1A10 & 08660-60128 & 9 & 1 & BOARD ASSEMBLY, OUTPUT REGISTER & 28480 & 08660-60128 \\
\hline A1A10C1 & 0180-0197 & 8 & & CAPACITOR-FXD 2.2UF+-10X 2OUDC TA & 56289 & 150D225×9020A2 \\
\hline A1A10CE & 0140-0196 & 3 & & CAPACITOR-FXD 150PF +-5X 300UDC MICA & 72136 & DMISF151J0300WUICR \\
\hline A1A10C3 & 0180-0197 & 8 & & CAPACITOR-FXD 2.2UF*-10z 20UDC TA & 56289 & 150D225×9020A2 \\
\hline A1A10R1 & 0698-0082 & 7 & & RESISTOR 469 1\%.125w F TC=0*-100 & 24546 & C4-1/8-T0-4640-F \\
\hline AlAIOR2 & 0698-0082 & 7 & & RESISTOR \(4641 \%\), 125W F TC \(=0 *-100\) & 24546 & C4-1/8-T0-4640-F \\
\hline A1A10U1 & 1820-0627 & 8 & 1 & IC DCDR TTL L BCD-TO-DEC -TO-10-LINE & 07263 & 93LOIPC \\
\hline A1Alouz & 1820-0535 & 7 & 1 & IC DRUR TTL AND DUAL \(2-I N P\) & 01295 & SN754318P \\
\hline A1A10U3 & 1820-0054 & 5 & & IC GATE TTL NAND QUAD \(2-1\) INP & 01295 & SN7400N \\
\hline A1ASOU4 & 1820-0614 & 3 & 5 & IC LCH TTL L D-TYPE DUAL 4-BIY & 07263 & 93L.08PC \\
\hline A1A10U5 & 1820-0614 & 3 & & IC LLCH TTL L D-TYPE DUAL -8IT & 07263 & 93108 PC \\
\hline A1A1006 & 1820-0614 & 3 & & IC LCH TTL L D-TYPE DUAL 4-BIT & 07263 & 93 LOPPC \\
\hline A1A10U7 & 1820-0614 & 3 & & IC LCH TTL L D-TYPE DUAL 4-BIT & 17263 & 93L08PC \\
\hline Alaloub & 1820-0614 & 3 & & IC LCH TTL L D-TYPE DUAL A-BIT & 07263 & 93L OBPC \\
\hline A1A11 & 08660-60257 & 5 & 1 & board assembly, interconnect & 28480 & 18660-60257 \\
\hline A1Al1C1 & 0168-3452 & 2 & 1 & CAPACITOR-FXD . O2UF *-20\% 100 UDC CER & 28480 & 0160-3452 \\
\hline Alalscat & 0160-0575 & 4 & 2 & CAPACITOR-FXD.047UF *-20\% SOUDC CER & 28480 & 0160-0575 \\
\hline A 1 A11C3 \({ }^{+}\) & 1160-0575 & 4 & & CAPACITOR-FXD . O47UF - \(20 \%\) SOUDC CER & 28480 & 0160-0575 \\
\hline A1A1131 & 1200-0507 & 9 & & SOCKET-IC 16-CONT DIP-SLDR & 28480 & 1200-0507 \\
\hline A1A11J2 & 1200-0507 & 9 & & SOCKET-IC 16-CONT DIP-SLDR & 28480 & 1200-0507 \\
\hline A1A1133 & 1200-0507 & 9 & & SOCKET-IC 16-CONT DIP-SLDR & 28480 & 1200-0507 \\
\hline Alalisa & 1250-1255 & 1 & 7 & CONNECTOR-RF SMB M PC 50-OHM & 28480 & 1250-1255 \\
\hline AlA1135 & 1251-2361 & 4 & & CONTACT-CONN U/W-POST-TYPE MALE DPSL DR & 28480 & 1251-2361 \\
\hline A1A11J6 & 1251-2361 & 4 & & CONTACT-CONN U/W-POST-TYPE MALE DPSLDR & 28480 & 1251-2361 \\
\hline A1A11TP1 & 0360-1514 & 7 & & TERMINAL-STUD SGL-PIN PRESS-MTG & 28480 & 0360-1514 \\
\hline A 1 A11XA10A & 1251-2035 & \(\cdots\) & 32 & CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS & 28480 & 1251-2035 \\
\hline A1A11XA10B & 1251-2026 & ¢ & 10 & CONNECTOR-PC EDGE 18-CONT/ROU 2-ROWS & 28480 & 1251-2026 \\
\hline A1A11 \({ }^{\text {a }}\) A 1 -1 & 1251-2035 & 9 & & CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS & 28480 & 1251-2035 \\
\hline A1A11XA1-2 & 1251-2026 & 8 & & CONNECTOR-PC EDGE 18-CONT/ROW 2-ROWS & 28480 & 1251-2026 \\
\hline A1A1: \({ }^{\text {a }}\) ( \({ }^{\text {a }}\) & 1251-2035 & - & & CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS & 28480 & 1251-2035 \\
\hline A1A1 \(1 \times A 2-2\) & 1251-2026 & 8 & & CONNECTOR-PC EDGE 18-CONT/ROW 2-ROWS & 28480 & 1251-2026 \\
\hline A 1 A \(1: \times \mathrm{A} 3-1\) & 1251-2035 & 9 & & CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS & 28480 & 1251-2035 \\
\hline AlAl1XA3-2 & 1251-2026 & \(\theta\) & & CONNECTOR-PC EDGE 10-CONT/ROW 2-ROWS & 28480 & 1251-2026 \\
\hline A1A11XA4-1 & 1251-2035 & 9 & & CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS & 28480 & 1251-2035 \\
\hline A1A11XA4-2 & 1251-2026 & \(\theta\) & & CONNECTOR-PC EDGE 18-CONT/ROW 2-ROWS & 28480 & 1251-2026 \\
\hline A1A11 XA5-1 & 1251-2035 & 9 & & CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS & 28480 & 1251-2035 \\
\hline A1A1: XAS-2 & 1251-2026 & - & & CONNECTOR-PC EDGE 10-CONT/ROW 2-ROWS & 28480 & 1251-2026 \\
\hline AlAl1XAG-1 & 1251-2035 & 9 & & CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS & 28480 & 1251-2035 \\
\hline AlA11 XAG-? & 1251-2026 & 8 & & CONNECTOR-PC EDGE 18-CONT/ROW 2-ROWS & 28480 & 1251-2026 \\
\hline A1A11 \({ }^{\text {a }}\) ( \(7-1\) & 1251-2035 & 9 & & CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS & 28480 & 1251-2035 \\
\hline A1A11XA7-2 & 1251-2026 & - & & CONNECTOR-PC EDGE 18-CONT/ROW 2-ROWS & 28480 & 1251-2026 \\
\hline A1A1: \(\times\) AB-1 & 1251-2035 & 9 & & CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS & 28480 & 1251-2035 \\
\hline A1A11 XA8-2 & 1251-2026 & 8 & & CONNECTOR-PC EDGE 18-CONT/ROW 2-ROWS & 28480 & 1251-2026 \\
\hline A1A11XA9-1 & 1251-2035 & 9 & & CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS & 28480 & 1251-2035 \\
\hline A1A11XA9-2 & 1251-2026 & 8 & & CONNECTOR-PC EDGE 18-CONT/ROW 2-ROWS & 28480 & 1251-2026 \\
\hline A1al2 & 08660-60190 & 5 & 1 & BOARD ASSEMBLY, NUMERIC READOUT & 28480 & 08660-60190 \\
\hline AlAl2Cl & 0180-0228 & 6 & 1 & CAPACITOR-FXD 22UF*-10\% 15UDC TA & 56289 & 1500226×901582 \\
\hline A1A12C2 & 0180-1714 & 7 & & CAPACITOR-FXD 330UF*-10x 6UDC TA & 56289 & 150033799006S? \\
\hline AlA12C3 & 1160-2055 & 9 & 18 & CAPACITOR-FXD O1UF +80-20x 100UDC CER & 28480 & 0160-2055 \\
\hline AlA12C4 & 0860-2055 & 9 & & CAPACITOR-FXD . OIUF +80-20x 100UDC CER & 28480 & 0160-2055 \\
\hline AlA12dsi & 2140-0016 & 8 & 4 & LAMP - TNCAND 683 SUDC 60mA T-1-BULE & 0000 J & 683 \\
\hline Alal2ds2 & 2140-0016 & - & & LAMP-INCAND 683 SUDC 60MA T-1-BULB & 0000 J & 683 \\
\hline AlAl2dS3 & 2140-0016 & 8 & & LAMP-INCAND 683 SUDC 60MA \(\mathrm{T}-1\)-BULB & 00003 & 683 \\
\hline AlA12ds 4 & \(2140-0016\) & 8 & & LAMP-INCAND 683 SUDC GOKA T-1-BULB & 00005 & 683 \\
\hline A1A12J1 & 1200-0507 & ? & & SOCKET-IC 16-CONT DIP-SLDR & 28480 & 1200-0507 \\
\hline Alal2J2 & 1200-0507 & 9 & & SOCKET-IC 16-CONT DIP-SLDR & 28480 & 1200-0507 \\
\hline A1A1201 & 1854-0492 & 6 & 20 & TRANSISTOR NPN SI PD=350MW FT \(=250 \mathrm{MHZ}\) & 04713 & MPS 3643 \\
\hline A1A1292 & 1854-0492 & 6 & & TRANSISTOR NPN SI PD=350MW FT=250MHZ & 04713 & MP S3643 \\
\hline A1A1203 & 1854-0492 & 6 & & TRANSISTOR NPN SI PD=350MW FT \(=250 \mathrm{MHZ}\) & 04713 & MPS3643 \\
\hline A1A1294 & 1854-0492 & 6 & & TRANSISTOR NPN SI PD \(=350 \mathrm{MW} \mathrm{FT}=250 \mathrm{MHZ}\) & 04713 & MP S3643 \\
\hline Alal205 & 1854-0492 & 6 & & TRANSISTOR NPN SI PD=350MW FT \(=250 \mathrm{MHZ}\) & 04713 & MP 53643 \\
\hline A1A1206 & 1854-0492 & 6 & & TRANSISTOR NPN SI PD=350MW FT=250nHz & 04713 & MPS3643 \\
\hline A1A1297 & 1854-0492 & 6 & & TRANSISTOR NPN SI PD \(=350 \mathrm{MH}\) FT \(=250 \mathrm{MHZ}\) & 04713 & MPS3643 \\
\hline Al A1208 & 1854-0492 & 6 & & TRANSISTOR NPN SI PD \(=350 \mathrm{MH}\) FT \(=250 \mathrm{MHZ}\) & 04713 & MP S3643 \\
\hline A1A1209 & 1854-0492 & 6 & & TRANSISTOR NPN SI PD=350MW FT \(=250 \mathrm{MHZ}\) & 04713 & MP 83643 \\
\hline AlA12010 & 1854-0492 & 6 & & TRANSISTOR NPN SI PD=350MW FT=250MHZ & 04713 & MP53643 \\
\hline
\end{tabular}

Table 6-3. Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & \[
\begin{aligned}
& \mathrm{C} \\
& \mathrm{D}
\end{aligned}
\] & Qty & Description & Mfr Code & Mfr Part Number \\
\hline A1A12011 & 1854-0492 & 6 & & TRANSISTOR NPN SI PD=350MW FT \(=250 \mathrm{MHZ}\) & 04713 & MPS3643 \\
\hline A1A12Q12 & 1854-0492 & 6 & & TRANSISTOR NPN SI PD=350MH FT=250MHZ & 04713 & MPS3643 \\
\hline A1A12Q13 & 1854-0492 & 6 & & TRANSISTOR NPN SI PD \(=350 \mathrm{MW}\) FT \(=250 \mathrm{MHZ}\) & 04713 & MPS3643 \\
\hline AlAl2Q14 & 1854-0492 & 6 & & TRANSISTOR NPN SI PD=350MW FT=250MHZ & 04713 & APS3643 \\
\hline AlA12Q15 & 1854-0492 & 6 & & TRANSISTOR NPN SI PD=350MW FT \(=250 \mathrm{MHZ}\) & 04713 & MPS3643 \\
\hline A1A12日16 & 1854-0492 & 6 & & TRANSISTOR NPN SI PD=350MM FT \(=250 \mathrm{MHZ}\) & 04713 & MPS3643 \\
\hline AlA12017 & 1854-0492 & 6 & & TRANSISTOR NPN SI PD=350MW FT \(=250 \mathrm{MHZ}\) & 04713 & MPS3643 \\
\hline A1A12918 & 1854-0492 & 6 & & TRANSISTOR NPN SI PD=350MW FT \(=250 \mathrm{MHZ}\) & 04713
04713 & MPS3643 \\
\hline AlA12Q19
A1A12g20 & 1854-0492 & 6 & & TRANSISTOR NPN SI PD \(=350 \mathrm{~mW}\) FT \(=250 \mathrm{MHZ}\) & 04713 & MPS3643 \\
\hline A1A12R1 & 0698-7208 & 3 & 4 & RESISTOR 68.1 1\% .05W F TC= \(=0+-100\) & 24546 & C3-1/8-T00-68R1-G \\
\hline A1A12R2 & 0698-7208 & 3 & & RESISTOR 68.1 1\% .05W F TC \(=0+-100\) & 24546 & C3-1/8-T00-68R1-6 \\
\hline AlAl2R3 & 0698-7208 & 3 & & RESISTOR 68.1 1\% .05W F TC \(=0+-100\) & 24546 & C3-1/8-T00-68R1-G \\
\hline A1A12R4 & 0698-7208 & 3 & & RESISTOR 68.1 \(1 \%\), 05W F TC=0+-100 & 24546 & C3-1/8-T00-68R1-G \\
\hline Alal2S1 & 3101-0137 & 3 & & SWITCH-SENS SPDT SUBMIN . SA EBUDC & 28480 & 3101-0137 \\
\hline Alal2s2 & 3101-0137 & 3 & & SWITCH-SENS SPDT SUBMIN . 5 A ZEUDC & 28480 & 3101-0137 \\
\hline AlAl253 & 3101-0137 & 3 & & SWITCH-SENS SPDT SUBMIN . 5 A 28UDC & 28480 & 3101-0137 \\
\hline Alal2U1 & 1820-0571 & 1 & 2 & IC TTL ROM Char gen stat & 28480 & 1820-0571 \\
\hline A1A12U2 & 1820-0571 & 1 & & IC TTL ROM CHAR GEN STAT & 28480 & 1820-0571 \\
\hline A1A12U3 & 1990-0311 & 6 & 2 & DISPLAY-NUM-DOT MAT 6-CHAR .273-H & 28480 & 1990-0311 \\
\hline AlAl2U4 & 1990-0311 & 6 & & DISPLAY-NUM-DOT MAT 6-CHAR .273-H & 28480 & 1990-0311 \\
\hline A1A12U5 & 1820-1060 & 5 & 1 & IC SCNR TTL & 28480 & 1820-1060 \\
\hline A1A12xu3 & 1200-0563 & 7 & 2 & SOCKET, IC 38-PIN & 28480 & 1200-0563 \\
\hline AlAlexu4 & \(1200-0563\)
\(1251-1556\) & 7 & 1 & SOCKET, IC 38-PIN
CONNECTOR-SGL CONT SKT, 018-IN-BSC-5Z & 28480
28480 & \(1200-0563\)
\(1251-1556\) \\
\hline A1A13 & 08860-60159 & 6 & 1 & BOARD ASSEMBLY, ANNUNCIATOR BLOCK & 28480 & 08660-60159 \\
\hline A1A13TP1
A1A13TP2 & \(0362-0063\)
\(0362-0063\) & 3
3
3 & 6 & CONNECTOR-5GL CONT QDISC-FEM & 28480 & 0362-0063 \\
\hline A1A13TP2
A1A13TP3
A & 0362-0063 & 3
3
3 & & CONNECTOR-SGL CONT QDISC-FEM
CONNECTOR-SGL CONT & 28480
28480 & \(0362-0063\)
\(0362-0063\) \\
\hline A1A13TP4 & 0362-0063 & 3 & & CONNECTOR-SGL CONT QDISC-FEM & 28480 & 0362-0063 \\
\hline A1A13TP5 & 0362-0063 & 3 & & CONNECTOR-SGL CONT QDISC-FEM & 28480 & 0362-0063 \\
\hline A1A13TPG & 0362-0063 & 3 & & CONNECTOR-SGL CONT QDISC-FEM & 28480 & 0362-0063 \\
\hline A1A14 \(\dagger\) & 08660-60356 & 5 & 1 & SWITCH ASSEMBLY, SWEEP MODE & 28480 & 08660-60356 \\
\hline A1A14J1 & 1200-0507 & 9 & & SOCKET-IC 16-CONT DIP-SLDR & 28480 & 1200-0507 \\
\hline A1A14R1 & 0757-0438 & 3 & & RESISTIR \(5.11 \mathrm{~K} 1 \%, 125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-5111-F \\
\hline A1A14R2 & 0757-0438 & 3 & & RESISTOR 5.11K 1\% . 125 W F TC=0+-100 & 24546 & C4-1/8-T0-5111-F \\
\hline A1A14R3 & 0757-0438 & 3 & & RESISTOR 5.11K 1\% . 125 W F TC=0+-100 & 24546 & C4-1/8-T0-5111-F \\
\hline A1A14U1 & 1820-1202 & 7 & & IC GATE TTL LS NAND TPL 3-INP & 01295 & SN74LS10N \\
\hline AlA15 & 08660-60113 & 2 & 1 & SWITCH ASSEMBLY, KEYBOARD & 28480 & 08660-60113 \\
\hline \multirow[t]{27}{*}{A1A15J1} & 1200-0507 & 9 & & SOCKET-IC 16-CONT DIP-SLDR & 28480 & 1200-0507 \\
\hline & & & & A1A15 MISCELLANEOUS & & \\
\hline & \[
\begin{aligned}
& 0570-0031 \\
& 5040-0364
\end{aligned}
\] & 0 & 1 & SCREW-MACH 4-40 ,5-IN-LG RD-HD-SLT UPPER DECK & \[
\begin{aligned}
& 00000 \\
& 28480
\end{aligned}
\] & ORDER BY DESCRIPTION 5040-0364 \\
\hline & 5001-0109 & - & 4 & SPRING & 28480 & 5001-0109 \\
\hline & 5040-0365 & 1 & 4 & LOMER DECK & 28480 & 5040-0365 \\
\hline & 5040-0366 & 2 & 20 & FLIPPER & 28480 & 5040-0366 \\
\hline & 5040-0367 & 3 & 20 & ACTUATOR & 28480 & 5040-0367 \\
\hline & 5040-6901 & 3 & & KEY, DEC, POINT & & \\
\hline & 5040-6902 & 4
5
5 & 1 & KEY NUMBER 1 & 28480 & 5040-6902 \\
\hline & 5040-6903 & 5 & 1 & KEY NUMBER 2 & 28480 & 5040-6903 \\
\hline & 5040-6904 & 6 & 1 & KEY NUMBER 3 & 28480 & 5040-6904 \\
\hline & 5040-6905 & 7 & 1 & KEY NUMBER 4 & 28480 & 5040-6905 \\
\hline & 5040-6906 & 8 & 1 & KEY NUMBER 5 & 28480 & 5040-6906 \\
\hline & 5040-6907 & 9 & 1 & KEY NUMBER 6 & 28480 & 5040-6907 \\
\hline & 5040-6908 & 0 & , & KEY NUMBER 7 & 28480 & 5040-6908 \\
\hline & 5040-8909 & 1 & 1 & KEY NUTRER \({ }^{\text {a }}\) & 28480 & 5040-6909 \\
\hline & 5040-6910 & 4 & 1 & KEY NUMBER ? & 28480 & 5040-6910 \\
\hline & 5040-6911 & 5 & 1 & KEY NUMBER 0 & 28480 & 5040-6911 \\
\hline & 5040-6912 & 6 & 1 & KEY, CLEAR KEYBIARD & 28480 & 5040-6912 \\
\hline & \(5040-6913\)
\(5040-6914\) & 7 & 1 & KEY, STEP UP & 28480 & 5040-6913 \\
\hline & 5040-6914 & 8 & , & KEY, STEP DOWN & 28480 & 5040-6914 \\
\hline & 5040-6915 & 9 & & & 28480 & 5040-6915 \\
\hline & 5040-6916 & 0 & 1 & KEY, CONTROL FREQUENCY & 28480 & 5040-6916 \\
\hline & 5040-6917 & 1 & 1 & KEY, HZ & 28480 & 5040-6917 \\
\hline & 5040-6918 & 2 & 1 & KEY, MHZ & 28480 & 5840-6918 \\
\hline & 5040-6919 & 3 & 1 & KEY, KHZ & 28480 & 5040-6919 \\
\hline & 5040-6920 & 6 & 1 & KEY, GHZ & 28480 & 5040-6920 \\
\hline
\end{tabular}

Table 6-3. Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & \[
\begin{aligned}
& C \\
& D
\end{aligned}
\] & Qty & Description & Mfr Code & Mfr Part Number \\
\hline Alalg & 08660-60115 & 4 & 1 & SWITCH ASSEMBLY, MANUAL MODE & 28480 & 08660-60115 \\
\hline A1A16J1 & \[
\begin{aligned}
& 1200-0507 \\
& 0330-0187
\end{aligned}
\] & 9 & 1 & SOCKET-IC
TAPE-INDL
3-IN-W & \[
\begin{aligned}
& 28480 \\
& 0148 \mathrm{G}
\end{aligned}
\] & \[
\begin{aligned}
& 1200-0507 \\
& \text { PH-50-C }
\end{aligned}
\] \\
\hline A1A17 & 5060-0329 & - & 1 & TUNER ASSEMBLY, MANUAL MODE & 28480 & 5060-0329 \\
\hline A2 & 08660-60020 & 0 & 1 & BIARD ASSENBLY, INTERCONNECTION & 28480 & 08660-60020 \\
\hline A2C1 & 0160-3456 & 6 & 28 & CAPACITOR-FXD 1000PF +-10x 1KUDC CER & 28480 & 0160-3456 \\
\hline A2C2
A2C3 & \(0160-3456\)
\(0160-3456\) & 6 & & CAPACITOR-FXD
CAPACITOR-FXD
1000PF +-10
100 & 28480
28480 & \(0160-3456\)
\(1160-3456\) \\
\hline A2C4 & 0160-3456 & 6 & & CAPACITOR-FXD 1000 PF +-10x 3 KUDC CER & 28480 & 0160-3456 \\
\hline A2C5 & 0160-3456 & 6 & & CAPACITOR-FXD 1000 PF *-10x 1KUDC CER & 28480 & 0160-3456 \\
\hline A2C6 & 0160-3456 & 6 & & CAPACITOR-FXD 1000PF +-10x 1KUDC CER & 28480 & 0160-3456 \\
\hline A2C7 & 1160-3456 & 6 & & CAPACITOR-FXD 1000PF +-10x 1KUDC CER & 28480 & 0160-3456 \\
\hline A2C8 & 0160-3456 & 6 & & CAPACITOR-FXD 1000 PF +-10x 1KUDC CER & 28480 & 0160-3456 \\
\hline A2C9 & 0160-2055 & ? & & CAPACITTRR-FXD O1UF +80-20x 100 UDC CER & 28480 & 0160-2055 \\
\hline A2Cio & 0160-2055 & - & & CAPACIYOR-FXD . O1UF \(+80-20 x\) 100UDC CER & 28480 & 0160-2055 \\
\hline A2C11 & 0160-2055 & 9 & & CAPACITOR-FXD 01UF +80-20x 100UDC CER & 28480 & 0160-2055 \\
\hline A2Cl1
A2C13 & \(0160-2055\)
\(0160-3456\) & 6 & & CAPACITOR-FXD 01UF \(+80-20 x\) 100UDC CER
CAPACITOR-FXD 1000 PF \(-10 x\) KKUDC CER & 28460
28480 & \(0160-2055\)
\(0160-3456\) \\
\hline A2C13
A2C14 & 0160-3456
\(0160-3456\) & 6 & &  & 28480
28480 & \(0160-3456\)
\(0160-3456\) \\
\hline A2C15 & 1160-3456 & 6 & & CAPACITOR-FXD 1000 PF *-102 1KUDC CER & 28480 & 0160-3456 \\
\hline A2C16 & 0160-3456 & 6 & & CAPACITOR-FXD 1000 PF +-10x 1KUDC CER & 28480 & 0160-3456 \\
\hline A2C17 & 0160-3456 & 6 & & CAPACITOR-FXD 1000PF +-10X 1KUDC CER & 28480 & 1160-3456 \\
\hline A2C18 & 0160-3456 & 6 & & CAPACITOR-FXD 10009 F +-10x 3 KUDC CER & 28480 & 0160-3456 \\
\hline A2C19 & 0160-3456 & 6 & & CAPACITOR-FXD 10009 PF -10x 1KUDC CER & 28480 & 8160-3456 \\
\hline A2c20 & 0160-3456 & 6 & & CAPACITOR-FXD 1000 PF +-10x IKUDC CER & 28480 & 0160-3456 \\
\hline A2C21 & 0160-2055 & 9 & & CAPACITOR-FXD DIUF +80-20x 100UDC CER & 28480 & 160-2055 \\
\hline A2ce2 & 1160-2055 & 9 & & CAPACITOR-FXD BluF \(+80-20 x\) 100UDC CER & 28480 & 0160-2055 \\
\hline A2C23 & 0160-2055 & 9 & & CAPACITOM-FXD. 1 IUF +80-20x 100UDC CER & 28480 & 0160-2055 \\
\hline A2C24 & 0160-2055 & 9 & & CAPACITOR-FXD \(01 \mathrm{UF}+80-20 x\) 100UDC CER
CAPACITOR-FXD \(1000 \mathrm{PF}+-10 x\) KUDC CER & 28480
28480 & \(0160-2055\)
\(0160-3456\) \\
\hline A2C25 & 0160-3456 & 6 & & CAPACITOR-FXD 1000 PF *-10x 1KUDC CER & 28480 & 0160-3456 \\
\hline A2C26 & 0160-3456 & 6 & & CAPACITGR-FXD 1000 PF *-10x 1KUDC CER & 28480 & 0160-3456 \\
\hline A2C27 & 0160-3456 & 6 & & CAPACITOR-FXD 1000 PF -10\% 1KUDC CER & 28480 & 0160-3456 \\
\hline A2C28 & 0160-2055 & 9 & & CAPACITOR-FXD D1UF +80-20x 100UDC CER & 28480 & 0160-2055 \\
\hline A2C29 & 0160-2055 & 9 & & CAPACITOR-FXD . 01 UF \(+80-20 \mathrm{z}\) 100UDC CER & 28480 & 0160-2055 \\
\hline A2C30 & 0160-2055 & 9 & & CAPACITOR-FXD . 114 F +80-20\% 100UDC CER & 28480 & 0160-2055 \\
\hline A2C31 & 0160-2055 & 9 & & CAPACITOR-FXD.01LF +80-20x 100UDC CER & 28480 & 160-2055 \\
\hline A2C32 & 1160-3456 & 6 & & CAPACITOR-FXD 1000PF +-10z 1KUDC CER & 28480 & 0160-3456 \\
\hline A2C33 & 1160-3456 & 6 & & CAPACITOR-FXD 1000PF +-10\% 1XUDC CER & 28480 & 0160-3456 \\
\hline A2C34 & 0160-3456 & 6 & & CAPACITOR-FXD 1000 PF -10x 1KUDC CER & 28460
28480 & \(0160-3456\)
\(0160-3456\) \\
\hline A2C35 & 0160-3456 & 6 & & CAPACITOR-FXD 1000 PF *-10\% 1KUDC CER & 28480 & 0160-3456 \\
\hline A2C36 & 0160-3456 & 6 & & CAPACITOR-FXD 1000 PF +-10x 1 KUDC CER & 28480 & 0160-3456 \\
\hline A2C37 & 0160-3456 & 6 & & CAPACITOR-FXD 1000 PF - 10 T IKUDC CER & 28480 & 0160-3456 \\
\hline A2C38 & 0160-3456 & 6 & & CAPACITOR-FXD 1000PF +-10X 1KUDC CER & 28480 & 0160-3456 \\
\hline A2C39 & 1160-3456 & 6 & & CAPACITOR-FXD 1000 PF +-10X 1KUDC CER & 28480 & 0160-3456 \\
\hline A2C40 & 0160-3456 & 6 & & CAPACITOR-FXD 1000PF +-10x 1KUDC CER & 28480 & 0160-3456 \\
\hline A2C41 & 160-2055 & 9 & & CAPACITOR-FXD .01UF +80-20X 100VDC CER & 28480 & 0160-2055 \\
\hline A2C42 & 1160-2055 & 9 & & CAPACITOR-FXD . O1UF +80-20x 100UDC CER & 28480 & 0160-2055 \\
\hline A2C43 & 0160-2055 & 9 & & CAPACITTR-FXD. 1 IUF \(+80-20 x\) 100UDC CER & 28480 & 0160-2055 \\
\hline A2C44 & 1160-2055 & - & & CAPACITOR-FXD . 01 UF + \(80-20 \mathrm{X}\) 100UDC CER & 28480 & 0160-2055 \\
\hline A2J1 & 1250-1255 & ! & & CONNECTOR-RF SME M PC SO-OHM & 28480 & 1250-1255 \\
\hline A2J2 & 1250-1255 & 1 & & CONNECTOR-QF SMB M PC 50-0HM & 28480 & 1250-1255 \\
\hline A2J3 & 1250-1255 & 1 & & CONNECTOR-RF SMB M PC
CONNECTOR-RF
SMB M -OHM
S & 28400
28480 & 1250-1255 \\
\hline A2J4 & 1250-1255 & 1 & & CONNECTOR-RF SMB M PC SO-OHM & 28480 & 1250-1255 \\
\hline A2W 1 & 08660-60083 & 5 & 1 & CABLE ASSEMBLY, GRAY & 28480 & 08660-60083 \\
\hline A2w & 08660-60080 & 2 & 1 & CABLE ASSEMBLY, GRAY & 28480 & 08660-60080 \\
\hline A \(2 \times 188-1\) & 1251-2035 & 9 & & CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS & 28480 & 1251-2035 \\
\hline  & 1251-2035 & 9 & & CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS & 28480 & 1251-2035 \\
\hline A2XA9-1 & 1251-2035 & 9 & & CONNECTIDR-PC EDGE 15-CONT/AOW 2-ROWS & 28480 & 1251-2035 \\
\hline A2XA10-1 & 1251-2035 & 9 & & CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS & 28480 & 1251-2035 \\
\hline A2XA10-2 & 1251-2035 & 9 & & CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS & 28480 & 1251-2035 \\
\hline A2XA11-1 & 1251-2035 & 9 & &  & 28480 & 1251-2035 \\
\hline A2XA1:-2 & 1251-2035 & 9 & & CONNECTOR-PC EDGE 15-CONT/ROU 2-ROUS & 28480 & 1251-2035 \\
\hline A2XA12-1 & 1251-2035 & 9 & & CONHECTOR-PC EDGE 15-CONT/ROW 2-ROWS & 28480 & 1251-2035 \\
\hline A2XA12-2 & 1251-2035 & 9 & & CONMECTOR-PC
CODNECTOR-PC EDGE
15-CONT/ROW
15-CONT/ROW
2-ROW & 28480
28480 & \(1251-2035\)
\(1251-2035\) \\
\hline A \(2 \times\) A13-1 & 1251-2035 & 9 & & CONMECTOR-PC EDGE 15-CONT/ROW 2-ROWS & 28980 & 1251-2035 \\
\hline A \(2 \times 1313\) & 1251-2035 & 9 & & CONNECTOR-PC EDGE 15-CONT/ROU 2-ROUS & 28480 & 1251-2035 \\
\hline A2XA14-1 & 1251-2035 & 9 & & CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS & 28480 & 1251-2035 \\
\hline А \(2 \times 1414-2\) & 1251-2035 & 9 & & CONWECTOR-PC EDGE 15-CONT/ROW 2-ROWS & 28480 & 1251-2035 \\
\hline A2XA15-1 & 1251-2035 & 9 & & COMNECTOR-PC EDGE 15-CONT/ROW 2-ROWS & 28480 & 1251-2035 \\
\hline A2XA15-2 & 1251-2035 & 9 & & CONNECTOR-PC EDGE 15-CONT/RON 2-ROWS & 28480 & 1251-2035 \\
\hline
\end{tabular}

Table 6-3. Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & \[
\begin{aligned}
& \mathrm{C} \\
& \mathrm{D}
\end{aligned}
\] & Oty & Description & Mfr Code & Mfr Part Number \\
\hline A2XA16-1 & 1251-2035 & 9 & & CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS & 28480 & 1251-2035 \\
\hline A2XA16-2 & 1251-2035 & 9 & & CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS & 28480 & 1251-2035 \\
\hline A2XA17-1 & 1251-2035 & 9 & & CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS & 28480 & 1251-2035 \\
\hline A2XA17-2 & 1251-2035 & 9 & & CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS & 28480 & 1251-2035 \\
\hline A2XA18-1 & 1251-2035 & 9 & & CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS & 28480 & 1251-2035 \\
\hline A2XA18-2 & 1251-2035 & 9 & & CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS & 28480
28480 & \(1251-2035\)
\(1251-2035\) \\
\hline A2XA19-1
A2XA19-2 & \(1251-2035\)
\(1251-2035\) & 9 & & CONNECTOR-PC EDGE
CONNECTOR-PC EDGE
15-CONT/ROW & 28480
28480 & \(1251-2035\)
\(1251-2035\) \\
\hline A3A1 \(\dagger\) & 08660-60351 & 0 & 1 & ASSEMBLY, FRONT INTERFACE (EXCEPT OPT 005 & 28480 & 08660-60351 \\
\hline A3A1C1 & 0160-0154 & 5 & 1 & CAPACITOR-FXD 2200 PF +-10\% 200 UDC POLYE & 28480 & 0160-0154 \\
\hline A3A1C2 & 0180-2208 & 6 & 1 & CAPACITOR-FXD 220UF+-10\% 10 UDC TA & 56289 & 150D2279901052 \\
\hline A3A1C3 & 0180-1746 & 5 & 1 & CAPACITOR-FXD 15UF+-10\% ZOUDC TA & 56289 & 150D156×9020日2 \\
\hline A3A1C4 & 0180-0373 & 2 & 1 & CAPACITOR-FXD . 68UF+-10\% 35UDC TA & 56289 & 1500684×9035A2 \\
\hline A3A1C5 & 0180-0197 & 8 & & CAPACITOR-FXD 2.2UF+-10\% 20UDC TA & 56289 & \(150 \mathrm{D} 225 \times 9020 \mathrm{AZ}\) \\
\hline A3aics & 0180-0197 & 8 & & CAPACITER-FXD 2.2UF+-10x 20UDC TA & 56289 & 150D225x9020A2 \\
\hline A3A1C7 & 0180-0197 & - & & CAPACITOR-FXD 2.2UF+-10\% 20UDC TA & 56289 & 150D225x9020A2 \\
\hline A3A1CR1 & 1901-0539 & 3 & 1 & DIODE-SM SIG SCHDTTKY & 28480 & 1901-0539 \\
\hline A3A1CR2 & 1901-0040 & 1 & & DIDDE-SWITCHING 30V 50MA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A3A1Q1 & 1853-0020 & 4 & & TRANSISTOR PNP SI PD=300M FT \(=150 \mathrm{MHZ}\) & 28480 & 1853-0020 \\
\hline A3A192 & 1854-0071 & 7 & & TRANSISTOR NPN SI PD \(=300 \mathrm{MW}\) FT \(=200 \mathrm{MHZ}\) & 28480 & 1854-0071 \\
\hline A3A193 & & & & NOT ASSIGNED & & \\
\hline AJA194 & 1854-0071 & 7 & & TRANSISTOR NPN SI PD=300MW FT \(=200 \mathrm{MHZ}\) & 28480 & 1854-0071 \\
\hline A3A1R1 & 0698-3157 & 3 & 2 & RESISTOR \(19.6 \mathrm{~K} 1 \%\). 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1962-F \\
\hline A3A1R2 & 0698-3157 & 3 & & RESISTOR 19.6K \(1 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1962-F \\
\hline A3AIR3 & 0757-0442 & 9 & & RESISTOR 10K 17 , 125 F F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A3A1R4 & 0757-0442 & 9 & & RESISTOR 10K 1\% . 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A3AIRS & 0757-0442 & 9 & & RESISTOR 10K 1\%.125W F TC \(=0+-100\) & 24546 & C4-1/8-70-1002-F \\
\hline AJAIRG & 0757-0442 & 9 & & RESISTOR 10K 17 , 125 F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A3A1R7 & 0757-0442 & 9 & & RESISTOR \(10 \mathrm{~K} 1 \mathrm{\chi}, 125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline AJAIR8 & 0757-0399 & 5 & 9 & RESISTOR 82.5 \(1 \chi\). 125 W F TC \(=0+100\) & 24546 & C4-1/8-T0-82RS-F \\
\hline AJAIR9 & 0757-0399 & 5 & & RESISTOR 82.5 \(17.125 \mathrm{~F}^{\text {F }}\) TC \(=0+100\) & 24546 & C4-1/8-T0-82R5-F \\
\hline A3AIRIO & 0757-0399 & 5 & & RESISTOR \(82.51 \% .125 W\) F \(\mathrm{TC}=0+-100\) & 24546 & C4-1/8-T0-82R5-F \\
\hline A3A1R11 & 0757-0399 & 5 & & RESISTOR \(82.51 \%\). 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-82R5-F \\
\hline AJAIR12 & 0757-0399 & 5 & & RESISTOR 82.5 1\% .125W F TC \(=0+-100\) & 24546 & C4-1/8-70-82R5-F \\
\hline A3A1R13 & 0757-0399 & 5 & & RESISTOR 82.5 12 .125W F TC=0+-100 & 24546 & C4-1/8-T0-82R5-F \\
\hline A3A1R14 & 0757-0399 & 5 & & RESISTOR \(82.51 \%\).125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-82RS-F \\
\hline A3AIR15 & 0757-0399 & 5 & & RESISTOR 82.5 \(1 \% .1254\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-82R5-F \\
\hline AJAIR16 & 0757-0399 & 5 & & RESISTOR 日2.5 1\%. 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-82R5-F \\
\hline A3Alui & 1820-0174 & 0 & & IC INU TTL HEX & 01295 & SN7404N \\
\hline AJAIU2 & 1820-0077 & 2 & & IC FF TTL D-TYPE POS-EDGE-TRIG CLEAR & 01295 & SN7474N \\
\hline A3A103 & 1820-0069 & 2 & & IC GATE TTL NAND DUAL 4-INP & 01295 & SN7420N \\
\hline A3AIU4 & 1820-0054 & 5 & & IC GATE TTL NAND QUAD 2-INP & 01295 & SN7400w \\
\hline AJAIUS & 1820-0328 & 6 & & IC GATE TTL NOR QUAD 2-INP & 01295 & SN7402N \\
\hline A3AIU6 & 1920-0065 & 8 & & IC FF TTL J-K pos-edge-trig clear & 01295 & SN7470N \\
\hline A3A1U7 & 1820-0207 & - & 1 & IC MU TTL MONOSTBL RETRIG/RESET & 04713 & HC8601P \\
\hline AJaiub & 1820-0072 & 7 & 2 & IC GATE TTL AND-OR-INU DUAL 2-INP & 01295 & SN7450N \\
\hline A3A1U9 & 1820-0072 & 7 & & IC GATE TTL AND-OR-INU DUAL \(2-I N P\) & 01295 & SN7450N \\
\hline A3AIUIO & 1820-0214 & 9 & & IC DCDR TTL BCD-TO-DEC 4-TO-10-LINE & 01295 & SN7442AM \\
\hline A3A1U11 & 1820-0328 & 6 & & IC GATE TTL HOR QUAD 2-INP & 01295 & SN7402N \\
\hline A3A1U12 & 1820-1056 & 9 & 1 & IC SCHMITT-TRIG TTL NAND QUAD 2-INP & 01295 & SN74132N \\
\hline AJalviz & 1820-0328 & 6 & & IC GATE TTL NOR QUAD 2-INP & 01295 & 8N7402N \\
\hline A3A1XA1 & 1251-1626 & 2 & 2 & CONNECTOR-PC EDGE 12-CONT/ROW 2-ROWS & 28480 & 1251-1626 \\
\hline A3Ai XA2 & 1251-2361 & 4 & & CONTACT-CONN U/W-POST-TYPE MALE DPSLDR & 28480 & 1251-2361 \\
\hline A3A1XA3 & 1251-2663 & 9 & 2 & CONNECTOR-PC EDGE 18-CONT/ROW 2-ROWS & 28480 & 1251-2663 \\
\hline A3A1XA4 & 1251-1626 & 2 & & CONNECTOR-PC EDGE 12-CONT/RDW 2-ROWS & 28480 & 1251-1626 \\
\hline A3A1XA5 & 1251-2663 & 9 & & CONNECTOR-PC EDGE 18-CONT/ROW 2-ROWS A3A1 MISCELLANEOUS & 28480 & 1251-2663 \\
\hline & 1251-2361 & 4 & 4 & CONTACT-CONN U/W-POST-TYPE MALE DPSLDR & 28480 & 1251-2361 \\
\hline A3A2 \(\dagger\) & 08660-60029 & 9 & 1 & BOARD ASSEMBLY, DIGITAL INTERFACE (REAR) (EXCEPT OPTION 005) & 28480 & 08660-60029 \\
\hline A3A2C1 & 0180-0197 & & & CAPACITOR-FXD 2.2UF+-10\% 20UDC TA & 56289 & 150D225x9020A2 \\
\hline A3A2C2 & 0180-0197 & 8 & & CAPACITOR-FXD 2.2UF+-10\% 20UDC TA & 56289 & \(150 \mathrm{D} 225 \times 9020 \mathrm{~A} 2\) \\
\hline A3A2C3 & 0180-0197 & 8 & & CAPACITOR-FXD \(2.2 \mathrm{UF}+-102\) 20UDC TA & 56289 & 1500225x9020A2 \\
\hline A3A2C4 & 0160-2219 & 7 & 1 & CAPACITOR-FXD \(1100 \mathrm{PF}+-5 \% 300 \mathrm{VDC} \mathrm{MICA}\) & 28480 & 0160-2219 \\
\hline A3ACQ1 & 1854-0071 & 7 & & TRANSISTOR NPN SI PD \(=300 \mathrm{MH}\) FT \(=200 \mathrm{MHZ}\) & 28480 & 1854-0071 \\
\hline A3A2Q2 & 1854-0071 & 7 & & TRANSISTOR NPN SI PD \(=300 \mathrm{NW} \mathrm{FT}=200 \mathrm{MHZ}\) & 28480 & 1854-0071 \\
\hline A3A2R1 & 0757-0421 & 4 & 11 & RESISTOR \(0251 \% .125 \mathrm{~F}^{\text {F }}\) TC \(=0+-100\) & 24546 & C4-1/8-T0-825R-F \\
\hline A3AER2 & 0698-3445 & 2 & & RESISTOR \(3481 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-348R-F \\
\hline A3A2R3 & 0757-0279 & 0 & 7 & RESISTOR \(3.16 \mathrm{~K} 1 \chi^{\text {c }}\), 12SW F TC \(=0+-100\) & 24546 & C4-1/8-T0-3161-F \\
\hline A3AER 4 & 0698-3445 & 2 & & RESISTOR 3481 x , 125W F TC \(=0+-100\) & 24546 & C4-1/8-70-348R-F \\
\hline A3AERS & 0690-3445 & 2 & & RESISTOR \(3481 \% .125 W\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-348R-F \\
\hline
\end{tabular}

Table 6-3. Replaceable Parts


Table 6-3. Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & \[
\begin{aligned}
& C \\
& D
\end{aligned}
\] & Qty & Description & Mfr Code & Mfr Part Number \\
\hline A3A1 & 08660-60366 & 7 & 1 & OPTION 005 ONLY HP-IB OUTPUT ASSEMBLY & 28480 & 08660-60366 \\
\hline A3A1C1 & 0180-0197 & 8 & 5 & CAPACITOR-FXD 2, 2UF+-10\% 20UDC TA & 56289 & 1508225x9020A2 \\
\hline AJA1C2 & 0180-0197 & 8 & & CAPACITOR-FXD 2.2UF+-10\% 2OUDC TA & 56289 & 150D225×9020A2 \\
\hline A3AIC3 & 0160-0301 & 4 & 1 & CAPACITOR-FXD : \(012 \mathrm{UF}+-10 \% 200\) UDC POLYE & 28480 & 0160-0301 \\
\hline AJAIC4
AJAIC5 & \(0180-1745\)
\(0180-1746\) & 4
5 & 1 &  & 56289
56289 & \(150 \mathrm{D} 155 \times 9020 \mathrm{AL}\)
\(150 \mathrm{D} 156 \times 9020 \mathrm{E}\) \\
\hline A3A1C6 & 0180-2208 & 6 & 1 & CAPACITOR-FXD 220UF+-10\% 10UDC TA & 56299 & 150D227X901052 \\
\hline A3A1C7 & 0160-0572 & 6 & 1 & CAPACITOR-FXD 2200 PF +-20\% 100 UDC CER & 28480 & 0160-0572 \\
\hline AJAICR1 & 1901-0040 & 1 & 2 & DIODE-SWITCHING 30U SOMA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A3A1CR2 & 1901-0539 & 3 & 1 & DIDDE-SM SIG SCHOTTKY & 28480 & 1901-0539 \\
\hline A3A1CR3 & 1901-0040 & 1 & & DIDDE-SWITCHING 30 U SOMA \(2 N S\) DO-35 & 28480 & 1901-0040 \\
\hline A3A1Q1 & 1853-0020 & 4 & 1 & TRANSISTOR PNP SI PD=300MW FT \(=150 \mathrm{MHZ}\) & 28480 & 1853-0020 \\
\hline A3A1R1 & 0698-3160 & 8 & 1 & RESISTOR \(31.6 \mathrm{~K} 1 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-3162-F \\
\hline A3A1R2 & 0757-0442 & 9 & 5 & RESISTOR \(10 \mathrm{~K} 1 \% .125 W\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A3A1R3 & 0757-0442 & 9 & & RESISTIOR 10K 1\% , 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A3A1R4 & 0757-0442 & 9 & & RESISTOR \(10 \mathrm{~K} 1 \%\). 125 W F TC=0+-100 & 24546 & C4-1/8-T0-1002-F \\
\hline A3A1R5 & 0757-0442 & 9 & & RESISTOR \(10 \mathrm{~K} 1 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A3AIRS & 0757-0442 & 9 & & RESISTOR \(10 \mathrm{~K} 1 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/B-T0-1002-F \\
\hline A3A1R7 & 0757-0278 & 9 & 3 & RESISTOR 1.78k \(1 \% .125 \mathrm{WF}\) TC \(=0+-100\) & 24546 & C4-1/8-T0-1781-F \\
\hline A3A1R8 & 0757-0278 & 9 & & RESISTOR 1,78K \(1 \%\), 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1781-F \\
\hline A3AIR9 & 0757-0399 & 5 & 9 & RESISTOR 82.5 1\% , 125W F TC=0+-100 & 24546 & C4-1/8-T0-82R5-F \\
\hline A3A1R10 & 0757-0399 & 5 & & RESISTOR \(82.51 \%\). 125 W F \(\mathrm{TC}=0+-100\) & 24546 & C4-1/8-T0-82R5-F \\
\hline A3A1R11 & 0757-0399 & 5 & & RESISTOR \(82.51 \%, 125 \mathrm{~W}\) F TC \(=0+100\) & 24546 & C4-1/8-T0-82R5-F \\
\hline A3A1R12
A3A1R13 & 0757-0399
\(0757-0399\) & 5
5 & & RESISTOR \(82.51 \%, 125 \mathrm{~W}\) F \(\quad\) TC \(=0+-100\)
RESISTOR \(82.51 \%, 125 \mathrm{~W}\) TC \(=0+-100\) & 24546
24546 & C4-1/8-T0-82RS-F
\(\mathrm{C4-1/8-T0-82R5-F}\) \\
\hline A3AIR14 & 0757-0399 & 5 & & RESISTOR 82.5 \(1 \% .125\) F F TC \(=0+-100\) & 24546 & C4-1/B-T0-82RS-F \\
\hline A3AIR15 & 0757-0399 & 5 & & RESISTOR \(82.51 \%\), 125W F TC \(=0+100\) & 24546 & C4-1/8-T0-82R5-F \\
\hline A3AIR16 & 0757-0399 & 5 & & RESISTOR 82.5 1\% , 125W F TC=0+-100 & 24546 & C4-1/8-T0-82R5-F \\
\hline A3A1R17 & 0757-0399 & 5 & & RESISTOR \(82.51 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-82RS-F \\
\hline A3AIR18 & 0698-3447 & 4 & 1 & RESISTOR 422 1\% . 125W F TC=0+-100 & 24546 & C4-1/8-T0-422R-F \\
\hline A3Alui & 1820-0511 & 9 & 3 & IC GATE TTL AND QUAD 2-INP & 01295 & SN7408N \\
\hline A3A1U2 & 1820-0328 & 6 & 1 & IC GATE TTL NOR QUAD \(2 \rightarrow\) INP & 01295 & SN7402N \\
\hline A3A1U3 & 1820-0054 & 5 & 3 & IC GATE TTL NAND QUAD 2-INP & 01295 & SN7400N \\
\hline A3A1U4 & 1820-0214 & 9 & 1 & IC DCDR TTL BCD-TO-DEC 4-TO-10-LINE & 01295 & SN7442AN \\
\hline Azalus & 1820-0134 & 2 & 1 & IC SHF-RGTR TTL D-TYPE PRL-IN PRL-OUT & 07263 & 9300 PC \\
\hline A3A1U6 & 1820-0579 & 9 & 1 & IC MU TTL Monostbl retrig dual & 01295 & SN74123N \\
\hline A3A1U7 & 1820-0076 & & 1 & IC FF TTL J-K PULSE PRESET/CLEAR DUAL & 01295 & SNT476N \\
\hline A3A1ub & 1820-0372 & 0 & 1 & IC GATE TTL H AND TPL 3-INP & 01295 & SN74H11N \\
\hline A3AIU9 & 1820-0054 & 5 & & IC GATE TTL NAND QUAD 2-INP & 01295 & SNT400N \\
\hline A3A1U10 & 1820-0174 & 0 & 3 & IC INU TTL MEX & 01295 & SN7404N \\
\hline A3Alut 1 & 1820-0065 & 8 & 1 & IC FF TTL J-K POS-EDGE-TRIG CLEAR & 01295 & SN7470N \\
\hline A3A1U12 & 1820-0535 & 7 & 1 & IC DRUR TTL AND DUAL 2 -INP & 01295 & SN75451 BP \\
\hline A3Alvis & 1820-1056 & 9 & 1 & IC SCHMITT-TRIG TTL NAND QUAD 2-INP & 01295 & SN74132N \\
\hline A3A2 \(\dagger\) & 08660-60372 & 5 & 1 & BOARD ASSY, HP-IB INPUT(OPTION 005 ONLY) & 28480 & 08660-60372 \\
\hline A3A2C1 & 0180-0197 & 8 & & CAPACITOR-FXD 2.2UF+-10\% 20UDC TA & 56289 & 150D225x9020A2 \\
\hline A3A2C2 & 0180-0197 & 8 & & CAPACITOR-FXD 2.2UF+-10\% 20UDC TA & 56289 & 150D225x9020A2 \\
\hline A3AzC3 & 0180-0197 & 8 & & CAPACITOR-FXD 2. 2UF+-10x 20UDC TA & 56289 & \(150 \mathrm{D} 225 \times 9020 \mathrm{~A} 2\) \\
\hline A3A2C4 & 0160-0157 & 8 & 3 & CAPACITOR-FXD 4700PF +-10\% 200VDC POLYE & 28480 & 0160-0157 \\
\hline A3ARC5 & 0160-0157 & 8 & & CAPACITOR-FXD 4700PF +-10\% 200UDC POLYE & 28480 & 0160-0157 \\
\hline A3azcs & 0160-0157 & 8 & & CAPACITOR-FXD \(4700 \mathrm{PF}+-10 \%\) 200UDC POLYE & 28480 & 0160-0157 \\
\hline A3A2R1 & 0757-0278 & 9 & & RESISTOR 1.78K \(1 \%\). 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1781-F \\
\hline A3AzR2 & 1810-0136 & 3 & 2 & NETWORK-RES \(10-\) SIP MULTI-VALUE & 28480 & 1810-0136 \\
\hline A3Azr3 & 0757-0403 & 2 & 3 & RESISTOR \(1211 \%\), 125L F TC \(=0+-100\) & 24546 & C4-1/8-T0-121R-F \\
\hline A3A2R 4 & 0757-0403 & 2 & & RESISTOR \(1211 \% .125\) W F TC \(=0+-100\) & 24546 & C4-1/8-T0-121R-F \\
\hline A3A2R5 & 0757-0403 & 2 & & RESISTOR \(1211 \%\). 125 W F TC= \(=0+-100\) & 24546 & C4-1/8-T0-121R-F \\
\hline A3A2R6 & 1810-0136 & 3 & & NETWORK-RES \(10-\) SIP MULTI-VALUE & 28480 & 1810-0136 \\
\hline A3A2S1 \(\dagger\) & 3101-2126 & 4 & 1 & SWITCH-SL 5-5PDT-NS & 28480 & 3101-2126 \\
\hline A3A2U1 & 1820-0511 & 9 & & IC GATE TTL AND QUAD 2-INP & 01295 & SN7408N \\
\hline A3A2U2 & 1820-0054 & 5 & & IC GATE TTL NAND QUAD 2-INP & 01295 & SN7400N \\
\hline A3A2U3 & 1820-0621 & 2 & & IC BFR TTL NAND QUAD \(2-I N P\) & 01295 & SN7438N \\
\hline A3A2U4 & 1820-0077 & 2 & 2 & IC FF TTL D-TYPE POS-EDGE-TRIG CLEAR & 01295 & SNT474N \\
\hline A3A2U5 & 1820-0070 & 5 & & IC GATE TTL NAND B-INP & 01295 & SNT430N \\
\hline A3AZU6 & 1820-0070 & 5 & & IC GATE TTL NAND B-INP & & \\
\hline A3A2U7 & 1820-0174 & 0 & & IC INU TrL HEX & 01295 & SNT404N \\
\hline A3AzU8 & 1820-1053 & 6 & 3 & IC SChMITT-TRIG TTL INU HEX & 01295 & SN7414N \\
\hline A3A2U9 & 1820-0511 & 9 & & IC GATE TTL AND QUAD 2-INP & 01295 & SN7408N \\
\hline AJAZU10 & 1820-0077 & 2 & & IC FF TTL D-TYPE POS-EDGE-TRIG CLEAR & 01295 & SNT474N \\
\hline
\end{tabular}

Table 6-3. Replaceable Parts


Table 6-3. Replaceable Parts


Table 6-3. Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & \[
\left|\begin{array}{l}
c \\
D
\end{array}\right|
\] & Qty & Description & Mfr Code & Mfr Part Number \\
\hline A4A1R1 & 0757-0444 & 1 & 11 & RESISTOR \(12.1 \mathrm{~K} 1 \% .125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-1212-F \\
\hline A4AIR2 & 0698-3622 & 7 & 1 & RESISTOR \(1205 \% 2 \mathrm{HO}\) TC \(=0+-200\) & 28480 & 0698-3622 \\
\hline A4A1R3 & 0698-0093 & 8 & 23 & RESISTOR 1.96 K 1 X . 125 W F TC= \(=0+-100\) & 24546 & [4-1/8-T0-1961-F \\
\hline A4A1R4 & 0757-0280 & 3 & 28 & RESISTOR \(1 \mathrm{~K} 1 \%\). 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1001-F \\
\hline A4A1R5 & 0757-0394 & 0 & 22 & RESISTOR 51.1 1 z . 125w F TC \(=0+-100\) & 24546 & C4-1/8-T0-51R1-F \\
\hline ASAIRG & 0757-0280 & 3 & & RESISTOR 1K 1\% .125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1001-F \\
\hline A4A1R7 & 0698-0083 & 8 & & RESISTOR \(1.96 \mathrm{~K} 1 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1961-F \\
\hline A4AIR8 & 0757-0280 & 3 & & RESISTOR IK 1\% 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1001-F \\
\hline A4A1R9 & 0757-0394 & 0 & & RESISTOR \(51.12 \%\) 125W F TC \(=0+100\) & 24546 & C4-1/8-T0-51R1-F \\
\hline A4AIRIO & 0757-0280 & 3 & & RESISTOR 1K 1x.125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1001-F \\
\hline AAAIR11 & 0698-3441 & 8 & & RESISTOR 21512.125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-215R-F \\
\hline A4A1R12 & 0698-3441 & 8 & & RESISTOR \(2151 \chi\). 125 W F \(\mathrm{TC}=0+-100\) & 24546 & C4-1/8-T0-215R-F \\
\hline AAAIR13 & 0698-3441 & - & & RESISTOR \(2151 \% .1254\) F \(T C=0+100\) & 24546 & C4-1/8-T0-215R-F \\
\hline AAAIR14 & 0757-0401 & 0 & 21 & RESISTOR \(1001 \%\). 1254 F TC \(=0+-100\) & 24546 & C4-1/8-T0-101-F \\
\hline A4ALU1 & 1820-0054 & 5 & 16 & IC GATE TTL NAND QUAD \(2-I N P\) & 01295 & SNT400N \\
\hline A4AIUZ & 1820-0055 & 6 & 2 & IC CNTR TTL DECD SYMCHRO POS-EDGEE-TRIG & 01295 & SN7490AN \\
\hline AAAIUJ & 1820-0055 & 6 & & IC CNTR TTL DECD SYNCMRO POS-EDGE-TRIG & 01295 & SN7490AN \\
\hline A4A2 & 08660-60002 & 8 & 1 & BOARD ASSEMBLY, REF. PHASE DETECTOR & 28480 & 08660-60002 \\
\hline A4A2C1 & 0180-0100 & 3 & 1 & CAPACITOR-FXD 4.7UF*-10\% 35UDC TA & 56289 & 1500475×9035, Hz \\
\hline A A ALCL & 0180-0116 & 1 & & CAPACITOR-FXD 6.BUF*-10\% 35UDC TA & 56289 & \(15006885 \times 903582\) \\
\hline A4AEC3 & 0180-0228 & 6 & 10 & CAPACITOR-FXD 22UF+-10X 15UDC TA & 56389 & 1500226×901542 \\
\hline A4A2C4 & 0160-2055 & 9 & 79 & CAPACITOR-FXD .01UF \(+80-20 \% 100 \mathrm{VDC} \mathrm{CER}\) & 28480 & 0160-2055 \\
\hline A4A2C5 & 0180-1746 & 5 & 1 & CAPACITOR-FXD 15UF+-10\% 20UDC TA & 56.89 & 15001569902082 \\
\hline A4A2C6 & 0160-2055 & 9 & & CAPACITOR-FXD . 01 UF +80-20\% 100UDC CER & 28480 & -160-2055 \\
\hline A4A2C7 & 0160-2055 & 9 & & CAPACITOR-FXD. O1UF +80-20\% 100UDC CER & 28480 & 0160-2055 \\
\hline A4A2C8 & 0160-2055 & 9 & & CAPACITOR-FXD OIUF \(+80-20 \pm 100\) UDC CER & 28480 & 0160-2055 \\
\hline A4A2C9 & 0180-0229 & 7 & & CAPACITOR-FXD 33UF+-10\% 10 UDC TA & 56.89 & 1500336x9010 \({ }^{\text {che }}\) \\
\hline A4AZC 10 & 0160-2055 & 9 & & CAPACITOR-FXD . 01UF +80-20x 100VDC CFR & 28480 & 0160-2055 \\
\hline AAARC11* & 0140-0191 & 8 & 1 & CAPACITOR-FXD 56PF +-5\% 300VDC MICA & 72136 & DNISE56030300WVICR \\
\hline A4A2C 12 & 0160-2308 & 5 & 1 & CAPACITOR-FXD 36PF +-5\% 300UDC MICA & 28480 & 0160-2308 \\
\hline A4A2C13 & 0160-2055 & 9 & & CAPACITOR-FXD . O1UF \(+80-20 \%\) 100UDC CER & 28480 & 0160-2055 \\
\hline A4A2C 14 & 0160-2055 & 9 & & CAPACITOR-FXD .01UF + \(00-20 \%\) 100UDC CER & 28480 & 0160-2055 \\
\hline A4AECI5 & 0160-2055 & 9 & & CAPACITOR-FXD DIUF +80-20X 100UDC CER & 28480 & 0160-2055 \\
\hline A4A2C16 & 0160-2055 & 9 & & CAPACITOR-FXD O1UF +80-20X 100UDC CER & 2 4 480 & 0160-2055 \\
\hline A4A2C17 & 0160-2055 & 9 & & CAPACITOR-FXD. O1UF +80-20X 100UDC CER & 28480 & 0160-2055 \\
\hline A4A2C 18 & 160-2055 & 9 & & CAPACITOR-FXD D1UF +80-20Z 100 UDC CER & 28480 & 0160-2055 \\
\hline A4AEC 19 & 0160-2055 & 9 & & CAPACITOR-FXD 01UF +80-20X 100 UDC CER & 28480 & 0160-2055 \\
\hline A4A2C20 & 0160-2204 & 0 & 7 & CAPACITOR-FXD 100PF *-5\% 300VDC MICA & 28480 & 0160-2204 \\
\hline AAA2C21 & 0160-2055 & 9 & & CAPACITOR-FXD O1UF +80-20Z 100 UDC CER & 28480 & 0160-2055 \\
\hline A4A2C22 & 0180-1743 & 2 & 1 & CAPACITOR-FXD . 1UF*-10Z 35UDC TA & 56289 & 1500104×9035A2 \\
\hline A4a2C23 & 0160-3537 & , & 2 & CAPACITOR-FXD 6BOPF +-5\% 100UDC MICA & 28480 & 0160-3537 \\
\hline A4AZC24 & 0160-2205 & 1 & 3 & CAPACITOR-FXD 120PF +-5\% 300UDC MICA & 28480 & 0160-2205 \\
\hline A4A2C25 & 0160-2218 & 6 & 2 & CAPACITOR-FXD 1000PF +-5x 300UDC MICA & 28480 & 0160-2218 \\
\hline A4A2C26 & 0100-2205 & 3 & 1 & CAPACITOR-FXD . \(33 \mathrm{UF}+-102\) 3SUDC TA & 56289 & \(1500334 \times 9035 \mathrm{~A} 2\) \\
\hline A4A2C27 & 0160-2055 & 9 & & CAPACITOR-FXD. O1UF + \(00-20 \%\) 100UDC CER & 28480 & 0160-2055 \\
\hline AAAECR1 & 1902-0041 & 4 & 7 & DIODE-ZNR 5.11U 5\% DO-35 PD=.4W & 28480 & 1902-0041 \\
\hline A4ACCR2 & 1901-0040 & 1 & 33 & DIDDE-SWITCHING 30U 50MA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A AAECR3 & 1901-0040 & 1 & & DIDDE-SWITCHING 30U 50 MA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A4AECR4 & 1901-0179 & , & 4 & DIDDE-SWITCHING 15 U S0MA 750 PS DO-7 & 28480 & 1901-0179 \\
\hline a4azcrs & 1901-0179 & 7 & & DIODE-SWITCHING 150 50mA 750PS DO-7 & 28480 & 1901-0179 \\
\hline A4ARL 1 & 9100-1629 & 4 & 19 & INDUCTRR RF-CH-MLD \(47 \mathrm{UH} 5 \% .166 \mathrm{DX} .385 \mathrm{LG}\) & 28480 & 9100-1629 \\
\hline A4A2LI & 9100-1629 & 4 & & INDUCTOR RF-CH-MLD 47UH 5\%.1660X.385LG & 28480 & 9100-1629 \\
\hline A4azl 3 & 9100-2260 & 1 & , & INDUCTOR RF-CH-MLD 1.8UH 10X . 105 DXX . 26LG & 28480 & \(9100-2260\) \\
\hline A4A2L4 & 9140-0129 & ? & 2 & INDUCTOR RF-CH-MLD 220UH 5\% . 1660 D . 385LG & 28480 & \(9140-0129\)
\(9140-0237\) \\
\hline A4ACLS & 9140-0237 & 2 & 1 & INDUCTOR RF-CH-MLD 2000 HH . 166DX. 385LG & 28480 & 9140-0237 \\
\hline A4A291 & 1854-0019 & 3 & & TRANSISTOR NPN SI TO-18 PD=360MW & 28480 & 1854-0019 \\
\hline A4A2gi & 1854-0019 & 3 & & TRANSISTOR NPN SI TO-18 PD \(=360 \mathrm{MH}\) & 28480 & 1854-0019 \\
\hline A4AzQ3 & 1854-0019 & 3. & & TRANSISTOR NPN SI TO-18 PD \(=360 \mathrm{MW}\) & 28480 & 1854-0019 \\
\hline A4A294 & 1854-0019 & 3 & & TRANSISTOR HPN SI TO-18 PD \(=360 \mathrm{ML}\) & 28480 & 1854-0019 \\
\hline A4A2G5 & 1853-0015 & 7 & 4 & TRANSISTOR PNP SI PD \(=200 \mathrm{MW}\) FT \(=500 \mathrm{MHZ}\) & 28480 & 1853-0015 \\
\hline A4AEQ6 & 1854-0019 & 3 & & TRANSISTOR WPN SI TO-18 PD=360HW & 28480 & 1854-0019 \\
\hline A4A2G7 & 1853-0020 & 4 & 1 & TRANSISTOR PNP SI PD \(=300 \mathrm{MH} \mathrm{FT}=150 \mathrm{MHZ}\) & 28480 & 1853-0020 \\
\hline A4A2DE & 1854-0071 & 7 & 5 & TRANSISTOR NPN SI PD 300 MW FT \(=200 \mathrm{MHZ}\) & 28480 & 1854-0071 \\
\hline A4A209 & 1854-0071 & 7 & & TRANSISTOR NPN SI PD \(=300 \mathrm{MH} \quad \mathrm{FT}=200 \mathrm{MHZ}\) & 28480 & 1854-0071 \\
\hline A4A2日 10 & 1854-0071 & 7 & & TRANSISTOR NPN SI PD \(=300 \mathrm{MW} \mathrm{FT}=200 \mathrm{MHZ}\) & 28480 & 1854-0071 \\
\hline A4A2Q11 & 1854-0019 & 3 & & TRANSISTOR NPN SI TO-18 PD \(=360 \mathrm{AW}\) & 28480 & 1854-0019 \\
\hline A4ACR 1 & 0698-3440 & 7 & 15 & RESISTOR 196 1\% .125W F TC=0+-100 & 24546 & C4-1/8-T0-196R-F \\
\hline A4AER2 & 0757-0401 & 0 & & RESISTOR 100 i\% . 125 W F \(\mathrm{TC}=0+-100\) & 24546 & C4-1/8-T0-101-F \\
\hline A4ACR 3 & 0757-0442 & & 59 & RESISTOR 10 K 1\% .125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A4A2RA & 0757-0441 & 8 & 13 & RESISTOR 8. 25 K . \(1 \%\). 125 L F TC \(=0+-100\) & 24546 & C4-1/8-T0-8251-F \\
\hline A4AER5 & 0757-0416 & 7 & 19 & RESISTOR 5111 X . 125W F TC=0+-100 & 24546 & C4-1/8-T0-511R-F \\
\hline A4AER6 & 0757-0280 & 3 & & RESISTOR \(1 \mathrm{~K} 1 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1001-F \\
\hline A4ARR 7 & 0757-0401 & , & & RESISTOR \(1001 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-101-F \\
\hline A4ARRE & 0698-0083 & 8 & & RESISTOR 1.96k \(1 \chi\). 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1961-F \\
\hline AAALR9 & 0757-0438 & 3 & 5 & RESISTOR \(5.11 \mathrm{~K} 1 \% .125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-r0-5111-F \\
\hline AAAER 10 & 0698-3156 & 2 & 4 & RESISTOR 14.7K 1\% . 125 W F TC=0t-100 & 24546 & C4-1/8-T0-1472-F \\
\hline
\end{tabular}

Table 6－3．Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & \[
\begin{array}{|l}
\text { C } \\
\text { D }
\end{array}
\] & Oty & Description & Mfr Code & Mfr Part Number \\
\hline A4A2R11 \(\dagger\) & 0698－3628 & 3 & 1 & RESISTOR \(2205 \% 24\) MO TC＝0＋－200 & 28480 & 0698－3628 \\
\hline A4AER 12 & 0757－0401 & 0 & & RESISTOR \(1001 \%\) 125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－101－F \\
\hline AAALR 13 & 0698－0083 & 8 & & RESISTOR \(1.96 \mathrm{~K} 1 \mathrm{1z}\) ，125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－1961－F \\
\hline A4ARR 14 & 0757－0280 & 3 & & RESISTOR \(1 \mathrm{~K} 1 \% .125 \mathrm{~W}\) F TC \(=0+100\) & 24546 & C4－1／8－T0－1001－F \\
\hline AAAER 15 & 0757－0401 & 0 & & RESISTOR 100 1\％． 125 W F TC \(=0+-100\) & 24546 & C4－1／8－T0－101－F \\
\hline A4ARR 16 & 0698－0082 & 7 & 15 & RESISTIOR 464 1x ．125W F TC＝0＋－100 & 24546 & C4－1／8－70－4640－F \\
\hline A4A2R17 & 0698－3441 & 8 & & RESISTOR \(2151 \%\) ，125W F TC＝0＋－100 & 24546 & C4－1／8－T0－215R－F \\
\hline A AARR 18 & 0698－0084 & 9 & 9 & RESISTOR 2，15K 17.125 W F TC＝0＋－100 & 24546 & C4－1／8－T0－2151－F \\
\hline A4A2R19 & 0757－0280 & 3 & & RESISTOR \(1 \mathrm{~K} 1 \% .125 \mathrm{~W}\) F \(\mathrm{TC}=0+-100\) & 24546 & C4－1／8－T0－1001－F \\
\hline A4A2R20 & 0698－3132 & 4 & 9 & RESISTOR 261 1\％，125W F TC＝0＋～100 & 24546 & C4－1／8－T0－2610－F \\
\hline AAARR21 & 0757－0441 & 8 & & RESISTOR 6．25k 1z ． 125 W F TC＝0 +-100 & 24546 & C4－1／8－T0－8251－F \\
\hline A4A2R22 & 0757－0441 & 8 & & RESISTOR 8．25K \(1 \%\) ，125W F TC＝0＋－100 & 24546 & C4－1／8－T0－8251－F \\
\hline A4A2R23 & 0698－3438 & 3 & 9 & RESISTOR 147 1\％，125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－147R－F \\
\hline A4A2R24 & 0757－0346 & 2 & 12 & RESISTOR 10 1z． 125 W F TC \(=0+-100\) & 24546 & C4－1／8－T0－10R0－F \\
\hline AAA2R25 & 0757－0346 & 2 & & RESISTOR 10 1\％．125W F TC＝ \(0+-100\) & 24546 & C4－1／8－T0－10RO－F \\
\hline A4ARR26 & 0698－3438 & 3 & & RESISTOR \(1471 \chi\) ，125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－147R－F \\
\hline A4A2R27 & 0757－0418 & 9 & 6 & RESISTOR 619 1\％，125 F F TC＝0＋－100 & 24546 & C4－1／8－T0－619R－F \\
\hline A4ALR28 & 0698－3158 & 4 & 2 & RESISTOR 23，7K 1\％，125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－2372－F \\
\hline A4A2R29 & 0698－3154 & 0 & 6 & RESISTOR 4．22K 1\％，125W F TC＝0＋－100 & 24546 & C4－1／8－T0－4221－F \\
\hline A4AER 30 & 0698－3154 & 0 & & RESISTOR 4．22K 1\％． 125 W F \(\mathrm{TC}=0+-100\) & 24546 & C4－1／8－T0－4221－F \\
\hline AAA2R31 & 0757－0442 & 9 & & RESISTOR \(10 \mathrm{~K} 1 \%\) ，125W F TC＝0 \(0+100\) & 24546 & C4－1／8－T0－1002－F \\
\hline A4A2R 32 & 0757－0346 & 2 & & RESISTOR \(101 \mathrm{x}, 125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4－1／8－T0－10R0－F \\
\hline A4ARR33 & 0757－0346 & 2 & & RESISTOR \(101 \%\) ，125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－10R0－F \\
\hline A4A2R34 & 0698－3453 & 2 & 1 & RESISTOR 196 K 1 z ，125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－1963－F \\
\hline A4A2R35 & 0698－3260 & 9 & 1 & RESISTOR 464K 1\％．125W F TC＝\(=0+-100\) & 28480 & 0698－3260 \\
\hline A4A2R36 & 0757－0438 & 3 & & RESISTOR 5．11K 1\％． 125 W F TC＝0＋－100 & 24546 & C4－1／8－T0－5111－F \\
\hline A4A2R37 & 0757－0290 & 5 & 3 & RESISTOR 6．19K 1 z ．125W F TC＝ \(0+-100\) & 19701 & MF4C1／8－T0－6191－F \\
\hline A4A2R 38 & 0698－3444 & 1 & 10 & RESISTAR \(3161 \%\) ，125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－316R－F \\
\hline A4A2R39 & 0757－0438 & 3 & & RESISTOR 5.11 K 12.125 W F TC＝0 +-100 & 24546 & C4－1／8－T0－5111－F \\
\hline A4AER 40 & 0698－3444 & 1 & & RESISTOR 316 1\％，125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－316R－F \\
\hline A4A2R 41 & 0757－0288 & 1 & 3 & RESISTOR 9．09K 1\％．125W F TC＝0t－100 & 19701 & MF 4C1／8－T0－9091－F \\
\hline A4ARR42 \(\dagger\) & 0757－0401 & 3 & & RESISTOR \(1001 \%\) ，125w F TC \(=0+-100\) & 24546 & C4－1／8－T0－101－F \\
\hline A4A2R 43 & 0757－0420 & 3 & 3 & RESISTOR 750 1x，125W F TC＝0＋－100 & 24546 & C4－1／8－70－751－F \\
\hline A4AER 44 & 0757－0401 & 0 & & RESISTOR 100 1\％，125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－101－F \\
\hline A4A2R 45 & 0757－0419 & 0 & 1 & RESISTOR 681 1\％．125 W F TC＝0＋－100 & 24546 & C4－1／8－T0－681R－F \\
\hline A4A2R46 & 0757－0280 & 3 & & RESISTOR \(1 \mathrm{~K} 1 \%\) ，12SW F TC \(=0+-100\) & 24546 & C4－1／8－T0－1001－F \\
\hline A4A2R 47 & 0698－3446 & 3 & 5 & RESISTOR 38312 ，125W F TC \(=0+-100\) & 24546 & C4－1／日－T0－383R－F \\
\hline A4ALT1 & 08660－60369 & 0 & 1 & TRANSFORMER，RF，GREEN & 28480 & 08660－60369 \\
\hline A4A2U1 & 1820－0370 & 日 & 1 & IC GATE TTL H NAND QUAD Z－INP & 01295 & SN74H00N \\
\hline & & & & a4az miscellaneous & & \\
\hline & 9170－0029 & 3 & 1 & CORE－SHIELDING BEAD & 28480 & 9170－0029 \\
\hline A4A3 & 08660－60004 & 0 & 1 & BOARD ASSEMBLY，REF．DIUIDE BY TVO & 28480 & 08660－60004 \\
\hline A4A3C1 & 0160－2055 & 9 & & CAPACITOR－FXD ． \(01 \mathrm{UF}+80-20 \% 100 \mathrm{UDC}\) CER & 28480 & 0160－2055 \\
\hline A4A3C2 & 0160－2204 & 0 & & CAPACITOR－FXD 100PF＋－5\％300UDC MICA & 28480 & 0160－2204 \\
\hline A4AJC3 & 0160－2055 & 9 & & CAPACITOR－FXD ．01UF＋80－20\％100UDC CER & 28480 & 0160－2055 \\
\hline A4A3C4 & 0160－2204 & 0 & & CAPACITOR－FXD 100PF＋－5\％300UDC MICA & 28480 & 0160－2204 \\
\hline A4A3C5 & 0160－2055 & 9 & & CAPACITOR－FXD ． \(014 \mathrm{~F}+80-20 \% 100 \mathrm{UDC}\) CER & 28480 & 0160－2055 \\
\hline A4A3C6 & 0160－2055 & 9 & & CAPACITOR－FXD ． \(014 \mathrm{UF}+80-20 \% 100 \cup \mathrm{DC}\) CER & 28480 & 0160－2055 \\
\hline A4A3C7 & 0160－2055 & 9 & & CAPACITOR－FXD ． \(014 \mathrm{~L}+80-20 \%\) 100UDC CER & 28480 & 0160－2055 \\
\hline A4A3C8 & 0160－2055 & 9 & & CAPACITOR－FXD ．O1UF＋80－20\％100UDC CER & 28480 & 0160－2055 \\
\hline A4A3C9 & 0160－2055 & 9 & & CAPACITOR－FXD ．01UF＋80－20\％ 100 UDC CER & 28480 & 0160－2055 \\
\hline A4A3C10 & 0160－2055 & 9 & & CAPACITOR－FXD ．01UF＋80－20\％100UDC CER & 28480 & 0160－2055 \\
\hline A4A3C11 & 0160－0978 & 1 & 1 & CAPACITOR－FXD 1500PF＋－1\％500UDC MICA & 28480 & 0160－0978 \\
\hline A4A3C12 & 0160－2534 & 9 & 1 & CAPACITOR－FXD \(300 \mathrm{PF}+-12300 \cup D C\) MICA & 28480 & 0160－2534 \\
\hline A4A3C13 & 0160－2055 & 9 & & CAPACITOR－FXD ．O1UF＋80－20\％ 100 UDC CER & 28480 & 0160－2055 \\
\hline A A A3C14 & 0160－2055 & 9 & & CAPACITOR－FXD ． \(01 \mathrm{UF}+80-20 \mathrm{z} 100 \mathrm{UDC}\) CER & 28480 & 0160－2055 \\
\hline A4A3C15 & 0160－2204 & 0 & & CAPACITOR－FXD \(100 \mathrm{PF}+-5 \% 300 \mathrm{ODC} \mathrm{MICA}\) & 28480 & 0160－2204 \\
\hline A4A3C16 \(\dagger\) & 0140－0210 & 2 & 1 & CAPACITOR－FXD 270PF＋－5\％300UDC MICA & 72136 & DH15F271J0300WV1CR \\
\hline A4A3C17 \(\dagger\) & 0140－0193 & 0 & 1 & CAPACITOR－FXD 82PF＋－5\％300UDC MICA & 72136 & DM15E820J0300WUICR \\
\hline A4A3C18
A4ASC19 & 0160－2055 & 9 & & CAPACITOR－FXD ．01UF＋80－20X 100UDC CER NOT ASSIGNED & 28480 & 0160－2055 \\
\hline A4A3CR1 & 1902－0041 & 4 & & DIODE－ZNR 5．114 5\％DO－35 PD \(=.4 \mathrm{~W}\) & 28480 & 1902－0041 \\
\hline AAA3CR2 & 1901－0．025 & 2 & 1 & DIDDE－GEN PRP \(100 \mathrm{~V} 200 \mathrm{MA} \mathrm{DO-7}\) & 28480 & 1901－0025 \\
\hline A4A3L1 & 9100－0348 & 2 & 2 & INDUCTOR RF－CH－MLD 1UH 1\％．166DX．385LG & 28480 & 9100－0348 \\
\hline A4A3L2 & 9100－0348 & 2 & & INDUCTOR RF－CH－MLD 1UH 1\％．166DX．385LG & 28480 & 9100－0348 \\
\hline A4A3日1 & 1854－0019 & 3 & & TRANSISTOR NPN SI TO－18 PD＝360MW & 28480 & 1854－0019 \\
\hline A4AJQ2 & 1854－0019 & 3 & & TRANSISTOR NPN SI TO－18 PD \(=360 \mathrm{MW}\) & 28480 & 1854－0019 \\
\hline A4A303 & 1854－0019 & 3 & & TRANSISTOR NPN SI TO－18 PD＝360MW & 28480 & 1854－0019 \\
\hline A4A3Q4 & 1854－0019 & 3 & & TRANSISTOR NPN SI TO－18 PD＝360MW & 28480 & 1854－0019 \\
\hline A4A3R5 & 1854－0345 & 8 & 6 & TRANSISTOR NPN 2 N5179 SI TO－72 PD＝200MW & 04713 & 2N5179 \\
\hline
\end{tabular}

Table 6-3. Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & \[
\begin{aligned}
& \mathrm{C} \\
& \mathrm{D}
\end{aligned}
\] & Qty & Description & Mfr Code & Mfr Part Number \\
\hline AAA3R 1 & 0757-0401 & 0 & & RESISTOR \(1001 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-10-101-F \\
\hline A A A3R2 & 0757-0444 & 1 & & RESISTOR 12. \(1 \mathrm{k} 1 \chi\). 125 W F \(T C=0+-100\) & 24546 & C4-1/8-T0-1212-F \\
\hline A4A3R3 & 0757-0441 & 8 & & RESISTOR 8. 25 K 1\% , 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-8251-F \\
\hline A4A3R4 & 0757-0814 & , & 1 & RESISTOR \(5111 \%\).SW F TC \(=0+-100\) & 28480 & 0757-0814 \\
\hline AAA3R5 & 0757-0416 & 7 & & RESISTOR 51118,1254 F TC \(=0+-100\) & 24546 & C4-1/8-T0-511R-F \\
\hline A4A3R6 & 0757-0420 & 3 & & RESISTOR 750 1\% , 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-751-F \\
\hline A4A3R7 & 0757-0280 & 3 & & RESISTOR \(1 \mathrm{~K} \quad 1 \mathrm{X}\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1001-F \\
\hline A4A3R8 & 0698-0084 & 9 & & RESISTOR 2.15K 1\% . 125 W F TC= \(0+-100\) & 24546 & C4-1/8-T0-2151-F \\
\hline A4A3R9 & 0757-0416 & 7 & & RESISTOR \(5111 \%\). 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-511R-F \\
\hline AAA3R10 & 0698-3434 & 9 & 2 & RESISTOR 34.8 1 X , 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-34R日-F \\
\hline AAASR 11 & 0757-0401 & 0 & & RESISTOR 10012.125 W F TC=0*-100 & 24546 & C4-1/8-T0-101-F \\
\hline A AA3R 12 & 0757-0444 & 1 & & RESISTOR \(12.1 \mathrm{~K} 1 \%\), 125W F TC=0 +-100 & 24546 & C4-1/8-T0-1212-F \\
\hline A4A3R 13 & 0757-0442 & 9 & &  & 24546 & C4-1/8-T0-1002-F \\
\hline A AA3R 14 & 0757-0394 & 0 & & RESISTOR 51.11 x , 125W F TC=0 +-100 & 24546 & C5-1/8-T0-5181-F \\
\hline A4A3R 15 & 0757-0421 & 4 & 10 & RESISTOR 825 1X , 125W F TC=0+-100 & 24546 & C4-1/8-10-825R-F \\
\hline A4A3R16 & 0698-3429 & 2 & 1 & RESISTOR 19.6 1\% . 125 W F \(\mathrm{TC}=0+-100\) & 03888 & PME55-1/B-T0-19R6-F \\
\hline A4A3R 17 & 0757-0401 & 0 & & RESISTOR \(1001 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-101-F \\
\hline A4A3R 18 & 0757-0444 & 1 & & RESISTOR 12, \(1 \mathrm{~K} 1 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1212-F \\
\hline A4A3R 19 & 0757-0442 & 9 & & RESISTOR 10K \(1 \chi\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A4A3R20 & 0698-3440 & 7 & & RESISTOR \(1961 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-196R-F \\
\hline A4A3R21 & 0757-0418 & 9 & & RESISTOR 619 1\%, 125 F F TC=0 + - 100 & 24546 & C4-1/8-T0-619R-F \\
\hline A4A3R22 & 0757-0401 & 0 & & RESISTOR 100 1\% , 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-101-F \\
\hline A4A3R23 & 0757-0444 & 1 & & RESISTOR 12.1K 1\% . 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1212-F \\
\hline A4A3R24 & 0757-0441 & 8 & & RESISTOR 8.25K 1\% .1254 F \(T C=0+-100\) & 24546 & C4-1/8-T0-8251-F \\
\hline A4A3R25 & 0757-0397 & 3 & 5 & RESISTOR \(68.11 \%\), 125W F TC= \(0 *-100\) & 24546 & C4-1/8- 0 -68R1-F \\
\hline A4A3R26 & 9757-0418 & 9 & & RESISTOR 619 1x , 125W F TC \(=0+-100\) & 24546 & C. 5 -1/8-70-619R-F \\
\hline A4A3U1 & 1920-0469 & 6 & 2 & IC FF TTL H J-K Neg-EdGE-TRIG & 01295 & SN74HIO2N \\
\hline A4A4 & 08660-60001 & 7 & 1 & BOARD ASSEMBLY, REF. UCO & 28480 & 08660-60001 \\
\hline A AAACI & 0160-3456 & 6 & 1 & CAPACITOR-FXD \(1000 \mathrm{PF}+-10 \mathrm{X}\) 1KUDC CER & 28480 & 1160-3456 \\
\hline A4AACL & 0121-0451 & 3 & 3 & CAPACITOR-U TRMR-AIR 1,7-11PF 1750 & 74970 & 187-0106-028 \\
\hline A4AAC3 & 0180-0116 & 1 & & CAPACITOR-FXD 6. 8 UF +-10x 35UDC TA & 56289 & 150D685x9035E2 \\
\hline A AAACA & 0180-0228 & 6 & & CAPACITOR-FXD 22UF*-10\% 15UDC TA & 56289 & 150D226×9015B2 \\
\hline AAAAC5 & 0160-0214 & 8 & 1 & CAPACITOR-FXD \(10 \mathrm{PF}+-52\) 500UDC CER & 28480 & 0160-0214 \\
\hline A AASC6 & 0160-2266 & 4 & 10 & CAPACITOR-FXD 2APF *-5\% S00UDC CER 0*-30 & 28480 & 0160-2266 \\
\hline A4A4C7 & 0180-0116 & 1 & & CAPACITOR-FXD 6.8UF+-10\% 35UDC TA & 56289 & \(1500685 \times 903582\) \\
\hline A4A4C8 & 0160-2055 & 9 & & CAPACITOR-FXD .01UF \(+80-20 \% 100 U D C\) CER & 28480 & 1160-2055 \\
\hline AAAACS & 0160-2055 & 0 & & CAPACITOR-FXD , O1UF \(+80-202100 \cup D C\) CER & 28480 & 0160-2055 \\
\hline AAASCIO* \({ }^{+}\) & 0160-2197 & 0 & 1 & CAPACITOR-FXD 10PF \(+-5 \% 300 \mathrm{UDC}\) MICA & 28480 & 0160-2197 \\
\hline AAAACI 1 & 0140-0190 & 7 & 4 & CAPACITOR-FXD 39PF +-5X 300UDC MICA & 72136 & DMISE390J0300WU1CR \\
\hline AAAAC12 & 0180-0228 & 6 & & CAPACITOR-FXD 22UF \(+-10 \%\) 15UDC TA & 56289 & 150D226x9015B2 \\
\hline AAAAC13 & 1160-2055 & 9 & & CAPACITOR-FXD D1UF \(+80-202100 U D C\) CER & 28480 & 0160-2055 \\
\hline A4AAC14 & 0160-2055 & 9 & &  & 28480 & 0160-2055 \\
\hline AAAACIS & 0160-2055 & 9 & & CAPACITOR-FXD OIUF +80-20X 100UDC CER & 28480 & 0160-2055 \\
\hline AAAAC16 & 0160-2055 & 9 & & CAPACITOR-FXD . 01 UF +80-20x 100UDC CER & 28480 & 0160-2055 \\
\hline A4AAC17 & 121-0046 & 2 & 1 & CAPACITOR-U TRAR-CER 9-35PF 200 U PC-ATG & 52763 & 304322 9/35PF N650 \\
\hline AAAAC18 & 0160-3879 & 7 & 2 & CAPACITOR-FXD O1UF +-20x 100 UDC CER & 28480 & 0160-3879 \\
\hline AAAAC19 & 0160-2327 & 8 & 3 & CAPACITOR-FXD 1000PF +-20\% 100 UDC CER & 51642 & 150-110-X5R-102M \\
\hline A4AACZO & 0140-0.190 & 7 & & CAPACITOR-FXD 39PF \(+-5 \% 300 \cup D C\) MICA & 72136 & DHISE390J0300WVICR \\
\hline A4AAC21 & 0140-0190 & 7 & & CAPACITOR-FXD 39PF *-5x 300UDC MICA & 72136 & DMISE39050300WUICR \\
\hline A4A4C22 & 0160-2055 & 9 & & CAPACITOR-FXD . \(01 \mathrm{UF}+80-20 \mathrm{X}\) 100UDC CER & 28480 & 0160-2055 \\
\hline A4A4C23 & 0121-0451 & 3 & & CAPACITOR-U TRMR-AIR 1.7-11PF 175 C & 74970 & 187-0106-028 \\
\hline A4A4C24 & 0160-2327 & 8 & & CAPACITOR-FXD \(1000 \mathrm{PF}+-20 \% 100\) UDC CER & 51642 & 150-110-X5R-102M \\
\hline A4A4C25 & 0160-2055 & 9 & & CAPACITOR-FXD . O1UF +80-20x 100UDC CER & 28480 & 0160-2055 \\
\hline A4AAC26 & 0160-2055 & 9 & & CAPACITOR-FXD . O1UF +80-20\% 100 UDC CER & 28480 & 0160-2055 \\
\hline A4A4C27 & 0160-2055 & 9 & & CAPACITOR-FXD .01UF +B0-20x 100UDC CER & 28480 & 0160-2055 \\
\hline A4A4C28 & 0160-2055 & 9 & & CAPACITOR-FXD . 014 F +80-20\% 100UDC CER & 28480 & 0160-2055 \\
\hline A4A4C29 & 0160-2055 & 9 & & CAPACITOR-FXD . 01 UF +80-20\% 100 UDC CER & 28480 & 0160-2055 \\
\hline AAAAC30 & 0160-2055 & 9 & & CAPACITOR-FXD .01UF +80-20z 100UDC CER & 28480 & 0160-2055 \\
\hline A4A4C31 & 0121-0451 & 3 & & CAPACITOR-U TRMR-AIR 1.7-11PF 175U & 74970 & 187-0106-028 \\
\hline A4AAC32 & 0160-2327 & 8 & & CAPACITOR-FXD 1000PF \(+20 x^{\prime} 100\) UDC CER & 51642 & 150-110-X5R-1 02M \\
\hline A4A4C33 & 0160-2055 & 9 & & CAPACITOR-FXD .01UF +60-20\% 100 UDC CER & 28480 & 0160-2055 \\
\hline A4A4C35 & 0140-0190 & 7 & & CAPACITOR-FXD 39PF \(+-5 \%\) 300UDC MICA & 72136 & DH15E390J0300WU1CR \\
\hline A4A4C36 & 0160-2307 & 4 & 1 & CAPACITOR-FXD 47PF +-5\% 300UDC MICA & 28480 & 0160-2307 \\
\hline A4AAC37 & 0160-2055 & 9 & & CAPACITTRR-FXD O1UF +80-20x 100UDC CER & 28480 & 0160-2055 \\
\hline A4AAC38 & 0160-2205 & 1 & & CAPACITOR-FXD 120PF +-5\% 300UDC MICA & 28480 & 1160-2205 \\
\hline A4A4C39 & 0160-2205 & - & & CAPACITOR-FXD 120PF +-5\% 300UDC MICA & 28480 & 0160-2205 \\
\hline AAAAC40 & 0160-2055 & 9 & & CAPACITOR-FXD . \(014 \mathrm{C}+80-20 \% ~ 100 U D C\) CER & 28480 & 0160-2055 \\
\hline A4A4C41 & 0121-0448 & 8 & 1 & CAPACITOR-U TRMR-CER 2.5-EPF G3V PC-MTG & 28480 & 0121-0448 \\
\hline A AAACR 1 AAAACR2 & \[
\begin{aligned}
& 0122-0287 \\
& 1902-0041
\end{aligned}
\] & 5 & 1 & ```
DIODE-UNC 10PF 5% C2/C20-MIN=2 BUR=2OU
DIODE-ZNR 5.114 5% DD-35 PD=.4W
``` & \[
\begin{aligned}
& 28480 \\
& 28480
\end{aligned}
\] & \[
\begin{aligned}
& 0122-0287 \\
& 1902-0041
\end{aligned}
\] \\
\hline
\end{tabular}

Table 6－3．Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & C & Qty & Description & Mfr Code & Mfr Part Number \\
\hline A4A4LI & 9100－1623 & 8 & 1 & INDUCTOR RF－CH－MLD 27UH 5\％，166DX，385LG & 28480 & 9100－1623 \\
\hline A4A4L2 & 9100－1629 & 4 & & INDUCTOR RF－CH－MLD \(47 \mathrm{UH} 5 \% .166 \mathrm{DX} .385 \mathrm{LG}\) & 28480 & 9100－1629 \\
\hline A4A4L3 & 9100－1629 & 4 & & INDUCTOR RF－CH－MLD 47 UH 5\％，166DX．385LG & 28480 & 9100－1629 \\
\hline A4A4L4 & 08660－80002 & 0 & 1 & INDUCTOR & 28480 & 08660－80002 \\
\hline A4A4L5 & 08660－80009 & 7 & 3 & INDUCTOR & 28480 & 08680－80009 \\
\hline A4A4L6 & 9100－2247 & 4 & 3 & INDUCTOR RF－CH－MLD \(100 \mathrm{NH} 10 \%\) ． 1050 X .26 LG & 28480 & 9100－2247 \\
\hline A4A4L7 & 9100－2247 & 4 & & INDUCTOR RF－CH－MLD \(100 \mathrm{NH} 10 \%\) ，105DX．26LG & 28480 & \(9100-2247\) \\
\hline A4A4L8 & & & & PART OF PRINTED CIRCUIT BOARD & & \\
\hline A4A4L9 & & & & PART OF PRINTED CIRCUIT BOARD & & \\
\hline A4A4LI 10 & 9100－2247 & A & & INDUCTOR RF－CH－MLD 100 NH 10 Z ． 105 DDX ．26LG & 28480 & 9100－2247 \\
\hline A4A4LII & 9140－0158 & 6 & 1 & INDUCTOR RF－CH－MLD IUH \(10 \%\) ．105DX．26LG & 28480 & 9140－0158 \\
\hline A4A4L12． & 9100－2254 & 3 & 2 & INDUCTOR RF－CH－MLD 390NH 10\％．105DX．26LG & 28480 & 9100－2254 \\
\hline A4A4Q1 & 1854－0019 & 3 & & TRANSISTOR NPN SI TO－18 PD＝360MW & 28480 & 1854－0019 \\
\hline A4A4g2 & 1854－0345 & 8 & & TRANSISTOR NPN 2N5179 SI TO－72 PD＝200MW & 04713 & 2N5179 \\
\hline A4A4日3 & 1854－0345 & 8 & & TRANSISTOR NPN 2N5179 SI TO－72 PD＝200MW & 04713 & 2N5179 \\
\hline A4A4日4 & 1854－0431 & 3 & 4 & TRANSISTOR NPN 2 N5179 SI TO－72 PD \(=200 \mathrm{MH}\) & 01928 & 2N5179 \\
\hline A4A485 & 1854－0540 & 5 & 8 & TRANSISTOR NPN SI TO－72 PD \(=200 \mathrm{MW}\) FT \(=1 \mathrm{GHZ}\) & 04713 & MM8006 \\
\hline A4A4日6 & 1854－0540 & 5 & & TRANSISTOR NPN SI TO－72 PD＝200MW FT＝1GHZ & 04713 & MM8006 \\
\hline A4A4日7＊ & 1854－0540 & 5 & & TRANSISTOR NPN SI TO－72 PD＝200MW FT＝1GHZ & 04713 & MM8006 \\
\hline A4A498＊ & 1854－0431 & 3 & & TRANSISTOR NPN 2N5179 SI TO－72 PD＝200MW & 01928 & \(2 \mathrm{NS179}\) \\
\hline A4A409 & 1854－0404 & 0 & 1 & TRANSISTOR NPN SI TD－18 PD \(=360 \mathrm{MW}\) & 28480 & 1854－0404 \\
\hline A4A4R1 & 0757－0442 & 9 & & RESISTOR 10K 1\％，125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－1002－F \\
\hline A4A4R2 & 0757－0401 & 0 & & RESISTOR \(1001 z\) ，125W F TC＝0＋－100 & 24546 & C4－1／8－T0－101－F \\
\hline A4A4R3 & 0757－0418 & 9 & & RESISTOR \(6191 \%\) ， 125 W F TC \(=0+-100\) & 24546 & C4－1／8－T0－619R－F \\
\hline A4A4R5 & 0757－0416 & 7 & & RESISTOR \(5111 \%\) ，125W F TC＝0＋－100 & 24546 & C4－1／8－T0－511R－F \\
\hline A4A4R6 & 0757－0394 & 0 & & RESISTOR \(51.11 \%\) ，125w F TC \(=0+-100\) & 24546 & C4－1／8－T0－51R1－F \\
\hline A4A4R7 & 0698－0082 & 7 & & RESISTOR \(4641 \%\) ，125W F TC \(=0+-100\) & 24546 & C4－1／8－70－4640－F \\
\hline A4A4R9 & 0757－0278 & 9 & 3 & RESISTOR 1．78K \(1 \% .125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4－1／8－T0－1781－F \\
\hline A4A4R？ & 0757－0441 & 8 & & RESISTOR 8．25K \(1 \%\) ．125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－8251－F \\
\hline A4AAR 10 & 0698－3153 & 9 & 4 & RESISTOR 3．83K 1\％，125W F TC＝0＋－100 & 24546 & C4－1／8－T0－3831－F \\
\hline A4A4R11 & 0757－0442 & 9 & & RESISTOR 10 K 17.125 W F TC \(=0+-100\) & 24546 & C4－1／8－T0－1002－F \\
\hline A4ARP12 & 0757－0442 & 9 & & RESISTOR 10K 1\％．125W F TC＝0＋－100 & 24546 & C4－1／8－70－1002－F \\
\hline AAA4R13 & 0698－3440 & 7 & & RESISTOR 19612.125 W F TC \(=0+-100\) & 24546 & C4－1／8－T0－196R－F \\
\hline A4A4R 14 & 0698－0083 & 8 & & RESISTOR 1．96k \(1 \%\) ．125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－1961－F \\
\hline A4A4R15 & 0757－0422 & 5 & 2 & RESISTAR \(9091 \% .125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4－1／8－70－909R－F \\
\hline AAA4R16 A4A4R17 & 0757-0401 & 0 & 8 & RESISTOR \(1001 \chi\) ，125W F TC \(=0+-100\)
RESISTOR \(1.47 \mathrm{~K}, 125 \mathrm{~W}\) F \(\mathrm{TC}=0+-100\) & 24546
24546 & C4－1／8－T0－101－F
\(\mathrm{C} 4-1 / 8-\mathrm{TO}\)
－ \(471-\mathrm{F}\) \\
\hline A4A4R18 & 0698－3434 & 9 & & RESISTOR \(34.81 \%\) ，125W F TC \(=0+-100\) & 24546
2456 & CA－1／8－T0－34RB－F \\
\hline A4AAR19 & 0757－0398 & 4 & 3 & RESISTOR 7S 1\％．125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－75R0－F \\
\hline A4A4R20 & 0764－0033 & 9 & 1 & RESISTOR \(335 \times 2 W\) MD TC＝0＋－200 & 28480 & 0764－0033 \\
\hline AGAMR21 & 0757－0441 & 8 & & RESISTOR 8．25K 1\％． 125 W F TC \(=0+-100\) & 24546 & C4－1／8－T0－8251－F \\
\hline A4A4R22 & 0698－3153 & 9 & & RESISTOR 3．83K 1 K ，125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－3831－F \\
\hline A4A4R23 & 0698－3440 & 7 & & RESISTOR \(1961 \%, 125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4－1／8－T0－196R－F \\
\hline A4A4R24 & 0757－0441 & 8 & & RESISTOR 8．25K 1\％．125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－8251－F \\
\hline A4A4R25 & 0698－3153 & 9 & & RESISTOR 3．83K \(1 \%\) ． 125 W F TC \(=0+-100\) & 24546 & C4－1／8－T0－3831－F \\
\hline A4A4R26 & 0757－0394 & 0 & & RESISTOR 51．1 \(1 \%\) ，125W F TC \(=0+100\) & 24546 & C4－1／8－T0－51R1－F \\
\hline A4A4R27 & 0698－3155 & 1 & 10 & RESISTOR 4．64k 1 K ，125 W F TC＝0＋－100 & 24546 & C4－1／8－T0－4641－F \\
\hline A4ARR28 & 0698－3155 & 1 & & RESISTOR \(4.64 \mathrm{~K} 1 \mathrm{1} \mathrm{\%}\) ，125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－4641－F \\
\hline A4A4R29＊ & 0698－7212 & 9 & 1 & RESISTOR 100 1\％05W F TC \(=0+100\) & 24546 & C3－1／8－T0－100R－G \\
\hline A4AAR30 & 0757－0401 & 0 & & RESISTOR 100 1\％．125w F TC＝0＋－100 & 24546 & C4－1／8－T0－101－F \\
\hline A4A4R31 & 0757－0422 & 5 & & RESISTOR 909 1\％． 125 W F TC \(=0+-100\) & 24546 & C4－1／8－T0－909R－F \\
\hline A4A4R32 & 0698－7195 & 7 & 1 & RESISTOR \(19.612 \quad .05 \mathrm{~W}\) F TC＝0＋－100 & 24546 & C3－1／8－T00－19R6－G \\
\hline ASARU1 & 1820－0714 & 4 & 1 & IC PRESCR ECL & 28480 & 1820－0714 \\
\hline & & & & A4A4 MISCELLANEOUS & & \\
\hline & 08660－20181 & 0 & 1 & COIL FORM & 28480 & 08660－20181 \\
\hline A4A5 & 08660－60005 & 1 & 1 & BLARD ASSEMELY，VCO \＆AMPLIFIERS & 28480 & 08660－60005 \\
\hline A4ASC1 & 0160－3878 & 6 & 19 & CAPACITOR－FXD \(1000 \mathrm{PF}+-20 \%\) 100UDC CER & 28480 & 0160－3878 \\
\hline A4ASC2 & 0160－3878 & 6 & & CAPACITOR－FXD 1000 PF ＋－20X 100UDC CER & 28480 & 0160－3878 \\
\hline A4A5C3 & 0121－0452 & 4 & 2 & CAPACITOR－U TRMR－AIR 1．3－5．4PF 1750 & 74970 & 187－0103－028 \\
\hline A4A5Ca & 0160－3878 & 6 & & CAPACITOR－FXD \(1000 \mathrm{PF}+-20 \%\) 100UDC CER & 28480 & 0160－3878 \\
\hline A4A5C5 & 0160－3878 & 6 & & CAPACITOR－FXD 1000 PF＋－20X 100 UDC CER & 28480 & 0160－3878 \\
\hline A4ASC6
A4ASC7 & \(0160-2250\)
\(0160-2266\) & 6 & 2 & CAPACITOR－FXD 5．1PF＋－．25PF 500UDC CER & 28480 & 0160－2250 \\
\hline & & 4 & & CAPACITOR－FXD 24PF＋－5\％500UDC CER 0＋－30 & 28480 & 0160－2266 \\
\hline A4ASC8＊ & 0160－2266 & 4 & & CAPACITOR－FXD 24PF＋－5\％500UDC CER 0＋－30 & 29480 & 0160－2266 \\
\hline A4ASC9
A4ASC 10 & \(0160-3878\)
\(0160-3878\) & 6 & & CAPACITOR－FXD 1000 PF＋－20\％100UDC CER & 28480 & 0160－3878 \\
\hline AAASC 10 & 0160－3878 & 6 & & CAPACITOR－FXD \(1000 \mathrm{PF}+-20 \%\) 100UDC CER & 28480 & 0160－3878 \\
\hline A4ASCL1 & 0160－3878 & 6 & & CAPACITOR－FXD \(1000 \mathrm{PF}+-20 \%\) 100UDC CER & 28480 & 0160－3878 \\
\hline A4ASC12 & 0160－3878 & 6 & & CAPACITOR－FXD \(1000 \mathrm{PF}+-20 X 100 \mathrm{UDC}\) CER & 28480 & 0160－3878 \\
\hline A4A5C13＊＊ & 0160－2266 & 4 & & CAPACITOR－FXD 24PF＋－5\％500VDC CER 0＋－30 & 28480 & 0160－2266 \\
\hline A4A5C14＊ & 0160－2266 & 4 & & CAPACITOR－FXD 24PF＋－5\％500UDC CER 0＋－30 & 28480 & 0160－2266 \\
\hline A4A5C15 & 0160－3878 & 6 & & CAPACITOR－FXD \(1000 \mathrm{PF}+-20 \% 100 \mathrm{CDC}\) CER & 28480 & 0160－3878 \\
\hline
\end{tabular}

Table 6－3．Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & \[
\left|\begin{array}{l}
C \\
D
\end{array}\right|
\] & Qty & Description & Mfr Code & Mfr Part Number \\
\hline A4ASC16 \(\dagger\) & 0160－0576 & 5 & 2 & CAPACITOR－FXD． 1 UF＋－20x SOUDC CER & 28480 & 0160－0576 \\
\hline A4ASC17 & 0160－3878 & 6 & & CAPACITOR－FXD 1000 PF ＋－20\％ 100 UDC CER & 28480 & 0160－3878 \\
\hline A4ASC18 & 0160－3878 & 6 & & CAPACITOR－FXD 1000 PF＋－20X 100 UDC CER & 28480 & 0160－3878 \\
\hline A4ASC19＊＊ & 0160－2266 & 4 & & CAPACITOR－FXD 24PF＋－5\％500UDC CER O＋－30 & 28480 & 0160－2266 \\
\hline A4A5C20＊ & 0160－2266 & 4 & & CAPACITOR－FXD 24PF＋－5x 500VDC CER \(0+-30\) & 28480 & 0160－2266 \\
\hline A4ASC21 & 0160－3878 & 6 & & CAPACITOR－FXD \(1000 \mathrm{PF}+-20 X 100 \mathrm{VDC} \mathrm{CER}\) & 28480 & 0160－3878 \\
\hline A4ASC22 \(\dagger\) & 0160－0576 & 5 & & CAPACITOR－FXD ．1UF＋－20\％SOVDC CER & 28480 & 0160－0576 \\
\hline A4A5C23 & 0160－3878 & 6 & & CAPACITOR－FXD 1000 PF －－20x 100 UDC CER & 28480 & 0160－3878 \\
\hline A4ASC24 & 0160－3878 & 6 & & CAPACITOR－FXD 1000PF＋－20X 100VDC CER & 28480 & 0160－3878 \\
\hline A4ASCR 1 & 0122－0248 & 8 & 1 & DIODE－UUC 1 N5140A 10PF 5x C4／C60－MIN＝2．8 & 01281 & INSI40A \\
\hline AAASCRZ & 1901－1034 & 5 & 1 & DIODE－STABISTOR 900 DO－34 & 03508 & MPD400 \\
\hline A AASFLI & 08660－20038 & 6 & 1 & FILTER，L．P． 600 MHZ & 28480 & 08660－20038 \\
\hline A4ASFL2† & 08660－20370 & 9 & 1 & FILTER，HP 300 MHZ & 28480 & 08660－20370 \\
\hline A4A5L 1 & & & & PART OF PRINTED CIRCUIT BOARD & & \\
\hline A4A5L？ & 9100－2250 & 9 & 6 & INDUCTOR RF－CH－MLD 180NH 10\％．105DX．26LG & 28480 & 9100－2250 \\
\hline A4A5L 3 & 08660－81006 & 4 & 4 & INDUCTOR & 28480 & 08660－80006 \\
\hline A4ASL4 & 08660－80006 & 4 & & INDUCTOR & 28480
28480 & 08660－80006 \\
\hline A4A5L5 & 9100－2250 & 9 & & INDUCTOR RF－CH－MLD 180NH 10X ．105DX．26LG & 28480 & 9100－2250 \\
\hline A4ASL6 & 9100－2250 & 9 & & INDUCTOR RF－CH－MLD 180 NH 10X ． 105 DX ． 26 LG & 28480 & 9100－2250 \\
\hline A4A5L 7 & 08650－80006 & 4 & & INDUCTOR & 28480 & 08860－80006 \\
\hline A4ASL 8 & 08660－80006 & 4 & & INDUCTOR & 28480 & 08660－80006 \\
\hline A4A5L9 & 9100－2250 & 9 & & INDUCTOR RF－CH－MLD 180NH 10 Z ． 105 DXX .26 LG & 28480 & \(9100-2250\) \\
\hline A4A5LS \({ }^{\text {¢ }}\) & 9140－0143 & 9 & 1 & INDUCTOR RF－CH－MLD 3．3UH 10Z．105DX．2GLG & 28480 & 9140－0143 \\
\hline A4A5LI 11 & 08660－80009 & 7 & & Inductior & 28480 & 08660－80009 \\
\hline A4ASLI2 & 08660－80009 & 7 & & INDUCTOR & 28480 & 08660－80009 \\
\hline AAA5L13 & 9100－2250 & 9 & & INDUCTOR RF－CH－MLD 180NH \(10 \%\) ． 105 DX ．26LG & 28480 & \(9100-2250\) \\
\hline A4A5L14 & 9100－2250 & 9 & & INDUCTOR RF－CH－MLD 180NH 10\％．105DX．26LG & 28480 & \(9100-2250\) \\
\hline A4A501 & 1854－0431 & 3 & & TRANSISTOR NPN 2 NSIT9 SI TO－72 PD＝200HW & 01928 & 2N5179 \\
\hline A4A5Q2 & 1854－0540 & 5 & & TRANSISTOR NPN SI TO－72 PDE 200 MW FTIIGHZ & 04713 & Mm8006 \\
\hline A 4 A503 & 1854－0540 & 5 & & TRANSISTOR NPN SI TO－72 PD＝200MW FT＝1GHZ & 04713 & MMB006 \\
\hline A4A504 & 1854－0540 & 5 & & TRANSISTOR NPN SI TO－72 PD＝200MW FT＝1GHZ & 04713 & Mm8006 \\
\hline A4A505 & 1054－0540 & 5 & & TRANSISTOR NPN SI TO－72 PD＝200ME FT \(=1 \mathrm{GHZ}\) & 04713 & Mm8006 \\
\hline A4A5Q6 & 1854－0540 & 5 & & TRANSISTOR NPN SI \(\mathrm{TO}-72 \mathrm{PD}=200 \mathrm{MW} \mathrm{FT}=1 \mathrm{CHZ}\) & 04713 & mM8006 \\
\hline A4A5Q7 & 1854－0431 & 3 & & TRANSISTOR NPN 2N5179 SI TO－72 PD＝200HW & 01928 & 2N5179 \\
\hline A4A5R1 & 0698－0084 & 9 & & RESISTOR \(2.15 \mathrm{~K} \quad 12.125 \mathrm{~W}\) F \(\mathrm{TC}=0+-100\) & 24546 & C4－1／8－70－2151－F \\
\hline A4A5R2 & 0698－0084 & 9 & & RESISTRR 2．15K 1 K （125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－2151－F \\
\hline A4A5R3 & 0757－0280 & 3 & & RESISTOR 1K 1\％，125W F TC \(=0+-100\) & 245，46 & C4－1／8－T0－1001－F \\
\hline A4A5R 4 & 0757－1094 & 9 & & RESISTOR 1．47K 1Z 125W F TC＝E＋-100 & 24546 & C4－1／8－T0－1471－F \\
\hline A4A5RS & 0698－7295 & 0 & 2 & RESISTOR 51．1 1 x ．OSW F \(\mathrm{TC}=0+-100\) & 24546 & C3－1／8－T00－51R1－6 \\
\hline A4A5R6 & 0757－0346 & 2 & & RESISTOR \(101 \%, 125 W\) F \(T C=0+100\) & 245，46 & C4－1／8－T0－10R0－F \\
\hline A4ASR7 & 0698－7205 & 0 & & RESISTOR 51．1 12.05 F F \(\mathrm{TC}=0+-100\) & 24：46 & C3－1／8－T00－51R1－6 \\
\hline AAASR \({ }^{\text {a }}\) & 0757－0346 & 2 & & RESISTOR 1012.125 F F TC \(=0+100\) & 24546 & C4－1／8－T0－10R0－F \\
\hline A4A5R9 & 0757－0416 & 7 & & RESISTOR Sil \(1 \% .125 W\) F TC＝0＊－100 & 24546 & C4－1／8－T0－511R－F \\
\hline AAASR 10 & 0757－0416 & 7 & & RESISTOR \(511 \mathrm{1K}, 125 \mathrm{H}\) F TC \(=0+-100\) & 24546 & C4－1／8－T0－511R－F \\
\hline A4ASR 11 & 0757－0439 & 4 & 10 & RESISTOR 6．日1k 12.125 W F TC \(=0+-100\) & 24546 & C4－1／8－T0－6811－F \\
\hline A4A5R 12 & 0757－0279 & 0 & 17 & RESISTOR 3．16K Iz ．125w F TC \(=0+-100\) & 24546 & C4－1／8－70－3161－F \\
\hline AAASR 13 & 0757－0439 & 4 & & RESISTOR 6．81K i\％．125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－6011－F \\
\hline A4ASR 14 & 0757－0279 & 0 & & RESISTAR 3．16K 12 125U F TC \(=0+-100\) & 24546 & C4－1／8－T0－3161－F \\
\hline A4A5R 15 & 0698－3442 & 9 & 8 & RESISTOR 2371 x ．125W F TC＝ \(0+-100\) & 24546 & C4－1／日－T0－237R－F \\
\hline A AASR 16 & 0698－3442 & 9 & & RESISTOR \(2371 \%\) ，125W F TC＝0＋－100 & 24546 & C4－1／8－T0－233R－F
PMES \\
\hline AAASR 17 & 0699－3428 & 1 & 4 & RESISTOR 14．7 \(1 \%, 125 W\) F TC＝0 +100 & 03888 & PME55－1／8－T0－14R7－F \\
\hline A4A5R18 & 0698－3445 & 2 & 11 & RESISTOR \(3481 \% .125 \mathrm{~W}\) F TC \(=0+\sim 100\) & 24546 & C4－1／8－T0－348R－F \\
\hline AAASR19 & 0698－3428 & 1 & & RESISTOR \(14.71 \%\) ， 125 W F \(\mathrm{TC}=0+-100\) & 03888
24546 & PME55－1／8－10－14R7－F \\
\hline AAASR20 & 0698－3445 & 2 & & RESISTOR \(3481 \%\) ，125W F TC＝\(=0+100\) & 24546 & C4－1／8－T0－348R－F \\
\hline A4ASR21 & 0757－0439 & 4 & & RESISTOR 6．81K 1\％． 125 L F TC \(=0+-100\) & 24546 & C4－1／8－T0－6811－F \\
\hline A4ASR22 & 0757－0279 & 0 & & RESISTOR 3.16 K 1 x ． 125 W F \(T C=0+-100\) & 24546 & C4－1／8－T0－3161－F \\
\hline A4ASR23 & 0757－0439 & 4 & & RESISTOR 6．81K 12.125 W F \(\mathrm{TC}=0+-100\) & 24546 & C4－1／8－70－6811－F \\
\hline A4ASR24 & 0757－0279 & 0 & & RESISTOR 3．16k \(1 \%\) ，125W F TC \(=0+-100\) & 24546 & CA－1／8－T0－3161－F \\
\hline A4ASR25 & 0698－3440 & 7 & & RESISTOR \(1961 \%\) ．125W F TC \(=0+-100\) & 24546 & C6－1／8－T0－196R－F \\
\hline A4A5R26 & 0698－3440 & 7 & & RESISTOR \(1961 \%\) ． 125 W F TC \(=0+-100\) & 24546 & C4－1／8－T0－196R－F \\
\hline A4ASR27 & 0698－3428 & 1 & & RESISTOR 14．7 1x 125世 F TC \(=0+-100\) & 03888 & PME55－1／8－T0－14R7－F \\
\hline A4A5R28 & 0698－3444 & 1 & & RESISTOR 316 1\％． 125 W F TC \(=0+-100\) & 24546 & C4－1／8－T0－316R－F \\
\hline A4A5R29 & 0698－3428 & 1 & & RESISTOR 14．7 1\％．125W F TC \(=0+100\) & 03888 & PME55－1／8－T0－14R7－F \\
\hline A4A5R30 & 0698－3444 & 1 & & RESISTOR \(3161 \%\) ．125W F TC＝0＊－100 & 24546 & CA－1／8－T0－316R－F \\
\hline AAASR 31 & 0757－0439 & 4 & & RESISTOR 6． \(81 \mathrm{~K} \quad 1 \%\) ． 125 W F \(\mathrm{TC}=0+-100\) & 24546 & C4－1／8－70－6811－F \\
\hline A4A5R32 & 0757－0279 & 0 & & RESISTOR 3．16K 1\％．125世 F TC \(=0+-100\) & 24546 & C4－1／8－T0－3161－F \\
\hline A4A5R33 & 0757－0439 & 4 & & RESISTOR 6．日ix 1\％． 125 W F TC \(=0+-100\) & 24546 & C4－1／8－T0－6811－F \\
\hline A4A5R 34 & 0757－0279 & 0 & & RESISTOR 3．16k \(1 \% \quad 125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4－1／8－T0－3161－F \\
\hline A4A5R35 & 0698－3438 & 3 & & RESISTOR 147 1\％．125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－147R－F \\
\hline A4A5R36 & 0698－3438 & 3 & & RESISTOR 147 1\％． 125 W F TC \(=0+-100\) & 24546 & C4－1／8－T0－147R－F \\
\hline A4A5R37＊ & 0698－3439 & 4 & 6 & RESISTOR \(1781 x\) ． 125 W F TC＝0＊－100 & 24546 & C4－1／8－T0－178R－F \\
\hline A4A5R38＊ & 0698－3441 & 8 & 13 & RESISTOR 21512.125 W F \(T C=0+-100\) & 24546 & C4－1／8－T0－215R－F \\
\hline A4A5R \(39 *\) & 0698－3433 & 8 & 1 & RESISTOR 28．7 1\％．125w F TC＝0＊－100 & 03888 & PME55－1／8－T0－2ER7－F \\
\hline A 4 A5R40＊ & 0698－3431 & 6 & 1 & RESISTOR \(23.71 \%\) ．125世 F \(T C=0+100\) & 03888 & PME55－1／8－T0－23R7－F \\
\hline
\end{tabular}

Table 6-3. Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & \[
\begin{aligned}
& \text { C } \\
& \text { D }
\end{aligned}
\] & Qty & Description & Mfr Code & Mfr Part Number \\
\hline A4A5R41* & 0698-3439 & 4 & & & 24546 & C4-1/8-T0-178R-F \\
\hline A4A5R42* & 0698-3441 & 8 & & RESISTOR \(2151 \% .125 W\) F TC= \(=0+-100\) & 24546 & C4-1/8-T0-215R-F \\
\hline A4A5T1 & 08660-80003 & 1 & 1 & TRANSFORMER, ISOLATOR & 28480 & 08660-80003 \\
\hline A4A6 & 08660-60007 & 3 & 1 & board assembly, Pretune & 28480 & 08660-60007 \\
\hline A4A6C1 & \(0160-2055\)
\(0180-0183\) & 9 & 5 & CAPACITOR-FXD \({ }^{\text {O }}\) (1UF +80-20\% 100 UDC CER
CAPACITOR-FXD & 28480
56289 & \[
0160-2055
\] \\
\hline A 4 A6C 3 & 0180-0183 & & & CAPACITOR-FXD \(10 \mathrm{UF}+75-10 \% 50 \cup D C\) AL & 56289 & 30D1066050CB2 \\
\hline A4A6C4 & 0180-0141 & 2 & 4 & CAPACITOR-FXD 50UF+75-10\% 50UDC AL & 56289 & 300506G050DD2 \\
\hline A4A6C5 & 0121-0452 & 4 & & CAPACITOR-U TRMR-AIR 1.3-5.4PF 175 U & 74970 & 187-0103-028 \\
\hline A4A6C6* \(\dagger\) & 0160-2263 & 1 & 1 & CAPACITOR-FXD 18PF +-5\% 500UDC CER 0+-30 & 28480 & 0160-2263 \\
\hline A4A6C7 & 0160-0174 & 9 & 10 & CAPACITOR-FXD . \(47 \mathrm{UF}+80-20 \%\) 25UDC CER & 28480 & 0160-0174 \\
\hline A4A6C8 & 0180-0197 & 8 & 3 & CAPACITOR-FXD 2.2UF+-10\% 20UDC TA & 56289 & 1500225x9020A2 \\
\hline A 4 A6CP
A4A6C10 & \(0160-3878\)
\(0180-0183\) & 6 & & CAPACITOR-FXD 1000 PF +-20\% 100UDC CER CAPACITOR-FXD \(10 \mathrm{UF}+75-10250 \mathrm{UDC}\) AL & 28480
56289 & \begin{tabular}{l}
0160-3878 \\
30D106G050CB2
\end{tabular} \\
\hline A4A6C11 & 0160-3537 & 4 & & CAPACITOR-FXD 680PF +-5\% 100UDC MICA & 28480 & 0160-3537 \\
\hline A4A6CR1 & 1901-0033 & 2 & 2 & DIODE-GEN PRP 180 U 200MA DO-7 & 28480 & 1901-0033 \\
\hline A4AbL1 & 9140-0178 & 0 & , & INDUCTOR RF-CH-MLD \(12 \mathrm{UH} 10 \%\), 166DX.385LG & 28480 & 9140-0178 \\
\hline A4A6L2 & 9100-1643 & 2 & 1 & INDUCTOR RF-CH-MLD 300 UH 5\% , 2DX,45LG & 28480 & 9100-1643 \\
\hline A4AbQ1 & 1854-0071 & 7 & & TRANSISTOR NPN SI PD \(=300 \mathrm{HW}\) FT \(=200 \mathrm{HHZ}\) & 28480 & 1854-0071 \\
\hline A4A692 & 1853-0007 & 7 & 13 & TRANSISTOR PNP \(2 N 3251\) SI TO-18 PD \(=360 \mathrm{MH}\) & 04713 & 2N3251 \\
\hline A4A683 & 1853-0007 & 7 & & TRANSISTOR PNP \(2 N 3251\) SI T0-18 PD=360MW & 04713 & 2N3251 \\
\hline A4A604 & 1853-0007 & 7 & & TRANSISTTR PNP 2N3251 SI TO-18 PD=360MW & 04713 & 2N3251 \\
\hline A4A605 & 1853-0007 & 7 & & TRANSISTOR PNP 2N3251 SI TO-18 PD=360MW & 04713 & 2N3251 \\
\hline A4AbQ6 & 1853-0007 & 7 & & TRANSISTOR PNP 2 N3251 SI TO-18 PD=360MW & 04713 & 2N3251 \\
\hline A4A697 & 1853-0007 & 7 & & TRANSISTOR PNP 2 N3251 SI TO-18 PD=360MW & 04713 & 2N3251 \\
\hline A4A608 & 1853-0007 & 7 & & TRANSISTOR PNP 2N3251 SI TO-18 PD \(=360 \mathrm{MH}\) & 04713 & 2 N 3251 \\
\hline A4A6Q10 & 1853-0007 & 7 & & & 04713 & 2N3251 \\
\hline A4A6日11 & 1853-0007 & 7 & & TRANSISTOR PNP 2N3251 SI T0-18 PD=360MH & 04713 & 2N3251 \\
\hline A4A6Q12 & 1853-0007 & 7 & & TRANSISTOR PNP 2N3251 SI TO-18 PD \(=360 \mathrm{MW}\) & 04713 & 2N3251 \\
\hline A4A6013 & 1853-0007 & 7 & & TRANSISTOR PNP 2 N3251 SI TO-18 PD=360MW & 04713 & 2 N 3251 \\
\hline A4A6Q14 & 1854-0071 & 7 & & TRANSISTOR NPN SI PD \(=300 \mathrm{MH}\) FT \(=200 \mathrm{MHZ}\) & 28480 & 1854-0071 \\
\hline A4A6R1 & 0757-0346 & 2 & & RESISTOR \(101 \%, 125 \mathrm{~W}\) F TC \(=0+-100\)
RESISTOR-TRMR 5 K (10\% C TOP-ADJ \(10-\) TRN & 24546 & Ca-1/8-T0-10R0-F \\
\hline A4AGR2 & 2100-3818 & 0 & 2 & RESISTOR-TRMR 5K 10\% C TOP-ADJ 10-TRN & 32997 & 3262W-1-502 \\
\hline A4AGR
A4AGR & -0757-0418 & 3 & & RESISTOR
RESISTOR
1 K
K
\(19 \%\)
\(1 \%\) & 24546
24546 & C4-1/8-T0-619R-F
C4-1/8-T0-1001-F \\
\hline A4A6R5 & 0757-0442 & & & RESISTOR 10K 1\% . 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A4AGR6 & 0757-0416 & 7 & & RESISTOR \(5111 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-511R-F \\
\hline A4A6R7 & 0757-0280 & 3 & & RESISTOR 1K 1 K , 125W F TC \(=0+100\) & 24546 & C4-1/8-T0-1001-F \\
\hline A4A6RB & 0757-1094 & 9 & & RESISTOR \(1.47 \mathrm{~K} 1 \%\). 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1471-F \\
\hline A4A6R9 & 0757-0441 & 8 & & RESISTOR 8.25K 1 x , 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-8251-F \\
\hline A4A6R10 & 0757-0405 & 4 & 4 & RESISTOR \(1621 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-162R-F \\
\hline A4AGR 11 & 0698-3444 & 9 & & RESISTOR \(3161 \%\) 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-316R-F \\
\hline A4ABR12 & 0757-1094 & 9 & & RESISTOR \(1.47 \mathrm{~K} 1 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1471-F \\
\hline A4A6R13 & 2100-3817 & 9 & 2 & RESISTOR-TRMR 2K \(10 \%\) C TOP-ADJ 10 -TRN & 32997 & 3262w-1-202 \\
\hline A4ASR14 & 0757-0200 & 7 & 11 & RESISTOR \(5.62 \mathrm{~K} 1 \%\). 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-5621-F \\
\hline A4A6R15 & 2100-3822 & 6 & 3 & RESISTOR-TRMR \(10010 \% \mathrm{C}\) TOP-ADJ 10-TRN & 32997 & 3262W-1-101 \\
\hline A4A6R16 & 0698-3439 & 4 & & RESISTOR 178 1\% . 125 W F TC=0+-100 & 24546 & C4-1/8-T0-178R-F \\
\hline A4A6R17 & 0757-0428 & 1 & 14 & RESISTOR \(1.62 \mathrm{~K} 1 \%, 125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-1621-F \\
\hline A4AGR18* & 0757-0405 & 4 & & RESISTOR \(1621 \chi\), 125W F TC= \(0+-100\) & 24546 & C4-1/8-T0-162R-F \\
\hline A4A6R19* & 0698-3443 & 0 & 6 & & 24546 & C4-1/8-T0-287R-F \\
\hline A4A6R20 & 2100-3822 & 6 & & RESISTOR-TRMR 100102 C TOP-ADJ 10-TRN & 32997 & 3262W-1-101 \\
\hline A4A6R21
A4AGR22 & \(0698-3409\)
\(2100-3822\) & 8 & 1 & RESISTOR \(2,37 \mathrm{~K} 1 \%\). 5 W F \(\mathrm{TC=0+-100}\)
RESISTOR-TRMR 100
R & 28480
32997 & \[
\begin{aligned}
& 0698-3409 \\
& 3262 w-1-101
\end{aligned}
\] \\
\hline A4A6R23 & 0757-0401 & 0 & & RESISTOR \(1001 \% .125 \mathrm{~W}\) F \(T C=0+-100\) & 24546 & C4-1/8-T0-101-F \\
\hline A4A6R24 & 0698-3440 & 7 & & RESISTOR \(1961 \% .125 \mathrm{~W}\) F TC=0+-100 & 24546 & C4-1/8-T0-196R-F \\
\hline A4A6R25 & 0757-0278 & 9 & & RESISTOR 1.78K 12.125 W F T C \(=0+-100\) & 24546 & C4-1/8-T0-1781-F \\
\hline A4AGR26* & 0698-3438 & 3 & & RESISTOR \(1471 \%\). 125 W F TC=0+-100 & 24546 & C4-1/8-T0-147R-F \\
\hline A4A6R27 & 0757-0346 & 2 & & RESISTOR \(101 \%, 125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-10R0-F \\
\hline A4A6R28 & 2100-3821 & 5 & 1 & RESISTOR-TRMR \(20010 \% \mathrm{C}\) TOP-ADJ 10-TRN & 32997 & 3262W-1-201 \\
\hline A4A6R29 A4A6R30 & 0757-0836
\(0757-0394\) & 5 & 1 & & 28480
24546 & \[
\begin{aligned}
& 0757-0836 \\
& \mathrm{C} 4-1 / 8-\mathrm{T} 0-51 R 1-F
\end{aligned}
\] \\
\hline A4A6R31
A4A6R32 & \(0698-3441\)
\(0698-0083\) & 8 & & \begin{tabular}{l}
RESISTOR \(2151 \%\). 125 W F TC \(=0+-100\) \\
RESISTOR 1.96 K 12 . 125W F TC \(=0+-100\)
\end{tabular} & 24546
24546 & \[
\begin{aligned}
& C 4-1 / 8-T 0-215 R-F \\
& C 4-1 / 8-T 0-1961-F
\end{aligned}
\] \\
\hline A4A6R33* & 0698-3440 & 7 & & RESISTOR 196 1\% . 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-196R-F \\
\hline A4A6R34 & 0757-0346 & 2 & & RESISTOR \(101 \%\), 125 F F TC=0+-100 & 24546 & C4-1/8-T0-10R0-F \\
\hline A4A6R35 & 2100-3820 & 4 & 3 & RESISTOR-TRMR \(50010 \% \mathrm{C}\) TOP-ADJ \(10-\mathrm{TRN}\) & 32997 & 3262W-1-501 \\
\hline A4A6R36 & 0698-3442 & 9 & & RESISTOR \(2371 \%\). 125 F TC=0+-100 & 24546 & C4-1/8-T0-237R-F \\
\hline A4A6R37 & 0698-0084 & 9 & & RESISTOR 2.15K 1\% . 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-2151-F \\
\hline A4A6R38* & 0698-3441 & 日 & & RESISTOR \(2151 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-215R-F \\
\hline A4A6R39 & 0757-0440 & 7 & 3 & RESISTOR 7.5K 2 X . 125 W F \(\mathrm{TC}=0+-100\) & 24546 & C4-1/8-T0-7501-F \\
\hline A4AGR 40 & 2100-3820 & 4 & & RESISTOR-TRMR \(50010 \% \mathrm{C}\) TOP-ADJ \(10-\) TRN & 32997 & 3262W-1-501 \\
\hline
\end{tabular}

Table 6-3. Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & \[
\left|\begin{array}{l}
C \\
D
\end{array}\right|
\] & Qty & Description & \begin{tabular}{l}
Mfr \\
Code
\end{tabular} & Mfr Part Number \\
\hline AAAGR 41 & 0698-3132 & 4 & & RESISTOR \(2611 \%\). 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-2610-F \\
\hline A4AGR 42 & 0698-3150 & 6 & 5 & RESISTOR 2.37 K 1\% .125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-2371-F \\
\hline A4A6R 43* & 0698-0082 & 7 & & RESISTOR 464 1 x . 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-4640-F \\
\hline A AAGR 44 & 2100-3820 & 4 & & RESISTOR-TRMR \(50010 \%\) C TOP-ADJ 10-TRN & 32997 & 3262w-1-501 \\
\hline AAAGR45 & 0698-3443 & 0 & & RESISTOR 287 1\% . 125w F TC \(=0+-100\) & 24546 & C4-1/8-T0-287R-F \\
\hline A AAGRA6 & 0698-0085 & 0 & 8 & RESISTOR \(2.61 \mathrm{~K} 1 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-2611-F \\
\hline A4A6R47* & 0757-0417 & B & 1 & RESISTOR \(5621 \%\). 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-562R-F \\
\hline A A A 6 R 48 & 2100-3819 & 1 & 1 & RESISTOR-TRMR 1 K 10 X C TOP-ADJ 10 -TRN & 32997 & 3262w-1-102 \\
\hline A4A6R49 & 0698-3444 & 1 & & RESISTOR \(3161 \% .125 W\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-316R-F \\
\hline AAAGR50 & 0698-3151 & 7 & 5 & RESISTOR 2.87K 1\% . 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-2871-F \\
\hline A4A6R51* & 0757-0280 & 3 & & RESISTOR 1 K 1z , 125W F TC=0 \(0-100\) & 24546 & C4-1/8-T0-1001-F \\
\hline A AA6R52 & 2100-3817 & 9 & & RESISTOR-TRMR 2K 10\% C TOP-ADJ 10-TRN & 32997 & 3262-1-202 \\
\hline A4A6R53 & 0698-3445 & 2 & & RESISTOR \(3481 \%\). 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-348R-F \\
\hline A4A6R54 & 0757-0279 & 0 & & RESISTOR 3.16K \(1 \%\). 125W F TC \(=0+-100\) & 245,46 & C4-1/8-70-3161-F \\
\hline A4A6R55* & 0757-1094 & 9 & & RESISTOR 1.47K 1\% . 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1471-F \\
\hline A4AGR56 & 2100-3818 & 0 & & RESISTOR-TRMR 5K 10\% C TOP-ADJ 10-TRN & 32997 & 3262w-1-502 \\
\hline A4A6R57 & 0698-3446 & 3 & & RESISTOR 303 1\%. 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-383R-F \\
\hline A 4Abr58 & 0698-3152 & 8 & 2 & RESISTOR 3.48k 12 . 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-3481-F \\
\hline A4A6R59* & 0698-3155 & 1 & & RESISTOR 4.64K 1\% . 225 W F TC \(=0+-100\) & 245,46 & C \(4-1 / 8-\mathrm{T} 0-4641-\mathrm{F}\) \\
\hline A4A6R60 & 2100-3816 & 8 & 1 & RESISTOR-TRMR 10K 10X C TOP-ADJ 10-TRN & 32997 & 3262W-1-103 \\
\hline A4A6R61 & 0757-0447 & 4 & 3 & RESISTOR 16.2K \(1 \%\), 125W F TC=0 +-100 & 24546 & C4-1/8-T0-1622-F \\
\hline A4A6R62 & 0698-3442 & 9 & & RESISTOR \(2371 \%\). 125W F TC \(=0+-100\) & 24540 & C4-1/8-T0-237R-F \\
\hline A4A6R63 & 0757-0442 & 9 & & RESISTOR \(10 \mathrm{~K} 1 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A4AGR64 & 0698-0084 & 9 & & RESISTOR 2.15K 1\% , 125W F \(\mathrm{TC}=0+-100\) & 24546 & C4-1/8-T0-2151-F \\
\hline A4AGRGS & 0698-7284 & 5 & 1 & RESISTOR 100 K 12.05 W F TC=0+-100 & 24546 & C3-1/8-T0-1003-6 \\
\hline A4A6UI & 1820-2082 & 3 & 1 & IC DCDR TTL BCD -TO-10-LINE & 01295 & SN5442AJ \\
\hline A4A7 & 08660-60006 & 2 & 1 & BOARD ASSEMBLY, PHASE DETECTOR & 28480 & 08660-60006 \\
\hline A4A7C1 & 0160-3878 & 6 & & CAPACITOR-FXD 1000PF +-20X 100VDC CER & 28480 & 0160-3878 \\
\hline A4A7C2 & 0160-3878 & 6 & & CAPACITOR-FXD \(1000 \mathrm{PF}+-20 \%\) 100UDC CER & 28480 & 0160-3878 \\
\hline A4A7C3 & 0180-2214 & 4 & 3 & CAPACITOR-FXD 90UF+75-10\% 16UDC AL & 56289 & 30D9066016CC2 \\
\hline A4A7C4 & 0160-3879 & 7 & & CAPACITOR-FXD O1UF +-20x 100UDC CER & 28480 & 0160-3879 \\
\hline A4A7C5 & 0160-3878 & 6 & & CAPACITOR-FXD 1000PF +-20\% 100UDC CER & 28480 & 0160-3878 \\
\hline A4A7C6 & 0180-2214 & 4 & & CAPACITOR-FXD 90UF+75-10\% 16UDC AL & 56.289 & 3009066016CC2 \\
\hline A A A C C 7 & 0180-0049 & 9 & 4 & CAPACITOR-FXD 20UF+75-10\% SOUDC AL & 56. 89 & 30D2066050CC2 \\
\hline A4A7C8 & 0160-3878 & 6 & & CAPACITOR-FXD 1000PF +-20x 100VDC CER & 28480 & 0160-3878 \\
\hline A 4a7C9 & 0160-0839 & 3 & 1 & CAPACITOR-FXD 110 PF *-1\% 300VDC MICA & 28480 & 0160-0839 \\
\hline AAATC10 & 0160-3064 & 2 & 1 & CAPACITOR-FXD 1000 PF +-5\% 300UDC MICA & 28480 & 0160-3064 \\
\hline A4A7C11 & 0160-0182 & 9 & 2 & CAPACITOR-FXD 47PF \(+-5 \% 300 \cup D C\) MICA & 28480 & 0160-0182 \\
\hline A4A7C12 & 0160-0182 & 9 & & CAPACITOR-FXD ATPF +-5\% 300VDC MICA & 2848 n & 0160-0182 \\
\hline A4A7C13 & 0160-2250 & 6 & & CAPACITOR-FXD 5.1PF + - 25PF SOOUDC CER & 28480 & 0160-2250 \\
\hline AAADC14 & 0160-2266 & 4 & & CAPACITOR-FXD 24PF +-5x SOOUDC CER \(0+-30\) & 28480
56209 & 0160-2266 \\
\hline A AATC15 & 0180-1745 & 4 & 1 & CAPACITOR-FXD 1.5UF*-10x 20UDC TA & 56289 & 150015599020A? \\
\hline A4A7C16 & 0160-2266 & 4 & & CAPACITOR-FXD 24PF - 5\% 500VDC CER 0+-30 & 28480 & 0160-2266 \\
\hline A4A7C17 & 0160-2264 & 2 & 1 & CAPACITOR-FXD 20PF +-5\% 500UDC CER O+-30 & 28480 & 0160-2264 \\
\hline A4A7C18 & 0180-0291 & 3 & 13 & CAPACITOR-FXD 1UF+-10x 3SUDC TA & \(56: 89\) & \(1500105 \times 9035 \mathrm{AL}\) \\
\hline A4A7C19 & 0180-0291 & 3 & & CAPACITOR-FXD 1UF*-10x 35UDC TA & 56289 & 150D105×9035A2 \\
\hline A4A7C20 & 0180-0291 & 3 & & CAPACITOR-FXD 1UF*-102 35UDC TA & 56289 & \(1500105 \times 9035 \mathrm{AZ}\) \\
\hline A4A7C21 & 0180-0197 & 8 & & CAPACITOR-FXD 2. 2UF+-10x 20UDC TA & 56289 & \(150 \mathrm{D} 225 \times 9020 \mathrm{~A} 2\) \\
\hline A4A7C22 & 0180-0291 & 3 & & CAPACITOR-FXD 1UF+-102 35UDC TA & 56289 & \(150 \mathrm{D} 105 \times 9035 \mathrm{AZ}\) \\
\hline A4A7C23 & 0180-0197 & 8 & & CAPACITAR-FXD 2.2UF+-10x 20UDC TA & 56289 & \(150 \mathrm{D} 225 \times 9020 \mathrm{~A} 2\) \\
\hline A4A7C24 & 0180-0291 & 3 & & CAPACITOR-FXD 1UF*-102 35UDC TA & 56 ? 89 & 1500105×9035A2 \\
\hline A4A7C25 & 0180-0183 & 2 & & CAPACITOR-FXD 10UF+75-10\% 50VDC AL & 56289 & 30D1066050CB2 \\
\hline A4A7C26 & 0160-2266 & 4 & & CAPACITOR-FXD 24PF +-5X 500VDC CER 0*-30 & 28480 & 0160-2266 \\
\hline A AATCRI & 1901-0189 & 9 & 1 & DIODE-STEP RECOUERY & 28480 & 1901-0189 \\
\hline AAATCR2 & 1906-0098 & 9 & 4 & DIDDE-MATCHED IU & 28480 & 1906-0098 \\
\hline A AATCR3 & 1906-0098 & 9 & & DIODE-MATCHED IU & 28480 & 1906-0098 \\
\hline A AATCR 4 & 1906-0098 & 9 & & DIODE-MATCHED IV & 28480 & 1906-0098 \\
\hline A AATCR5 & 1906-0098 & 9 & & DIODE-MATCHED IV & 28480 & 1906-0098 \\
\hline AAATCR6 & 1902-0041 & - & & DIODE-ZNR 5.11U 5 Z DD-35 PD=. AW & 28480 & 1902-0041 \\
\hline A AATCR 7 & 1902-0041 & 4 & & DIODE-ZNR 5.11U 5\% DO-35 PD=.4W & 28480 & 1902-0041 \\
\hline AAATCRE & 1902-0041 & 4 & & DIODE-ZNR 5.11U 5X DO-35 PD \(=\). \(4 W\) & 28480 & 1902-0041 \\
\hline A4ATCR9 & 1902-0041 & 4 & & DIODE-ZNR 5.11U \(5 \times\) DO-35 PD=.4W & 28480 & 1902-004 \\
\hline AAATCR 10 & 1901-0033 & 2 & & DIODE-GEN PRP 180 U 200MA DO-7 & 28480 & 1901-0033 \\
\hline A4A7J 1 & 1250-0836 & 2 & 1 & CONNECTOR-RF SMC M PC 50-OHM & 28480 & 1250-0836 \\
\hline A4A7L 1 & 9140-0144 & 0 & & INDUCTOR RF-CH-MLD 4.7UH 10\% . 105 DXX . 26 LC & 28480 & 9140-0144 \\
\hline A4A7LI & 9140-0210 & 1 & 2 & INDUCTOR RF-CH-MLD \(100 \mathrm{UH} 5 \%\).166DX. 385LG & 28480 & 9140-0210 \\
\hline A4A7L3 & 9140-0210 & , & & INDUCTOR RF-CH-MLD 100 UH 5\% . 166DX.385LG & 28480 & 9140-0210 \\
\hline A4A7L4 & 9100-2260 & 1 & & INDUCTOR RF-CH-MLD 1.8UH \(10 \%\). 105 DDX . 26 LC & 28480 & \(9100-2260\) \\
\hline A4A7L5 & 9100-2254 & 3 & & INDUCTOR RF-CH-MLD 390NH 10 X . 105 DXX . 26LG & 28480 & 9100-2254 \\
\hline A4A7L6 A4A7L7 & \[
\begin{aligned}
& 08660-80005 \\
& 08660-80005
\end{aligned}
\] & 3 & 2 & \begin{tabular}{l}
INDUCTOR \\
INDUCTOR
\end{tabular} & \[
\begin{aligned}
& 28480 \\
& 28480
\end{aligned}
\] & \[
\begin{aligned}
& 08660-80005 \\
& 08660-80005
\end{aligned}
\] \\
\hline
\end{tabular}

Table 6-3. Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & C & Oty & Description & Mfr Code & Mfr Part Number \\
\hline A4A791 & 1854-0019 & 3 & & TRANSISTOR NPN SI TO-18 PD=360MW & 28480 & 1854-0019 \\
\hline A4A7Q2 & 1854-0019 & 3 & & TRANSISTOR NPN SI TO-18 PD \(=360 \mathrm{MW}\) & 28480 & 1854-0019 \\
\hline A4a7Q3 & 1853-0034 & 0 & 7 & TRANSISTOR PNP SI TO-18 PD \(=360 \mathrm{MH}\) & 28480 & 1853-0034 \\
\hline A4A7Q4 & 1855-0049 & 1 & 3 & TRANSISTOR-JFET DUAL N-CHAN D-MODE SI & 28480 & 1855-0049 \\
\hline A4A705 & 1853-0007 & 7 & & TRANSISTOR PNP 2 N3251 SI TD-18 PD=360MW & 04713 & 2N3251 \\
\hline A4A7Q6 & 1854-0023 & 9 & 1 & TRANSISTOR NPN SI TO-18 PD=360MW & 28480 & 1854-0023 \\
\hline A4A7R1 & 0757-0398 & 4 & & RESISTOR \(751 \%\), 125 F F TC \(=0+-100\) & 24546 & C4-1/8-T0-73R 0-F \\
\hline A4A7R2 & 0698-0084 & 9 & & RESISTOR \(2,15 \mathrm{~K} 1 \%, 125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-2151-F \\
\hline A4A7R3 & 0757-0280 & 3 & & RESISTOR \(1 \mathrm{~K} 1 \%\), 125 F F TC=0 + 100 & 24546 & C4-1/8-T0-1001-F \\
\hline A4A7R 4 & 0698-3440 & 7 & & RESISTOR \(1961 \%\), 125W F TC=0+-100 & 24546 & C4-1/8-T0-196R-F \\
\hline A4A7RS & 0757-0346 & 2 & & RESISTOR \(101 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-10R O-F \\
\hline A4A7R6 & 0698-3437 & 2 & 3 & RESISTOR \(1331 \% .1254\) F TC=0+-100 & 24546 & C4-1/8-T0-133R-F \\
\hline A4A7R7 & 0698-3443 & , & & RESISTOR \(2871 \%\). 125W F TC=0+-100 & 24546 & C4-1/8-T0-287R-F \\
\hline A4A7R8 & 0757-0346 & 2 & & RESISTOR \(101 \%\) 125w F TC \(=0+-100\) & 24546 & C4-1/8-T0-10R0-F \\
\hline A4A7R9 & 0698-0084 & 9 & & RESISTOR \(2,15 \mathrm{~K} 1 \%, 125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-2151-F \\
\hline A4AFR 10 & 0757-0280 & 3 & & RESISTOR 1K 1\% , 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1001-F \\
\hline A4A7R11 & 0757-0276 & 7 & 1 & RESISTOR 61.9 1\% , 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-6192-F \\
\hline A4AFR12 & 0698-3438 & 3 & & RESISTOR \(1471 \mathrm{X}, 125 \mathrm{~W}\) F TC=0+-100 & 24546 & C4-1/8-T0-147R-F \\
\hline A4A7R 13 & 0757-0394 & 0 & & RESISTOR 51.1 \(1 \chi\), 125w F TC \(=0+100\) & 24546 & C4-1/8-T0-5iR1-F \\
\hline A4AFR 14 & 0757-0394 & 0 & & & 24546
24546 & C4-1/8-T0-51R1-F \\
\hline A4A7R15 & 0757-0394 & 0 & & RESISTOR 51.1 1\% , 125W F TC=0+-100 & 24546 & C4-1/8-T0-51R1-F \\
\hline A4A7R16 & 0757-0280 & 3 & & RESISTOR 1K 1\% .125W F TC \(=0+100\) & 24546 & C4-1/B-T0-1001-F \\
\hline A4A7R17 & 0757-0280 & 3 & & RESISTOR \(1 \mathrm{~K} 1 \mathrm{~L}, 125 \mathrm{~W}\) F TC=0+-100 & 24546 & C4-1/8-T0-1001-F \\
\hline A4A7R 18 & 2100-1986 & 9 & 2 & RESISTOR-TRMR 1 K 10\% C TOP-ADJ 1-TRN & 73138 & \(82 \mathrm{PR1K}\) \\
\hline A4A7R19 & 0757-0394 & 0 & & RESISTOR 51.1 1\% .125W F TC \(=0+100\) & 24546 & C4-1/8-T0-51R1-F \\
\hline A4APR20 & 0757-0394 & 0 & & RESISTOR 51.1 1\% . 125W F TC=0+-100 & 24546 & C4-1/8-T0-51R1-F \\
\hline A4A7R21 & 0757-0442 & 9 & & RESISTOR 10K \(1 \boldsymbol{X}\). 125 W F TC \(=0+-100\) & 24546 & C4- \(1 / 8\)-T0-1002-F \\
\hline A4A7R22 & 2100-1986 & 9 & & RESISTOR-TRMR 1K 10\% C TOP-ADJ 1-TRN & 73138 & 82PR1K \\
\hline A4A7R23 & 0757-0442 & 9 & & RESISTOR \(10 \mathrm{~K} 1 \%\), 125w F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A4A7R24 & 0757-0401 & 0 & & RESISTOR 100 1\% . 125 W F TC=0+-100 & 24546 & C4-1/8-T0-101-F \\
\hline A4A7R25 & 0757-0442 & 9 & & RESISTOR 10 K 1 x . 125 W F TC=0+-100 & 24546 & C4-1/8-T0-1002-F \\
\hline A4ATR26 & 0757-1094 & 9 & & RESISTOR \(1.47 \mathrm{~K}, 1 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1471-F \\
\hline A4A7R27 & 0757-0394 & 0 & & RESISTOR 51.1 1 L , 125W F TC \(=0+100\) & 24546 & C4-1/8-T0-51R1-F \\
\hline A4A7R28 & 0757-0401 & 0 & & RESISTOR 100 1\% , 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-101-F \\
\hline A4A7R29 & 0698-3445 & 2 & & RESISTOR \(3481 \%\), 125w F TC \(=0+-100\) & 24546 & C4-1/8-T0-348R-F \\
\hline A4AFR30 & 0757-0394 & 0 & & RESISTOR 51.1 \(1 \%\), 125W F TC=0+-100 & 24546 & C4-1/8-T0-51R1-F \\
\hline \begin{tabular}{l}
A4A7R31 \\
A4A7R 32
\end{tabular} & 0698-3445 & 2 & 1 & & 24546
28480 & C4-1/8-T0-348R-F
\(0698-3101\) \\
\hline A4A7R33 & 0757-0416 & 7 & & RESISTOR \(5111 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-511R-F \\
\hline A4A7R34 & 0757-0394 & 0 & & RESISTOR \(51.11 \% .125 \mathrm{~W}\) F \(\mathrm{TC}=0+-100\) & 24546 & C4-1/8-T0-51R1-F \\
\hline A4ATT1 & 08660-80011 & 1 & 1 & TRANSFORMER, TRIFILAR & 28480 & 08660-80011 \\
\hline A4A7t2 & 08660-80010 & 0 & 1 & TRANSFORMER, BIFILAR & 28480 & 08660-80010 \\
\hline A4AB \(\dagger\) & 08660-60325 & 8 & 1 & 100 MHZ BAND PASS FILTER & 28480 & 08660-60325 \\
\hline A5 & 08660-60327 & 0 & 1 & BOARD ASSEMBLY, REGULATOR & 28480 & 08660-60327 \\
\hline A5C1 & 0180-0291 & 3 & & CAPACITOR-FXD 1UF+-10\% 35UDC TA & 56289 & 150D105X9035A2 \\
\hline ASC2 & 0180-0291 & 3 & & CAPACITOR-FXD 1UF+-10\% 35UDC TA & 56289 & 150D105×9035A2 \\
\hline ASC3 & 0180-0291 & 3 & & CAPACITOR-FXD 1UF+-10\% 35UDC TA & 56289 & 150D105×9035A2 \\
\hline ASC4 & 0180-0291 & 3 & & CAPACITOR-FXD 1UF+-10\% 35UDC TA & 56289 & 150D105×9035A2 \\
\hline A5C5 & 0160-2207 & 3 & 1 & CAPACITOR-FXD 300PF +-5\% 30DUDC MICA & 28480 & 0160-2207 \\
\hline A5C6 & 0180-1704 & 5 & 4 & CAPACITOR-FXD 47UF+-10\% 6UDC TA & 56289 & 150D476×9006B2 \\
\hline A5C7 \(\dagger\) & 0180-0183 & 2 & & CAPACITOR-FXD 10UF+75-10\% SOUDC AL & 56289 & \(3081066050 \mathrm{CB2}\) \\
\hline ASC8 & 0180-0291 & 3 & & CAPACITOR-FXD 1UF+-10\% 35UDC TA & 56289 & 150D105×9035A2 \\
\hline ASC9 & 0160-2208 & 4 & 1 & CAPACITOR-FXD 330PF +-5\% 300UDC MICA & 28480 & 0160-2208 \\
\hline ASCi 0 & 0180-1704 & 5 & & CAPACITOR-FXD 47UF+-10\% 6UDC TA & 56289 & 150D476×900682 \\
\hline A5C11 & & & & NOT ASSIGNED & & \\
\hline \({ }^{\text {ASCL }}\) - \(\dagger\) & 0160-2226 & 6 & 1 & CAPACITOR-FXD 2200 PF +-5\% 300UDC MICA & 28480 & 0160-2226 \\
\hline \({ }^{\text {A5C13 }}\) & 0180-0291 & 3 & & CAPACITOR-FXD 1UF+-10\% 35UDC TA & 56289 & 150D105x9035A2 \\
\hline ASC14 \(\dagger\) & 0180-2207 & 5 & 4 & CAPACITOR-FXD \(100 \mathrm{UF}+-10 \%\) 10UDC TA & 56289 & 150D107x9010R2 \\
\hline A5C15 & 0180-0269 & 5 & 2 & CAPACITOR-FXD 1UF+50-10\% 150UDC AL & 56289 & 30D105G150BAC \\
\hline \({ }_{\text {ASCl }} 16\) & & & & NOT ASSIGNED & & \\
\hline ASC17 & 0160-2218 & 6 & & CAPACITTR-FXD 1000 PF +-5\% 300UDC MICA & 28480 & 0160-2218 \\
\hline ASC18 & 0180-0269 & 5 & & CAPACITOR-FXD \(14 F+50-10 \% 150 \mathrm{UDC}\) AL & 56289 & 30D105G150BA2 \\
\hline A5C19 \(\dagger\) & 0180-0141 & 2 & & CAPACITOR-FXD 50UF+75-10\% 50UDC AL & 56289 & 30D5066050DD2 \\
\hline ASCR 1 & 1902-31,04 & 6 & 1 & DIODE-ZNR 5.62U \(5 \times\) DO-35 PD=.4W & 28480 & 1902-3104 \\
\hline A5Q1 \(\dagger\) & 1853-0213 & 7 & 5 & TRANSISTOR PNP 2N4236 SI TO-5 PD=1W & 04713 & 2N4236 \\
\hline A502 & 1853-0451 & 5 & 11 & TRANSISTOR PNP 2N3799 SI TO-18 PD=360MW & 01295 & 2N3799 \\
\hline A593 \(\dagger\) & 1853-0213 & 7 & & TRANSISTOR PNP 2N4236 SI TO-5 PD=1W & 04713 & 2N4236 \\
\hline & 1205-0011 & 0 & 2 & HEAT SINK TO-5/TO-39-CS & 28480 & 1205-0011 \\
\hline A594 & 1853-0451 & 5 & & TRANSISTOR PNP \(2 N 3799\) SI TO-18 PD \(=360 \mathrm{HW}\) & 01295 & 2N3799 \\
\hline A505 \(\dagger\) & 1853-0213 & 7 & & TRANSISTOR PNP 2N4236 SI TO-5 PD=1W & 04713 & 2N4236 \\
\hline & 1205-0011 & 0 & & HEAT SINK TO-5/T0-39-CS & 28480 & 1205-0011 \\
\hline A5Q6 & 1853-0326 & 3 & 1 & TRANSISTOR PNP SI PD=1W FT \(=50 \mathrm{MHZ}\) & 04713 & MPS-U51 \\
\hline
\end{tabular}

Table 6－3．Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & C & Oty & Description & Mfr Code & Mfr Part Number \\
\hline A5R 1 & 0757－0397 & 3 & & & 24546 & C4－1／8－T0－68R1－F \\
\hline ASR2 & 0757－0346 & 2 & & RESISTOR \(1012.125 世\) F TC \(=0+100\) & 24546 & C4－1／8－T0－10R0－F \\
\hline ASR3 & 0698－3132 & 4 & & RESISTOR \(2611 \%\) ，125 F F TC \(=0+-100\) & 24546 & C4－1／8－T0－2610－F \\
\hline ASE4 & 0757－0397 & 3 & & RESISTOR 68．1 1\％． 125 F F TC \(=0+-100\) & 24546 & C4－1／8－T0－68R1－F \\
\hline ASR5 & 0757－0397 & 3 & & RESISTOR 68．1 18 ，125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－68R1－F \\
\hline ASR6 & 0757－0398 & 4 & & RESISTOR \(751 \%\) ．125w F TC \(=0+-100\) & 24546 & C4－1／8－T0－75R0－F \\
\hline ASR 7 & 0757－0280 & 3 & & RESISTOR \(1 \mathrm{~K} \quad 1 \%\) ． 125 W F \(T C=0+-100\) & 24546 & C4－1／8－T0－1001－F \\
\hline A5R8 & 0757－0401 & 0 & & RESISTOR \(1001 \% \cdot 125 W\) F TC \(=0+-100\) & 24546 & \\
\hline ASR9 & 0757－0397 & 3 & & RESISTOR \(68.11 \%\) ，125w F TC \(=0+-100\) & 24546 & C4－1／8－70－68R1－F \\
\hline A5R10† & 0698－3446 & 3 & & RESISTOR \(3831 \%\) ． 125 W F TC＝0 +-100 & 24546 & C4－1／8－T0－383R－F \\
\hline A5R11 & 0757－0442 & 9 & & RESISTOR 10K 1\％．125W F TC \(=0+-100\) & 24546 & C4－1／B－T0－1002－F \\
\hline ASR12 & 0757－0280 & 3 & & RESISTOR 1K 1X，125W F TC＝0 +-100 & 24546 & C4－1／8－70－1001－F \\
\hline ASR 13 & 0757－0394 & 0 & & RESISTOR \(51.11 \% \quad 125 W\) F \(T C=0+-100\) & 24546 & C4－1／8－T0－5181－F \\
\hline ASR14 & 0698－3161 & 9 & 1 & RESISTOR 30．3K 1\％，125W F TC＝0＋－100 & 24546 & C4－1／8－T0－3832－F \\
\hline ASR15 & 0757－0424 & 7 & 11 & RESISTOR 1．1K 1\％，125W F TC＝0＋－100 & 24546 & C4－1／8－T0－1101－F \\
\hline ASR 16 & 0757－0394 & 0 & & RESISTOR 51．1 12 ，125w F TC＝0 -100 & 24546 & C4－1／8－T0－51R1－F \\
\hline ASR17 & 0698－3150 & 6 & & RESISTOR 2．37K 1\％．125世 F TC \(=0+-100\) & 24546 & C4－1／8－70－2371－F \\
\hline ASR 18 & 0698－3150 & 6 & & RESISTOR 2．37K 1z ，125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－2371－F \\
\hline A5R19 & 0698－3136 & 8 & 3 & RESISTOR 17．01 17 ，125世 F TC＝0＊－100 & 24546 & C4－1／8－T0－1782－F \\
\hline A5R20 & 0757－1094 & 9 & & RESISTOR 1．47K 12，125W F TC \(=0+-100\) & 24546 & C4－1／8－70－1471－F \\
\hline A5R21 & 2100－1973 & 4 & 1 & RESISTOR－TRMR \(20010 \%\) TOP－ADJ 20－TRN & 02660 & 3810P－201 \\
\hline A5R22 & 0757－0278 & 9 & & RESISTOR 1．78K 17 ． 125 W F TC＝0＋－100 & 24546 & C4－1／8－T0－1781－F \\
\hline A5R23 & 0698－3152 & 8 & & RESISTOR 3．48K 1\％．125W F TC＝04－100 & 24546 & C4－1／8－T0－3481－F \\
\hline A5R24 & 2100－1799 & 2 & 1 & RESISTOR－TRAR 500102 WW SIDE－ADJ 20－TRN & 02860 & 3810p－501 \\
\hline A5R25 & 0757－0428 & 1 & & RESISTOR 1．62K 1\％． 1254 F \(\mathrm{TC}=0+-100\) & 24546 & C4－1／8－T0－1621－F \\
\hline A5R26 & 2100－2852 & 0 & 1 & RESISTOR－TRMR IK 10Z WW SIDE－ADJ 20－TRN & 02660 & 3810p－102 \\
\hline ASR27 & 0698－3155 & 1 & & RESISTOR \(4.64 \mathrm{~K} 1 \%\) ，125W F TC＝0＋－100 & 24546 & C4－1／8－T0－4641－F \\
\hline A5R28 & 2100－1739 & 0 & 1 & RESISTOR－TRAR SK \(10 x\) U SIDE－ADJ 20－TRN & 026.60 & 3810p－502 \\
\hline ASR29 & 0698－3136 & 8 & & RESISTOR 17．日K \(3 x\) ． 125 W F TC＝0＋－100 & 24546 & C4－1／8－T0－1782－F \\
\hline ASU： & 1826－0016 & 1 & 1 & IC 204 U RGLTR TO－100 & 04713 & mLame4c \\
\hline ASU2 & 1826－0004 & 7 & 1 & IC 304 U RGLTR TO－100 & 0．？123 & UA 304 HC \\
\hline A5U3 \(\dagger\) & 1826－0017 & 2 & 1 & IC U RGLTR T0－99 & 27114 & LM205H \\
\hline A5U4 & 1820－0247 & 8 & 1 & IC 4 RGLTR TO－99 & 2， 14 & LM305H \\
\hline A6 & 08660－60276 & 8 & 1 & FAN ASSEMBLY， 400 HZ （OPTION 003 ONLY） & 2\％480 & 08660－60276 \\
\hline A66 & 08660－60275 & ？ & 1 & FAN ASSEMBLY， 60 HZ （EXCEPT OPTION 003） & PR4AO & 08660－60275 \\
\hline A691 & 1854－0072 & 8 & 1 & TRANSISTOR NPN 2N3054 SI TO－66 PD＝25W & П142\％ & 2N3054 \\
\hline A 692 & 1953－0052 & 2 & 1 & TRANSISTOR PNP 2N3740 SI TO－66 PD＝25W & 04713 & 2N3740 \\
\hline A683 & & & & NOT ASSIGNE D & & \\
\hline A6日 4 & 1854－0063 & 7 & 3 & TRANSISTOR NPN 2N3055 SI TO－3 PD \(=115 \mathrm{~W}\) & 0192 F & 2N3055 \\
\hline A605 & 1853－0059 & 9 & 1 & TRANSISTOR PNP 2N3791 SI TO－3 PD \(=150 \mathrm{~W}\) & \(04^{\prime 2} 13\) & 2N3791 \\
\hline A 6 Q6 & & & & NOT ASSIGNED & & \\
\hline A607 & 1854－0063 & 7 & & TRANSISTOR NPN 2N3055 SI TO－3 PD＝115W & 01928 & 2N305s \\
\hline A 688 & 1854－0063 & 7 & & TRANSISTOR NPN 2N3055 SI TO－3 PD＝115 & 01928 & 2N3055 \\
\hline A689 & 1854－0313 & 0 & 1 & NOT ASSIGNED
TRANSISTOR & 0192\％ & 2N3771 \\
\hline AGR1 \(\dagger\) & 0811－3410 & 3 & 1 & RESISTOR ． \(16512 \mathrm{E} 5 \mathrm{~W} \mathrm{PW} \mathrm{TC}=0+-90\) & 28480 & 0811－3410 \\
\hline AbA1 & 08660－60333 & 8 & 1 & BOARD ASSEMBLY，PRE－REGULATOR & 28480 & 08660－60333 \\
\hline A6A1C1 & 0180－0141 & 2 & & CAPACITOR－FXD 50UF＋75－10\％50UDC AL & 56289 & 30D506G050DD2 \\
\hline AbAICE & 0180－0141 & 2 & & CAPACITOR－FXD 50UF＋75－10\％50UDC AL & 56：89 & 30D506G0500D2 \\
\hline AbAIC3 & 0180－0089 & 7 & 1 & CAPACITAR－FXD 10UF＋50－10x 150UDC AL & 56.189 & 30D106F150DD2 \\
\hline AbAIC4 & 0130－0121 & 5 & 28 & CAPACITOR－FXD ． \(14 F * 80-20 x\) SOUDC CER & 28480 & 0150－0121 \\
\hline AGAIC5 & 0150－0121 & 5 & & CAPACITOR－FXD ．1UF＊80－20x 50UDC CER & 28480 & 0150－0121 \\
\hline AbAIC6 \(\dagger\) & 0160－3094 & 8 & 2 & CAPACITOR－FXD ． 1 UF ＋－10\％ 100 UDC CER & 28480 & 0160－3094 \\
\hline AGAIC7 & 0150－0121 & 5 & & CAPACITOR－FXD． 1 UF \(+80-20 \chi\) SOUDC CER & 28480 & 0150－0121 \\
\hline AGAICB & 0150－0121 & 5 & & CAPACITOR－FXD 1UF＋80－20x SOUDC CER & 28480 & 0150－0121 \\
\hline AbAIC9 \(\dagger\) & 0160－3094 & 8 & & CAPACITOR－FXD ． \(1 \mathrm{UF}+-102100 \mathrm{UDC}\) CER & 28480 & 0160－3094 \\
\hline AGAICR 1 † & 1902－3263 & \(\theta\) & 1 & DIODE－ZNR 24.9 C 2Z DO－35 PD＝．4W & 28480 & 1902－3263 \\
\hline AbAICR2 & 1902－3203 & 6 & 1 & DIODE－2NR 14．7U 5\％D0－35 PD＝．4W & 28480 & 1902－3203 \\
\hline AbAICR3 & 1902－3333 & 3 & 1 & DIODE－ZNR 46．4U \(5 \%\) D0－35 PD＝．4W & 28480 & 1902－3333 \\
\hline A6A1Q1 & & & & NOT ASSIGNED & & \\
\hline AGA1Q2 \({ }_{\text {AbA103 }}+\) & 1853－0213 & 7 & & \begin{tabular}{l}
NOT ASSIGNED \\
TRANSISTOR PNP 2N4236 SI TO－5 PD＝1H
\end{tabular} & 04713 & 2N4236 \\
\hline AGA104 & & & & NOT ASSIGNED & & \\
\hline A6A1QS & & & & NOT ASSIGNED & & \\
\hline AbA196 \(\dagger\) AbA197 & 1853－0213 & 7 & & TRANSISTOR PNP \(2 N 4236\) SI TO－S PD＝1W NOT ASSIGNED & 04713 & 2N4236 \\
\hline A6A108 & & & & NOT ASSIGNED & & \\
\hline AbA109 \(\dagger\) & 1854－0361 & 8 & 1 & TRANSISTOR NPN 2N4239 SI TO－5 PD＝6W & 04713 & 2N4239 \\
\hline A6A1R1 & 0698－3447 & 4 & 6 & RESISTOR \(4221 \%\) ． 125 F F TC \(=0+-100\) & 24546 & C4－1／8－T0－422R－F \\
\hline A6A1R2 & 0698－3132 & 4 & & RESISTOR \(2611 \%\) ． 1254 F TC \(=0+-100\) & 24546 & C4－1／8－T0－2610－F \\
\hline AbAIR3 & 0757－0274 & 5 & 4 & RESISTOR 1．21k \(1 \%\) ． 125 F F TC＝\(=0+-100\) & 24546 & C4－1／8－T0－1211－F \\
\hline A6A1R4 & 0698－3447 & 4 & & RESISTOR 422 1\％，125世 F TC \(=04-100\) & 24546 & C4－1／8－T0－422R－F \\
\hline AGA1RS & 0698－3132 & 4 & & RESISTOR \(2611 \% .125 \mathrm{~W}\) F T C \(=0+-100\) & 24546 & C4－1／8－T0－2610－F \\
\hline
\end{tabular}

Table 6-3. Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & C & Qty & Description & Mfr Code & Mfr Part Number \\
\hline A6A1R6 & 0757-0274 & 5 & & RESISTOR 1.21K \(1 \% .125 \mathrm{~W}\) F TC= \(=0+-100\) & 24546 & C4-1/8-T0-1211-F \\
\hline AGA1R7
A6A1RB + & 0757-0795 & 5 & 1 & RESISTOR 75 17 , 5 W F TC \(=0+-100\)
NOT ASSIGNED & 19701 & MF-1/2-T0-75R0-F \\
\hline AGAIR9\% & & & & NOT ASSIGNED & & \\
\hline AbAIRIJ & 0812-0020 & 7 & 1 & RESISTOR , 39 5\% 3W PW TC=0+-90 & 91637 & CW2B1-3-T2-39/100-J \\
\hline AbAIR11 & 0811-1670 & 3 & 1 & RESISTOR 2.2 5\% 2W PW TC=0+-400 & 75042 & BWH2-2R2-J \\
\hline A6A1 XA20-1 & 1251-2035 & 9 & 1 & CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS & 28480 & 1251-2035 \\
\hline & & & & abal miscellanedus & & \\
\hline & 1200-0043 & 8 & 1 & INSULATOR-XSTR ALUMINUM & 28480 & 1200-0043 \\
\hline & \(0340-0162\)
\(08660-20173\) & 7
0 & 1 & INSULATOR-XSTR ALUMINUM
HEAT SINK & 28480
28480 & \[
\begin{aligned}
& 0340-0162 \\
& 08660-20173
\end{aligned}
\] \\
\hline AbAz & 3160-0056 & 9 & 1 & FAN-TBAX \(115-\) CFM 115 S 50/60-HZ & 28480 & 3160-0056 \\
\hline AGAL & 3160-0087 & 6 & 1 & FAN-TBAX 95-CFM 95-128U 47-440-HZ (OPTION 003 ONLY) & 28480 & 3160-0087 \\
\hline & & & & A\&AZ MISCELLANEOUS & & \\
\hline & 08660-00063 & 5 & 1 & FAN, SHIELD & 28480 & 08660-00063 \\
\hline & 08660-00064 & 6 & 1 & HEAT SINK COUER & 28480 & 08660-00064 \\
\hline & 0403-0026 & 6 & 1 & GLIDE NYLON FITS 0.192 HOLD 0.156 HI & 28480 & 0403-0026 \\
\hline AbA3 & 08660-60336 & 1 & 1 & FAN RELAY ASSEMBLY (DOES NOT INCL. AGA3Ci) & 28480 & 08660-60336 \\
\hline A6A3C1 \(\dagger\) & 0160-3679 & 5 & 1 & CAPACITOR-FXD \(1 \mathrm{UF}+-10 \%\) 22OUAC(RMS) (OPTION 003 ONLY) & 28480 & 0160-3679 \\
\hline A6A3K1 \(\dagger\) & 0490-0643 & 6 & 2 & RELAY ic zavdc-coil za zzovac & 28480 & 0490-0643 \\
\hline A6A3R1 \(\dagger\) & 0698-3629 & 4 & 1 & RESISTOR \(2705 \%\) 2W MO TC=0+-200 & 28480 & 0698-3629 \\
\hline A7 & 0960-0443 & 1 & 1 & POUER LINE MODULE/FILTER (DOES NOT INCL ATF1) & 28480 & 0960-0443 \\
\hline A7C1 & 0160-4065 & 5 & 1 & CAPACITOR-FXD . \(1 \mathrm{UF}+-20 \% 250 \mathrm{VAC}(\) RMS \()\) & 28480 & 0160-4065 \\
\hline A7F1 & 2110-0365 & 7 & 1 & FUSE 4A 250U TD 1.25X. 25 (FOR 100-120U OPERATION) & 28480 & 2110-0365 \\
\hline A7F 1 & 2110-0303 & 3 & 1 & FUSE 2A 250U TD 1.25X.25 UL (FOR 220-240U OPERATION) & 28480 & 2110-0303 \\
\hline A7R 1 & 0839-0006 & 5 & 1 & THERMISTOR DISC \(10-\) OHM TC \(=-3.8 \% / \mathrm{C}-\mathrm{DEG}\) & 28480 & 0839-0006 \\
\hline AB & 08660-60014 & 2 & 1 & BOARD ASSEMBLY, N3 OSCILLATOR (EXCEPT OPTION 004) & 28480 & 08660-60014 \\
\hline ABC1 & 0180-0058 & 0 & 7 & CAPACITOR-FXD 50UF+75-10\% 25UDC, AL & 56289 & \(3005066025 C C 2\) \\
\hline ABC2 & 0180-1704 & 5 & & CAPACITOR-FXD 47UF+-10\% GUDC TA & 56289 & 1500476×9006B2 \\
\hline ABC3 & 0180-0228 & 6 & & CAPACITOR-FXD 22UF+-10\% 15UDC TA & 56289 & 150D226×9015E2 \\
\hline ABC4 & 0180-0049 & 9 & & CAPACITOR-FXD 20UF+75-10\% 50UDC AL & 56289 & 30D2066050CC2 \\
\hline ABC5 & 0150-0121 & 5 & & CAPACITOR-FXD . \(1 \mathrm{UF}+80-20 \%\) 50UDC CER & 28480 & 0150-0121 \\
\hline ABC6 & 0160-3459 & 9 & 4 & CAPACITOR-FXD .02UF +-20\% 100UDC CER & 28480 & 0160-3459 \\
\hline ABC7 & 0150-0121 & 5 & & CAPACITOR-FXD . \(1 \mathrm{UF}+80-20 \%\) SOUDC CER & 28480 & 0150-0121 \\
\hline ABC8 & 0150-0121 & 5 & & CAPACITOR-FXD. \(14 \mathrm{UF}+80-20 \%\) 50UDC CER & 28480 & 0150-0121 \\
\hline A8C9 & 0160-3459 & 9 & & CAPACITOR-FXD .02UF +-20\% \(100 \cup \mathrm{DC}\) CER & 28480 & 0160-3459 \\
\hline ABC10 & 0160-0174 & 9 & & CAPACITOR-FXD . \(47 \mathrm{UF}+80-20 \%\) 25UDC CER & 28480 & 0160-0174 \\
\hline A8C11 & 0160-2055 & 9 & & CAPACITOR-FXD . \(014 \mathrm{UF}+80-20 \% 100\) UDC CER & 28480 & 0160-2055 \\
\hline ABC12 & 0160-0386 & 5 & 9 & CAPACITOR-FXD 3, 3PF +-. 25PF 500 VDC CER & 28480 & 0160-0386 \\
\hline ABC13 & 0160-2204 & 0 & & CAPACITOR-FXD \(100 \mathrm{PF}+-5 \% 300 \mathrm{VDC} \mathrm{MICA}\) & 28480 & 0160-2204 \\
\hline ABCli4
A8C15 & 0160-4084 & 8 & 4 & CAPACITOR-FXD . 1UF +-20\% 5OUDC CER NDT ASSIGNED & 28480 & 0160-4084 \\
\hline A8C16 & 0160-0386 & 5 & & CAPACITOR-FXD 3.3PF +-.25PF 500UDC CER & 28480 & 0160-0386 \\
\hline \({ }^{\text {A8C17 }}\) & 0160-0386 & 5 & & CAPACITDR-FXD 3.3PF +-, 25PF 500 UDC CER & 28480 & 0160-0386 \\
\hline A8C18 & 0160-2055 & 9 & & CAPACITOR-FXD .01UF +80-20\% 100UDC CER & 28490 & 0160-2055 \\
\hline A8C19 & 0160-2055 & 9 & & CAPACITOR-FXD . \(01 \mathrm{UF}+80-20 \% 100 \cup D C\) CER & 28480 & 0160-2055 \\
\hline A8C20 & 0160-2055 & 9 & & CAPACITOR-FXD . \(014 \mathrm{UF}+80-20 \% 100 \mathrm{UDC}\) CER & 28480 & 0160-2055 \\
\hline A8C21 & 0160-2055 & 9 & & CAPACITOR-FXD .01UF +80-20\% 100UDC CER & 28480 & 0160-2055 \\
\hline A8C22 & 0160-2055 & 9 & & CAPACITOR-FXD . \(014 \mathrm{UF}+80-20 \% 100 \mathrm{VDC}\) CER & 28480 & 0160-2055 \\
\hline ABCR 1 & 1981-0040 & 1 & & DIODE-SWITCHING 30U 50MA 2NS DO-35 & 28480 & 1901-0040 \\
\hline ABCR2 & 1901-0040 & 1 & & DIODE-SWITCHING 30 U 50MA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A8CR3 & 0122-0299 & 9 & 1 & DIODE-UVC 82PF 5\% C2/C20-KIN=2 BUR=20V & 28480 & 0122-0299 \\
\hline ABK1 & 0490-0643 & 6 & & relay ic zavdc-coil za zaovac & 28480 & 0490-0643 \\
\hline A8L1 & 9100-1629 & 4 & & INDUCTOR RF-CH-MLD 47UH 5\% . 166DX. 385LG & 28480 & 9100-1629 \\
\hline ABLI 2 & 9140-0114 & 4 & 7 & INDUCTOR RF-CH-MLD \(10 \mathrm{UH} 10 \% .166 \mathrm{DX}, 385 \mathrm{LG}\) & 28488 & 9140-0114 \\
\hline ABL3 & 9100-1629 & 4 & & INDUCTIRR RF-CH-MLD \(47 \mathrm{UH} 5 \%, 166 \mathrm{DX}\). 385LG & 28480 & 9100-1629 \\
\hline \({ }_{\text {A8L4 }}^{\text {A8L5 }}+\) & \[
\begin{aligned}
& 9100-1629 \\
& 08660-80025
\end{aligned}
\] & 4 & 3 & INDUCTOR RF-CH-MLD 47UH 5\% .166DX.3日5LG COIL-650NH & \[
\begin{aligned}
& 28480 \\
& 28480
\end{aligned}
\] & \[
\begin{aligned}
& 9100-1629 \\
& 08660-80025
\end{aligned}
\] \\
\hline
\end{tabular}

Table 6-3. Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & \[
\begin{aligned}
& \text { C } \\
& \text { D }
\end{aligned}
\] & Oty & Description & Mfr Code & Mfr Part Number \\
\hline ABL6 & 9140-0179 & 1 & 14 & INDUCTOR RF-CH-MLD 22UH \(10 \%\), 166DX, 385LG & 28480 & 9140-0179 \\
\hline ABL7 & 9140-0179 & 1 & & INDUCTOR RF-CH-MLD E2UH \(10 \%\). 1660X. 385LG & 28480 & 9140-0179 \\
\hline ABQ1 & 1854-0092 & 2 & 12 & TRANSISTOR NPN SI PD \(=200 \mathrm{MW} \quad \mathrm{FT}=600 \mathrm{MHZ}\) & 28480 & 1854-0092 \\
\hline A8Q2 & 1854-0345 & 8 & & TRANSISTOR NPN 2N5179 SI TO-72 PD=200MW & 04713 & 2N5179 \\
\hline A893 & 1853-0451 & 5 & & TRANSISTOR PNP 2 N3799 S1 TO-18 PD \(=360 \mathrm{MW}\) & 01295 & 2N3799 \\
\hline A8Q4 & 1853-0451 & 5 & & TRANSISTOR PNP 2 N3799 SI TO-18 PD=360MW & 01295 & 2N3799 \\
\hline A805 & 1853-0451 & 5 & & TRANSISTOR PNP 2 N3799 SI TO-18 PD \(=360 \mathrm{MW}\) & 01295 & 2N3799 \\
\hline A8Q6 & 1854-0087 & 5 & 5 & TRANSISTOR NPN SI PD=360MW FT \(=75 \mathrm{HHZ}\) & 28480 & 1854-0087 \\
\hline A897 & 1855-0081 & 1 & 3 & TRANSISTOR J-FET N-CHAN D-MODE SI & 28480 & 1855-0.081 \\
\hline ABQE \(\dagger\) & 1853-0036 & 2 & 29 & TRANSISTOR PNP SI PD=310MW FT \(=250 \mathrm{MHZ}\) & 28480 & 1853-0036 \\
\hline A899 \({ }^{\text {d }}\) & 1853-0036 & 2 & & TRANSISTOR PNP SI PD \(=310 \mathrm{MW}\) FT \(=250 \mathrm{MHZ}\) & 28480 & 1853-0036 \\
\hline A8910 \(\dagger\) & 1853-0036 & 2 & & TRANSISTOR PNP SI PD=310MW FT \(=250 \mathrm{HHZ}\) & 28480 & 1853-0036 \\
\hline ABQ11 \(\dagger\) & 1853-0036 & 2 & & TRANSISTOR PNP SI PD \(=310 \mathrm{YH}\) FT \(=250 \mathrm{MHZ}\) & 28480 & 1853-0036 \\
\hline ABQ12 & 1854-0087 & 5 & & TRANSISTOR NPN SI PD \(=360 \mathrm{MW}\) FT=75MHZ & 28480 & 1854-0087 \\
\hline ABR 1 & & & & NOT ASSIGNED & & \\
\hline A日R2 & 0757-0428 & 1 & & RESISTOR 1.62K \(1 \%\). 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1621-F \\
\hline ABR3 & 0757-0428 & 1 & & RESISTOR 1.62k \(1 \%\), 125W F TC \(=0+-100\) & 24546 & CA-1/8-T0-1621-F \\
\hline ABR4 & 0757-0428 & 1 & & RESISTOR 1.62k 1 x , 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1621-F \\
\hline ABRS & 0757-0428 & 1 & & RESISTOR 1.62k 1\%.125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1621-F \\
\hline AFR 6 & 0757-0442 & 9 & & RESISTOR 10K 1\%, 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline ABR 7 & 0757-0442 & 9 & & RESISTOR 10K \(12 \times\)-125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline ABR 8 & 0757-0442 & 9 & & RESISTOR 10K \(1 \chi\) \% , 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A8R9 & 0757-0442 & 9 & & RESISTOR 10 K 12.125 F F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline ABR 10 & 0757-0479 & 2 & 3 & RESISTOR 392K 1\% , 125 F \(\mathrm{CC}=0+-100\) & 19701 & MFAC1/8-T0-3923-F \\
\hline A8R 11 & 0757-0472 & 5 & 3 & RESISTOR 200K \(1 x .125 \mathrm{~W}\) F \(\mathrm{TC}=0+-100\) & 24546 & C4-1/8-70-2003-F \\
\hline A8R12 & 0757-0465 & 6 & 3 & RESISTOR 100K \(1 \times .125 \mathrm{~W}\) F \(\mathrm{TC}=0+100\) & \(? 4546\) & C4-1/8-T0-: \(003-\mathrm{F}\) \\
\hline A8R 13 & 0698-3228 & - & 3 & RESISTOR 49.9k 1 x , 125W F TC \(=0+-100\) & 28480 & 0698-3228 \\
\hline ABR14 & & & & NOT ASSIGNED & & \\
\hline A8R15 & 0698-3155 & 1 & & RESISTOR 4.64K 1\% , 125W F TC=0*-100 & 24546 & C4-1/8- \(50-4641-F\) \\
\hline AER 16 & 0757-0442 & 9 & & RESISTOR 10K 1\% .125W F TC \(=0+-100\) & 24546 & C4-1/8-50-1002-F \\
\hline AER17 & 0698-3151 & 7 & & RESISTOR 2. \(87 \mathrm{~K} 1 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-2871-F \\
\hline AHR 18** & 0698-3157 & 3 & 3 & RESISTOR 19.6K \(1 \%\), 125W F TC=0*-100 & 24546 & C4-1/8-T0-1962-F \\
\hline A8R 19 & 0757-0200 & 7 & & RESISTOR 5.62K \(1 \%\) \% .125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-5621-F \\
\hline ABR20 & 0757-0199 & 3 & 4 & RESISTOR 21.5K 1\% , 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-2152-F \\
\hline A8R21 & 0698-0085 & 0 & & RESISTOR \(2.61 \mathrm{~K} 2 \%\). 125 W F \(\mathrm{TC}=0+-100\) & 24546 & C4-1/8-T0-2611-F \\
\hline ABR22 & 0757-0421 & 4 & & RESISTOR \(82512,125 \mathrm{~W}\) F \(\mathrm{TC}=0+-100\) & 245,46 & C4-1/8-T0-825R-F \\
\hline A8R23 & 0698-4037 & 0 & 2 & RESISTOR 46.4 \(12.125 \mathrm{H}^{\text {F }}\) (\(\mathrm{C}=0+100\) & 24546 & C4-1/8-T0-46R4-F \\
\hline A8R24 & 2100-1760 & 7 & 3 & RESISTOR-TRMR 5K \(5 X\) UW SIDE-ADJ 1-TRN & 28480 & 2100-1760 \\
\hline A8R25* & 0698-4002 & 9 & 2 & RESISTOR SK 1\% , 125世 F TC=0*-100 & 24546 & C4-1/8-T0-5001-F \\
\hline ARR26 & 2100-1759 & 4 & 3 & RESISTOR-TRMR 2 K 52 WH SIDE-ADJ 1-TRN & 28480 & 2100-1759 \\
\hline ABR27 & 0698-3157 & 3 & & RESISTOR 19.6K \(12 \times 125 \mathrm{~W}\) F TC=04-100 & 24546 & C4-1/8-70-1962-F \\
\hline ABR28 & 0698-3158 & 4 & & RESISTOR 23, 7 K ix .125W F TC \(=0+-100\) & 24546 & C4-1/8-10-2372-F \\
\hline A8R29
ABR 30 & 0698-3156 & 2 & & RESISTOR 14.7K 1\%, 125w F TC=0*-100 & 24546 & C4-1/8-70-1472-F \\
\hline A8R31 & 0757-0441 & - & & RESISTOR 8.25K 12.125 F F TC \(=0+-100\) & 24546 & C4-1/8-T0-8251-F \\
\hline A8R32 & 0757-0279 & 0 & & RESISTOR 3.16 K 1\% 12 I W F \(T C=0+-100\) & 24546 & C4-1/8-T0-3161-F \\
\hline A8R 33 & 0698-0082 & 7 & & & 24546 & C4-1/8-T0-4640-F \\
\hline AER34 & 0757-0443 & 0 & 2 & RESISTOR 11 K 1 X , 125W F TC=0+-100 & 24*,46 & C4 1/8-T0-1102-F \\
\hline A8R 35 & 0757-0199 & 3 & & RESISTOR 21.5K 12 . 125 W F \(\mathrm{TC}=0+-100\) & 24546 & C4-1/8-T0-2152-F \\
\hline A8R36 & 0757-0442 & 9 & & RESISTAR \(10 \mathrm{~K} 1 \%\), 125W F TC=0*-100 & 24546 & Ca-1/8-50-1002-F \\
\hline A8R 37
ARR 38 & & & & NOT ASSICNE D
RESISTOR 100 1\%.125w F TC \(=0+-100\) & 24546 & C4-1/8-T0-101-F \\
\hline A8R38
A8R39 & 0683-8245 & 9 & 3 & RESISTOR 820k \(5 \%\). 25W FC TC \(=-800 /+900\) & 01121 & CH8245 \\
\hline ABR 40 & 0698-3243 & 8 & 7 & RESISTOR 178K 1\% .125W F TC=0 0 - 100 & 245,46 & C4-1/8-T0-1783-F \\
\hline A8R 41 & 0757-0442 & 9 & & RESISTOR 10K \(1 \% .125 \mathrm{~W}\) F TC=0*-100 & 24546 & C4-1/8-T0-1002-F \\
\hline ABR 42 & 0698-3440 & 7 & & RESISTOR 196 1\% . 125 W F TC \(=0 *-100\) & 24546 & CA-1/8-T0-196R-F \\
\hline A8R 43 & 0698-0082 & 7 & & RESISTOR 464 ix 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-4640-F \\
\hline ABR44 & 0757-0200 & 7 & & RESISTOR 5.62K \(1 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-5621-F \\
\hline A8R 45 & 0698-3154 & 0 & & RESISTOR 4.22K 1\% . 125W F TC \(=0+-100\) & 24546 & C4-1/8-70-4221-F \\
\hline AER46 & 0698-3445 & 2 & & RESISTOR \(3481 \% .125 \mathrm{H}\) F TC \(=0 \%-100\) & 24546 & C4-1/8-T0-348R-F \\
\hline A8R 47 & 0757-0403 & 2 & 3 & RESISTOR \(1211 \%\). 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-121R-F \\
\hline A8R48 & 0698-3444 & 1 & & RESISTOR \(3161 x\). \(125 W\) F \(T C=04-100\) & 24546 & C4-1/8-T0-316R-F \\
\hline AER 49 & 0698-3445 & 2 & & & 24546
24546 & C4-1/8-TO-348R-F
\(\mathrm{C} 4-1 / 8-\mathrm{TO}-147 \mathrm{~F}\) - \\
\hline A8R50 & 0698-3438 & 3 & & RESISTOR \(1471 \%\), 125W F \(\mathrm{YC}=0 \uparrow-100\) & 24546 & C4-1/8-T0-147R-F \\
\hline A8U1 & 1820-0054 & 5 & & IC GATE TTL NAND QUAD \(2-1\) PP & 01295 & SN7400N \\
\hline ABUZ & 1820-0054 & 5 & & IC GATE TTL NAND QUAD 2-INP & 01295
18324 & SN7400N
N8290N \\
\hline A8U3 & 1820-0450 & 5 & 1 & IC CNTR TTL DECD NEG-EDGE-TRIG & 18324 & N8290N \\
\hline A9 & 08660-60045 & 9 & 1 & CABLE ASSEHBLY, LOOP BOX & 28480 & 08660-60045 \\
\hline A9W1 & 8120-1614 & 8 & 1 & CABLE-FL-RBN 28AWG 28-CNDCT GRA-JKT & 28480 & 8120-1614 \\
\hline A9AI & 08660-60037 & 9 & 1 & board assembly, digital program & 28480 & 08660-60037 \\
\hline
\end{tabular}

Table 6-3. Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & C & Qty & Description & Mfr Code & Mfr Part Number \\
\hline A9A1E1 & 0360-1636 & 4 & 1 & CABLE TRANSITION 34-TERM INSUL DSPL TYPE & 28480 & 0360-1636 \\
\hline AgAIRI & 0898-7210 & 7 & 28 & RESISTOR 82.5 \(1 \%\). 05W F TC \(=0+-100\) & 24546 & C3-1/8-T00-82R5-G \\
\hline A9A1R2 & 0698-7210 & 7 & & RESISTOR 82.512 .05W F TC \(=0+-100\) & 24546 & C3-1/8-T00-82R5-G \\
\hline A9A1R3 & 0698-7210 & 7 & & RESISTOR 82.5 \(1 \%\).05W F TC \(=0+-100\) & 24546 & C3-1/8-T00-82R5-6 \\
\hline A9A1R4 & 0698-7210 & 7 & & RESISTOR \(82.51 z\).05W F TC=0+-100 & 24546 & C3-1/8-700-82R5-6 \\
\hline A9A1R5 & 0698-7210 & 7 & & RESISTOR \(82.51 \%\). O5W F TC \(=0+-100\) & 24546 & C3-1/8-T00-82R5-6 \\
\hline A9A1R6 & 0698-7210 & 7 & & RESISTOR 82.5 \(1 \chi\). O5W F TC=0 +-100 & 24546 & C3-1/8-T00-82R5-G \\
\hline A9A1R7 & 0698-7210 & 7 & & RESISTOR \(82.51 \%\). 2 W F F TC \(=0+-100\) & 24546 & C3-1/8-T00-82R5-G \\
\hline A9A1R8 & 0698-7210 & 7 & & RESISTOR \(82.51 \%\). 05 W F TC \(=0+-100\) & 24546 & C3-1/8-T00-82RS-6 \\
\hline A9A1R9 & 0698-7210
\(0698-7210\) & 7 & & RESISTOR \(82.51 \%\).05W F TC \(=0+-100\) & 24546 & C3-1/8-T00-82R5-G \\
\hline APAIRIO & 0698-7210 & 7 & & RESISTOR 82.5 1\% .05W F TC \(=0+-100\) & 24546 & C3-1/8-T00-82R5-6 \\
\hline A9A1R11 & 0698-7210 & 7 & & RESISTOR 82.5 1 z . 05W F TC \(=0+-100\) & 24546 & C3-1/8-T00-82R5-6 \\
\hline A9A1R12 & 0698-7210 & 7 & & RESISTOR 82.5 1\% .05W F TC \(=0+-100\) & 24546 & C3-1/8-T00-82R5-6 \\
\hline A9A1R13 & 0698-7210 & 7 & & RESISTOR 82.51 z . 05W F TC \(=0+-100\) & 24546 & C3-1/8-700-82R5-6 \\
\hline A9A1R14 & 0698-7210 & 7 & & RESISTOR \(82.51 \%\). 05W F TC=0+-100 & 24546 & C3-1/8-T00-82R5-G \\
\hline A9A1R15 & 0698-7210 & 7 & & RESISTOR \(82.5 \mathrm{1} \mathrm{\%}\), 05W F TC \(=0+-100\) & 24546 & C3-1/8-T00-82R5-6 \\
\hline A9A1R16 & 0698-7210 & 7 & & RESISTOR \(82.51 \%\). 05 W F TC=0+-100 & 24546 & C3-1/8-T00-82R5-6 \\
\hline A9A1R17 & 0698-7210 & 7 & & RESISTOR 82.5 1\% .05W F TC=0 \(0-100\) & 24546 & C3-1/8-T00-82RS-G \\
\hline A9A1R18 & 0698-7210 & 7 & & RESISTOR 82.5 1\%.05W F TC=0+-100 & 24546 & C3-1/8-T00-82R5-6 \\
\hline A9A1R19 & 0698-7210 & 7 & & RESISTOR 82.5 1\% .05W F TC \(=0+-100\) & 24546 & C3-1/8-T00-82R5-6 \\
\hline A9A1R20 & 0698-7210 & 7 & & RESISTOR B2.5 1 z , 05W F TC \(=0+-100\) & 24546 & C3-1/8-T00-82R5-G \\
\hline A9A1R21 & 0698-7210 & 7 & & RESISTOR \(82.51 \%\), 05W F TC \(=0+-100\) & 24546 & C3-1/8-T00-82R5-G \\
\hline A9A1R22 & 0698-7210 & 7 & & RESISTOR 82.5 1z.05W F TC=0+-100 & 24546 & C3-1/8-r00-82R5-G \\
\hline A9A1R23 & 0698-7210 & 7 & & RESISTOR 82.5 \(1 \%\), 05W F TC \(=0+-100\) & 24546 & C3-1/8-T00-82R5-G \\
\hline A9A1R24 & 0698-7210 & 7 & & RESISTOR 82.5 \(1 \%\), 05W F TC \(=0+-100\) & 24546 & C3-1/8-T00-82R 5-G \\
\hline A9A1R25 & 0698-7210 & 7 & & RESISTOR 82.5 1\% .05W F TC=0+-100 & 24546 & C3-1/8-T00-82R5-G \\
\hline A9A1R26 & 0698-7210 & 7 & & RESISTOR 82.5 1x .05W F TC=0+-100 & 24546 & C3-1/8-T00-82RS-G \\
\hline A9A1R27 & 0698-7210 & 7 & & RESISTOR \(82.51 \%\). 05 W F TC=0+-100 & 24546 & C3-1/8-T00-82R5-G \\
\hline A9A1R28 & 0698-7210 & 7 & & RESISTOR \(82.51 \chi\), 05W F TC \(=0+-100\) & 24546 & C3-1/8-T00-82R5-G \\
\hline A10 & 08660-60013 & 1 & 1 & BOARD ASSEMBLY, N3 PHASE DETECTOR (EXCEPT OPTION 004) & 28480 & 08660-60013 \\
\hline A10C1 & 0160-2055 & 9 & & CAPACITOR-FXD . \(014 \mathrm{UF}+80-20 \% 100 \cup D C\) CER & 28480 & 0160-2055 \\
\hline A1002 & 0160-2055 & 9 & & CAPACITOR-FXD 01UF +80-20\% 100 UDC CER & 28480 & 0160-2055 \\
\hline A1 0 Cl 3 & 0180-0058 & 0 & & CAPACITOR-FXD 50UF+75-10\% 25UDC AL & 56289 & 30D506G025CC2 \\
\hline A1 0064 & 0180-2206 & 4 & 2 & CAPACITOR-FXD 60UF+-10\% GUDC TA & 56289 & \(150 \mathrm{D} 606 \times 9006 \mathrm{B2}\) \\
\hline A10c5 & 0180-0228 & 6 & & CAPACITOR-FXD 22UF+-10\% 15UDC TA & 56289 & \(150 \mathrm{D226} \mathrm{\times 9015B2}\) \\
\hline A10c6 & 0150-0121 & 5 & & CAPACITOR-FXD . 1UF + 8J-20\% 50UDE CER & 28480 & 0150-0121 \\
\hline A1 0c7 & 0150-0121 & 5 & & CAPACITOR-FXD - \(1 \mathrm{UF}+80-20 \%\) 50UDC CER & 28480 & 0150-0121 \\
\hline A10C8 & 0160-0157 & 8 & 2 & CAPACITOR-FXD 4700PF +-10\% 200UDC POLYE & 28480 & 0160-0157 \\
\hline A10C9 & 0160-2055 & 9 & & CAPACITOR-FXD . \(01 \mathrm{UF}+80-20 \% 100 \mathrm{UDC}\) CER & 28480 & 0160-2055 \\
\hline A10C10 & 0150-0121 & 5 & & CAPACITOR-FXD. 1UF +80-20\% 50UDC CER & 28480 & 0150-0121 \\
\hline A10C11 & 0150-0121 & 5 & & CAPACITOR-FXD. 1 UF +80-20\% 50UDC CER & 28480 & 0150-0121 \\
\hline Al 0 C12 & 0160-2055 & 9 & & CAPACITOR-FXD . O1UF +80-20X 100 UDC CER & 28480 & 0160-2055 \\
\hline A10C13 & 0140-0172 & 5 & 2 & CAPACITOR-FXD 3000PF +-1\% 100 VDC MICA & 72136 & DM19F302F0100WU1CR \\
\hline A10C14 & 0180-0229 & 7 & & CAPACITOR-FXD 33UF+-102 10UDC TA & 56289 & 150D336×901082 \\
\hline A10C15 & 0160-2055 & 9 & & CAPACITOR-FXD . \(010 \mathrm{UF}+80-20 \% 100 \mathrm{ODC}\) CER & 28480 & 0160-2055 \\
\hline A10C16 & 0150-0121 & 5 & & CAPACITOR-FXD . \(1 \mathrm{UF}+80-20 \%\) 50UDC CER & 28480 & 0150-0121 \\
\hline A1 0C17 & 0150-0121 & 5 & & CAPACITOR-FXD . \(1 \mathrm{UF}+80-20 \% 50 \cup D C\) CER & 28480 & 0150-0121 \\
\hline A10C18 & 0150-0121 & 5 & & CAPACITOR-FXD . \(1 \mathrm{UF}+80-20 \mathrm{X}\) 50UDC CER & 28480 & 0150-0121 \\
\hline A10C19 & 0160-2055 & 9 & & CAPACITOR-FXD . \(014 \mathrm{U}+80-20 \% 100 \mathrm{UDC}\) CER & 28480 & 0160-2055 \\
\hline A10C20 & 0160-2055 & 9 & & CAPACITOR-FXD. O1UF +80-20x 100 UDC CER & 28480 & 0160-2055 \\
\hline A10C21 & 0160-2055 & 9 & & CAPACITOR-FXD . \(014 \mathrm{UF}+80-20 X 100 \mathrm{DCC}\) CER & 28480 & 0160-2055 \\
\hline A10c22 & 0160-3539 & 6 & 2 & CAPACITOR-FXD 820PF +-5\% 100 UDC MICA & 28480 & 0160-3539 \\
\hline A10C23 & 0160-2453 & 1 & 2 & CAPACITOR-FXD .22UF +-10\% 80UDC POLYE & 28480 & 0160-2453 \\
\hline A10c24 & 0170-0040 & 9 & 2 & CAPACITOR-FXD .047UF +-10\% 200UDC POLYE & 56289 & 292P47392 \\
\hline A 10 CR 1 & 1901-0040 & 1 & & DIODE-SWITCHING 30U 50MA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A10CR2 & 1901-0040 & 1 & & DIODE-SWITCHING 30V 50MA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A1 0CR 3 & 1901-0179 & 7 & & DIDDE-SWITCHING 15U S0MA 750PS DO-7 & 28480 & 1901-0179 \\
\hline A1 0CR4 & 1901-0179 & 7 & & DIODE-SWITCHING 15U S0MA 750PS DO-7 & 28480 & 1901-0179 \\
\hline A10L1 & 9100-1629 & 4 & & INDUCTOR RF-CH-MLD 47UH 5x.166DX.385LG & 28480 & 9100-1629 \\
\hline A10L2 & 9140-0114 & 4 & & INDUCTOR RF-CH-MLD 10UH \(10 x\), 166DX, 385LG & 28480 & 9140-0114 \\
\hline A1003 & 9100-1629 & 4 & & INDUCTOR RF-CH-MLD 47UH 5x. 166DX. 385LG & 28480 & 9100-1629 \\
\hline A10L4 & 9140-0179 & 1 & & INDUCTOR RF-CH-MLD 22 UH 10 X . 166 DX . 385LG & 28480 & 9140-0179 \\
\hline A10L5 & 9100-1650 & 1 & 2 & INDUCTOR RF-CH-MLD 680UH 5\% , 2DX.45LG & 28480 & 9100-1650 \\
\hline A10L6 & 9140-0114 & 4 & & INDUCTOR RF-CH-MLD \(10 \mathrm{UH} 10 \%\), 166DX, 385LG & 28480 & 9140-0114 \\
\hline A10L7 & 9100-1652 & 3 & 2 & INDUCTOR RF-CH-MLD 820 UH 5\% .2DX.45LG & 28480 & 9100-1652 \\
\hline A1001 & 1853-0034 & 0 & & TRANSISTCR PNP SI TO-18 PD=360MW & 28480 & 1853-0034 \\
\hline A 1002 & 1853-0034 & 0 & & TRANSISTOR PNP SI TO-18 PD=360MW & 28480 & 1853-0034 \\
\hline A1003 & 1853-0034 & 0 & & TRANSISTOR PNP SI TO-18 PD \(=360 \mathrm{MW}\) & 28480 & 1853-0034 \\
\hline A1 004 & 1855-0049 & 1 & & TRANSISTOR-JFET DUAL N -CHAN D-MODE SI & 28480 & 1855-0049 \\
\hline A1005 & 1854-0045 & 5 & & TRANSISTOR NPN SI TD-18 PD \(=500 \mathrm{MW}\) & 28480 & 1854-0045 \\
\hline
\end{tabular}

Table 6－3．Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & \[
\begin{array}{|l}
C \\
D
\end{array}
\] & Qty & Description & Mfr Code & Mfr Part Number \\
\hline A1096 & 1853－0015 & 7 & & TRANSISTOR PNP SI PD＝200MW FT \(=500 \mathrm{MHZ}\) & 28480 & 1853－0015 \\
\hline A1097 & 1854－0092 & 2 & & TRANSISTOR NPN SI PD \(=200 \mathrm{MW} \quad \mathrm{FT}=600 \mathrm{MHZ}\) & 28480 & 1854－0092 \\
\hline A10R1 & 0698－0082 & 7 & & RESISTOR \(4641 \chi\) ，125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－4640－F \\
\hline A1082 & 0757－0289 & 2 & 2 & RESISTOR 13．3K 1\％，125 F TC \(=0+-100\) & 19701 & MF4C1／8－T0－1332－F \\
\hline A10R3 & 0757－0439 & 4 & & RESISTOR 6．81K 12.125 W F TC \(=0+-100\) & 24546 & C4－1／8－T0－6811－F \\
\hline A 1084 & 0698－0085 & 0 & & RESISTOR 2.61 K 1\％，125W F TC＝\(=0+-100\) & 24546 & C4－1／8－T0－2611－F \\
\hline A10R5 & 0757－0416 & 7 & & RESISTOR \(5111 x\) ．125w F TC \(=0+-100\) & 24546 & C4－1／8－T0－511R－F \\
\hline A10R6 & 0698－3446 & 3 & & RESISTOR \(3831 \%\) ，125W F \(\mathrm{TC}=0+-100\) & 24546 & C4－1／8－T0－383R－F \\
\hline A10R7 & 0757－0424 & 7 & & RESISTOR 1．1K 1\％． 125 W F TC \(=0+-100\) & 24546 & C4－1／8－T0－1101－F \\
\hline Al 0 R8 & 0757－0416 & 7 & & RESISTOR 511 1\％，125 F F TC \(=0+-100\) & 24546 & C4－1／8－T0－511R－F \\
\hline A10R9 & 0757－0442 & 9 & & RESISTOR 10K \(1 \%\) ． 125 W F TC \(=0+-100\) & 24546 & C4－1／8－T0－1002－F \\
\hline A10R10 & 0757－0442 & 9 & & RESISTOR 10K \(1 \%\) ． 125 W F \(\mathrm{TC}=0+-100\) & 24546 & C4－1／8－T0－8002－F \\
\hline A10R11 & 0698－3450 & 9 & 2 & RESISTOR 42． 2 K 12 ，125W F TC＝0＋－100 & 24546 & C4－1／8－T0－4222－F \\
\hline A10R12 & 0757－0447 & 4 & & RESISTOR \(16.2 \mathrm{~K} \quad 1 \% \quad 125 \mathrm{~W}\) F \(\mathrm{TC}=0+-100\) & 24546 & C4－1／8－T0－1622－F \\
\hline A10R13 & 0757－0424 & 7 & & RESISTOR 1．1k 1\％．125w F TC \(=0+-100\) & 245.46 & C4－1／8－70－1101－F \\
\hline A10R14 & 0757－0416 & 7 & & RESISTOR \(5111 \%\) ． 125 W F TC \(=0+-100\) & 24546 & C4－1／8－T0－511R－F \\
\hline A10815 & 0757－0421 & 4 & & RESISTOR 825 1z．125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－825R－F \\
\hline A10R16 & 0757－0424 & 7 & & RESISTOR 1．1K 1\％，125 F TC \(=0+-100\) & 24546 & C4－1／8－70－1101－F \\
\hline A 10 R 17 & 0698－3430 & 5 & 2 & RESISTOR \(21.51 \% .125\) F F TC \(=0+100\) & 03888 & PMES5－1／8－T0－21RS－F \\
\hline A 10 R 18 & 0698－3447 & 4 & & RESISTOR 422 ix，125 F F TC \(=0+-100\) & 24546 & C4－1／8－T0－422R－F \\
\hline Al0R19 & 0757－0279 & 0 & & RESISTOR 3．16K 1 x ，125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－3161－F \\
\hline A10R20 & 0757－0421 & 4 & & RESISTOR \(8251 \%\) ． 125 W F T C \(=0+-100\) & 24546 & C4－1／8－T0－825R－F \\
\hline A10R21 & 0757－0442 & － & & RESISTOR 10K \(12.125 W_{\text {F }}\) TC \(=0+-100\) & 24546 & C4－1／8－70－1002－F \\
\hline A10R22 & 0757－0279 & 0 & & RESISTOR 3．16K 1\％，125W F TC \(=0+-100\) & 24546 & C4－1／8－ 0 － \(3161-\mathrm{F}\) \\
\hline A10R23 & 0757－0279 & 0 & & RESISTOR 3．16k ix ．125W F TC \(=0+-100\) & 24＊，46 & C4－1／8－T0－3161－F \\
\hline A \％OR24 & 0698－3153 & 9 & & RESISTOR 3．83K 12.125 W F TC＝0＋－100 & 24546 & C4－1／8－T0－3831－F \\
\hline A10R25 & 0757－0394 & 0 & & RESISTOR 51.118 ，125世 F \(T C=0+-100\) & 24546 & C4－1／8－T0－51R1－F \\
\hline A10R26 & 0757－0394 & 0 & & RESISTIOR 51．1 i\％． 125 W F \(\mathrm{TC}=0+-100\) & 24546 & C4－1／8－T0－51R1－F \\
\hline A10R27 & 0757－0416 & 7 & & RESISTOR \(51112.125 \pm\) F TC＝0 \(=-100\) & 24546 & C4－1／8－T0－511R－F \\
\hline A10R28 & 0757－0416 & 7 & & RESISTIR 511 IX ．125H F TC \(=0+-100\) & 24546 & C4－1／8－70－5118－F \\
\hline A10R29 & 0757－0442 & 9 & & RESISTOR 10K \(3 \%\) ． 125 W F TC \(=0+-100\) & 24546 & C4－1／8－T0－1002－F \\
\hline A 10830 & 0757－0200 & 7 & & RESISTOR 5．62K 1\％．125 F F TC＝0＋－100 & 24546 & C4－1／8－T0－5621－F \\
\hline A10831 & 0757－0424 & 7 & & RESISTOR 1．1K 12 ． 125 W F TC＝0＊－100 & 24546 & C4－1／8－T0－1101－F \\
\hline A10R32 & 0757－0438 & 3 & & RESISTOR 5． 11 K 1\％，125W F TC＝0 +-100 & 245．46 & \(\mathrm{C} 4-1 / 8-\mathrm{T} 0-5111-\mathrm{F}\) \\
\hline A10R33 & 0757－0444 & 1 & & RESISTOR 12．1K ix ． 125 W F TC＝0＊－100 & 2．546 & C4－1／8－70－1212－F \\
\hline A10R34 & 0757－0424 & 7 & & RESISTOR 1． 1 K 1\％，125w F TC \(=0+-100\) & 24546 & C4－1／8－T0－1101－F \\
\hline A10R35 & 0737－0444 & 1 & & RESISTOR 12．1K 12．125w F TC＝0＊－100 & 24546 & C4－1／8－70－1212－F \\
\hline A10R36 & 0757－0280 & 3 & & RESISTOR 1K 12 ． 125 W F TC＝0＊－100 & 24546 & CA－1／8－10－1001－F \\
\hline A10T1 & 08660－80001 & 9 & 2 & TRANSFORMER，SAMPLER & 28480 & 08660－80001 \\
\hline A1001 & 1820－1213 & 0 & 4 & IC FF TTL LS J－K NEG－EDGE－TRIG PRESET & 01295 & SNTALS113AN \\
\hline A1 OUS & 1820－1213 & 0 & & IC FF TTL LS J－K NEG－EDCE－TRIC PRESET & 01295 & SN7ALSIIJAN \\
\hline A1003 & 1820－1203 & 8 & 2 & IC GATE TTL LS AND TPL 3－INP & 01295 & SN74LSIIN \\
\hline A1 0U4 & 1820－0751 & 9 & 7 & If CNTR TTL DECD NEG－EDGE－TRIG PRESET & 01295 & SN74196N \\
\hline A1005 & 1820－0751 & 9 & & IC CNTR TTL DECD NEG－EDGE－TRIG PRESET & 01295 & SN74196N \\
\hline Al0u6 & 1820－0751 & 9 & & IC CNTR TTL DECD neg－EdGE－TRIG PRESET & 01295 & SN74196N \\
\hline A10U7 & 1820－0054 & 5 & & IC GATE TTL NAND QUAD \(2-I N P\) & 01295 & SN7400N \\
\hline A 11 & 08660－60019 & 7 & 1 & ROARD ASSEMBLY，SLZ OSCILLATOR （EXCEPT OPTION OOA） & 28480 & 08660－60019 \\
\hline A11 & 08660－60040 & 4 & 2 & ROARD ASSEMELY，N2 LOOP－SL1 LOOP COUPLER （OPTION DOA ONLY） & 28480 & 08660－60040 \\
\hline Al1C1 & 0150－0121 & 5 & & CAPACITOR－FXD IUF＋80－202 SOUDC CER & 28480 & 0150－0121 \\
\hline A 11 Cl 2 & 0180－0058 & 0 & & CAPACITOR－FXD SOUF＋75－102 25UDC AL & 56289 & 30D506G025CC2 \\
\hline Al1c3 & 0180－1704 & 5 & & CAPACITOR－FXD 47UF＋－10Z SUDC TA & 56289 & \(1500476 \times 9006 \mathrm{~F} 2\) \\
\hline Al1c4 & 0180－2214 & 4 & & & 56289 & \(3009066016 C C 2\) \\
\hline All 15 & 0150－0121 & 5 & & CAPACITOR－FXD．IUF＋80－20x SOUDC CER & 284日0 & 0150－0121 \\
\hline A1156 & 0160－0174 & 9 & & CAPACITOR－FXD ATUF＋80－20x 25UDC CER & 28480 & 0160－0174 \\
\hline Al1c7 & 0180－0049 & － & & CAPACITOR－FXD \(20 \mathrm{UF}+75-10 \% 50 \mathrm{VDC} \mathrm{AL}\) & 56：89 & \(30020660500 C 2\) \\
\hline A 1168 & 0160－0174 & 9 & & CAPACITOR－FXD． 47 TFF \(+80-20 \%\) 25UDC CER & 28480 & 0160－0174 \\
\hline Al1c9 & 0180－0116 & 1 & & CAPACITOR－FXD \(6.8 U F+=10 x\) 35UDC TA & 56289 & \(1500685 \times 9035 \mathrm{P} 2\) \\
\hline A 11610 & 0180－2210 & 0 & 2 & CAPACITOR－FXD 2UF＋50－10x 150UDC AL & 56289 & 30D205F1506H2 \\
\hline A11c11 & 0150－0121 & 5 & & CAPACITOR－FXD． \(1 \mathrm{UF}+80-202\) SOUDC CER & 28480 & 0150－0121 \\
\hline A11C12 & 0180－0374 & 3 & 3 & CAPACITOR－FXD \(10 \mathrm{UF}+-10 \mathrm{X}\) 2OUDC TA & 56.89 & 1500106×9020日2 \\
\hline Alici3 & 0160－2055 & 9 & & CAPACITOR－FXD．O1UF \(480-202\) 100UDC CER & 28480 & 0160－2055 \\
\hline A 11 Cl 14 & 0160－0386 & 5 & & & 28480
28480 & \(0160-0386\)
\(0160-4084\) \\
\hline Al1C15 & 0160－4084 & 8 & & CAPACITOR－FXD ．IUF＋－20\％SOUDC CER & 28480 & \\
\hline A11C16 & 0160－4084 & 8 & & CAPACITOR－FXD 1UF＊－20\％SOUDC CER & 28480 & 0160－4084 \\
\hline Alicil & 0121－0059 & \(?\) & 2 & CAPACITOR－U TRMR－CER 2－8PF \(350 \cup\) PC－MTG & 52763 & 304324 2／8PF NPO \\
\hline A11C18 & 0160－2204 & 0 & & CAPACITOR－FXD 100 PF ＋－5\％30QUDC MICA & 28480 & 0160－2204 \\
\hline Alicis & 0160－0386 & 5 & & CAPACITOR－FXD 3．3PF＋－．25PF 500UDC CER & 28480 & 0160－0386 \\
\hline Aliczo & 0160－0386 & 5 & & CAPACITOR－FXD 3．3PF +-.25 PF 500 UDC CER & 28480 & 0160－0386 \\
\hline A11c21 & 0160－2055 & 9 & & CAPACITOR－FXD ．O1UF＋80－202 100UDC CER & 28480 & 0160－2055 \\
\hline Alic22 & 0160－2055 & 9 & & CAPACITOR－FXD ．01UF \(+80-20 \%\) 100UDC CER & 28480 & 0160－2055 \\
\hline Allc23 & 0160－2055 & 9 & & CAPACITOR－FXD．O1UF＋80－20\％ 1000 DCC CER & 28480 & 0160－2055 \\
\hline Al1c24 & 0160－2055 & － & & CAPACITOR－FXD O1UF＋80－20z 100 UDC CER
CAPACITOR－FXD \(22 \mathrm{UF}+-10 \mathrm{z}\) 15UDC TA & 29480 & 0160-2055 \\
\hline A11C25 & 0180－0228 & 6 & & CAPACITOR－FXD 22UF＋－10x 15UDC TA & 56289 & \(150 \mathrm{D} 226 \times 901582\) \\
\hline
\end{tabular}

\footnotetext{
See introduction to this section for ordering information
}

Table 6-3. Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & \[
\begin{aligned}
& \text { C } \\
& \text { D }
\end{aligned}
\] & Qty & Description & Mfr Code & Mfr Part Number \\
\hline A11C26 & 0180-2207 & 5 & & CAPACITOR-FXD \(100 \mathrm{UF}+-10 \%\) 10UDC TA & 56289 & \\
\hline A11C27 & 0180-0116 & 1 & & CAPACITOR-FXD 6, 8UF+-10\% 35UDC TA & 56289 & \(1500685 \times 903582\) \\
\hline A11C28 & 0160-2228 & 8 & 1 & CAPACITOR-FXD 2700PF +-5\% 300UDC MICA & 28480 & 0160-2228 \\
\hline AllCR 1 & 1901-0040 & 1 & & DIODE-SWITCHING \(30 \cup 50 \mathrm{MA}\) 2NS DO-35 & 28480 & 1901-0040 \\
\hline Al1 \({ }^{\text {a }}\) R2 & 1901-0040 & 1 & & DIIDEE-SWITCHING \(30 \cup 50 \mathrm{MA}\) 2NS DO-35 & 28480 & 1901-0040 \\
\hline A11CR3 & 1901-0040 & 1 & & DIODE-SWITCHING 30U 50MA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A11CR4 & 1901-0040 & 1 & & DIIDE-SWITCHING \(30 \cup 50 \mathrm{MA}\) 2NS DO-35 & 28480 & 1901-0040 \\
\hline A11CR5 & 1901-0040 & 1 & & DIODE-SWITCHING 30U 5OMA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A11CR6 & 1901-0040 & 1 & & DIODE-SWITCHING 300 SOMA 2 NS DO-35 & 28480 & 1901-0040 \\
\hline A 11 CR7 & 1901-0040 & 1 & & DIODE-SWITCHING 30U 50MA 2NS DO-35 & 28480 & 1901-0040 \\
\hline Al1CRE & 1901-0040 & 1 & & DIODE-SWITCHING 300 50MA 2NS DO-35 & 28480 & 1901-0040 \\
\hline Al1CR9 & 1981-0040 & 1 & & DIODE-SWITCHING \(30 \cup 50 \mathrm{MA}\) 2NS DO-35 & 28480 & 1901-0040 \\
\hline Al1CR10 & 1901-0040 & 1 & & DIIDE-SWITCHING 30U SOMA 2NS DO-35 & 28480 & 1901-0040 \\
\hline Al1CR11 & 1901-0040 & 1 & & DIODE-SWITCHING 30U 50MA 2NS DO-35 & 28480 & 1901-0040 \\
\hline Al1CR12
AllCR13 & \(1901-0040\)
\(0122-0264\) & 1 & & DIODE-SWITCHING 30U 50MA 2NS DO-35
DIODE-UUC IN5 148 A \(47 \mathrm{PF} 5 \%\) C4/C60-MIN=3.2 & 28480 & \(1901-0040\)
1 NE148A \\
\hline A11CR13
A11CR14 & \(0122-0264\)
\(0122-0262\) & 8 & 2 & DIODE-UUC 1N5148A 47PF 5\% C4/C60-MIN=3.2
DIODE-VUC 1N5147A 39PF 5\% C4/C60-MIN=3.2 & 04713 & INE148A \\
\hline AIICR15 & 1901-0040 & 5 & & DIODE-SWITCHING \(30 \cup 50 \mathrm{MA}\) 2NS DQ-35 & 28480 & 1901-0040 \\
\hline A11CR16 & 1901-0518 & 8 & 1 & DIODE-SM SIG SCHOTTKY & 28480 & 1901-0518 \\
\hline A11L1 & 9100-1629 & 4 & & INDUCTOR RF-CH-MLD 47UH 5\% . 166 DX . 385Lg & 28480 & 9100-1629 \\
\hline A11L2 & 9140-0114 & 4 & & INDUCTOR RF-CH-MLD \(10 \mathrm{UH} 10 \%\), 166DX, 385LG & 28480 & 9140-0114 \\
\hline A11L3 & 9100-1629 & 4 & & INDUCTOR RF-CH-MLD \(47 \mathrm{UH} 5 \%\), 166DX.385LG & 28480 & 9100-1629 \\
\hline A1114 & 9100-1629 & 4 & & INDUCTOR RF-CH-MLD \(47 \mathrm{UH} 5 \%, 166 \mathrm{DX}\). 385 LG & 28480 & 9100-1629 \\
\hline A11L5 & 9140-0179 & 1 & & INDUCTOR RF-CH-MLD 22UH 10\% .166DX, 385LG & 28480 & 9140-0179 \\
\hline A11L6 & 9140-0179 & 1 & & INDUCTOR RF-CH-MLD 22UH 10\% .166DX.385Lg & 28480 & 9140-0179 \\
\hline A11L7 & 9100-1629 & 4 & & INDUCTOR RF-CH-MLD 47UH 5\% .166DX.385LG & 28480 & 9100-1629 \\
\hline A11L8 \(\dagger\) & 08660-80025 & 7 & & COIL-650NH & 28480 & 08660-80025 \\
\hline A11L9
A11L10 & \(9140-0179\)
\(9140-0179\) & 1 & & INDUCTOR
IND-CH-MLD
INDCTOR
RF-CH-MLD
22UH & 28480
28480 & \(9140-0179\)
\(9140-0179\) \\
\hline A11L10 & 9140-0179 & 1 & & INDUCTOR RF-CH-MLD 22UH 10\% .166DX.385LG & 28480 & 9140-0179 \\
\hline A11L11 & 9140-0129 & 1 & & INDUCTOR RF-CH-MLD 220UH 5\% . 166 DX . 385 LG & 28480 & 9140-0129 \\
\hline Al1L12 & 9100-0368 & 6 & 1 & INDUCTOR RF-CH-MLD 330NH 10x.105DX, 26LG & 28480 & 9100-0368 \\
\hline A1181 & 1854-0092 & 2 & & TRANSISTOR NPN SI PD=200MW FT \(=600 \mathrm{MHZ}\) & 28480 & 1854-0092 \\
\hline A1192 & 1855-0081 & 1 & & TRANSISTOR J-FET N-CHAN D-MODE SI & 28480 & 1855-0081 \\
\hline A1103 & 1854-0345 & 8 & & TRANSISTOR NPN 2N5179 SI TO-72 PD=200M & 04713 & 2N5179 \\
\hline A1104 & 1853-0451 & 5 & & TRANSISTOR PNP \(2 N 3799\) SI TO-18 PD \(=360 \mathrm{MW}\) & 01295 & 2N3799 \\
\hline A1105 & 1853-0451 & 5 & & TRANSISTOR PNP \(2 N 3799\) SI TO-18 PD=360MW & 01295 & \(2 N 3799\) \\
\hline A1106 & 1854-0087 & 5 & & TRANSISTOR NPN SI PD \(=360 \mathrm{MW}\) FT \(=75 \mathrm{MHZ}\) & 28480 & 1854-0087 \\
\hline A1197† & 1853-0036 & 2 & & TRANSISTOR PNP SI PD=310MW FT \(=250 \mathrm{MHZ}\) & 28480 & 1853-0036 \\
\hline A1198 & 1853-0036 & 2 & & TRANSISTOR PNP SI PD=310MW FT=250MHZ & 28480 & 1853-0036 \\
\hline A1129 & 1853-0036 & 2 & & TRANSISTOR PNP SI PD=310MW FT=250MHZ & 28480 & 1853-0036 \\
\hline A11910 & 1853-0036 & 2 & & TRANSISTOR PNP SI PD=310MW FT \(=250 \mathrm{MHZ}\) & 28480 & 1853-0036 \\
\hline A11911 & 1853-0036 & 2 & & TRANSISTOR PNP SI PD=310MW FT \(=250 \mathrm{MHZ}\) & 28480 & 1853-0036 \\
\hline A11912 & 1853-0036 & 2 & & TRANSISTOR PNP SI PD=310MW FT=250MHZ & 28480 & 1853-0036 \\
\hline A11013 & 1853-0036 & 2 & & TRANSISTOR PNP SI PD=310MW FT \(=250 \mathrm{MHZ}\) & 28480 & 1853-0036 \\
\hline A11914 \(\dagger\) & 1853-0036 & 2 & & TRANSISTOR PNP SI PD=310HW FT \(=250 \mathrm{MHZ}\) & 28480 & 1853-0036 \\
\hline Al1Q15 & 1853-0451 & 5 & & TRANSISTOR PNP 2N3799 SI TO-18 PD=360MW & 01295 & 2N3799 \\
\hline A11016 \({ }^{\prime}\) & 1853-0036 & 2 & & TRANSISTOR PNP SI PD=310MW FT= 250 MHZ & 28480 & 1853-0036 \\
\hline A11917t & 1853-0036 & 2 & & TRANSISTOR PNP SI PD=310MW FT \(=250 \mathrm{MHZ}\) & 28480 & 1853-0036 \\
\hline A11918\% & 1853-0036 & 2 & & TRANSISTOR PNP SI PD=310MW FT=250MHZ & 28480 & 1853-0036 \\
\hline A11919 & 1853-0036 & 2 & & TRANSISTOR PNP SI PD \(=310 \mathrm{MW}\) FT \(=250 \mathrm{MHZ}\) & 28480 & 1853-0036 \\
\hline A11820\% & 1853-0036 & 2 & & TRANSISTOR PNP SI PD=310MW FT \(=250 \mathrm{MHZ}\) & 28480 & 1853-0036 \\
\hline AllR1 & 0698-0083 & 8 & & RESISTOR 1.96K 1\% . 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1961-F \\
\hline Al1R2 & 0698-0083 & 8 & & RESISTOR 1.96k 1\% . 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1961-F \\
\hline A11R3 & 0698-0083 & 8 & & RESISTOR 1.96K 1\% . 125 W F TC=0+-100 & 24546 & C4-1/8-TO-1961-F \\
\hline A11R4 & 0698-0083 & 8 & & RESISTOR 1.96K 1\% , 125W F TC= \(0+-100\) & 24546 & C4-1/8-T0-1961-F \\
\hline A11R5 & 0757-0442 & 9 & & RESISTOR 10K 1\% .125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A11R6 & 0757-0442 & 9 & & RESISTOR \(10 \mathrm{~K} 1 \% .125 \mathrm{~W}\) F TC=0+-100 & 24546 & C4-1/8-T0-1002-F \\
\hline A11R7 & 0757-0442 & 9 & & RESISTOR 10K 1\% . 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A11R8 & 0757-0442 & 9 & & RESISTOR \(10 \mathrm{~K} 1 \%, 125 \mathrm{~W}\) F \(\mathrm{TC}=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A11R9 & 0757-0479 & 2 & & RESISTOR 392k \(1 \%\), 125W F TC \(=0+-100\) & 19701 & MF 4C1/8-T0-3923-F \\
\hline Al1R10 & 0757-0472 & 5 & & RESISTOR 200K 1\% , 125W F TC=0+-100 & 24546 & C4-1/8-T0-2003-F \\
\hline A11R11 & 0757-0465 & 6 & & RESISTOR \(100 \mathrm{~K} 1 \%\), 125W F TC=0+-100 & 24546 & C4-1/8-T0-1003-F \\
\hline A11R12 & 0698-3228 & 9 & & RESISTOR 49.9K 1\%.125W F TC \(=0+-100\) & 28480 & 0698-3228 \\
\hline A11R13 & 0757-0274 & 5 & & RESISTOR 1. \(21 \mathrm{~K} 1 \%\), 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1211-F \\
\hline A11R14 & 0757-0460 & 1 & 1 & RESISTOR 61.9K 1\% . 125 F F TC=0+-100 & 24546 & C4-1/8-T0-6192-F \\
\hline A11R15 & 2100-1760 & 7 & & RESISTOR-TRMR 5K \(5 \%\) WW SIDE-ADJ 1-TRN & 28480 & 2100-1760 \\
\hline A11R16 & 0698-3156 & 2 & & RESISTOR 14.7K 1\% . 125 W F TC= \(=0+-100\) & 24546 & C4-1/8-T0-1472-F \\
\hline A11R17 & 0698-0083 & 8 & & RESISTOR 1.96K \(1 \% .125 \mathrm{~W}\) F TC=0 +-100 & 24546 & C4-1/8-T0-1961-F \\
\hline A11R18 & 0757-0442 & 9 & & RESISTOR \(10 \mathrm{~K} 1 \%, 125 \mathrm{WF}\) TC=0 \(0+100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A11R19 & 2100-1759 & 4 & & RESISTOR-TRMR 2K 5\% Wh SIDE-ADJ 1-TRN & 28480 & 2100-1759 \\
\hline A11R20 & 0757-0439 & 4 & & RESISTOR 6.81k 1 X . 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-6811-F \\
\hline A11R21 & 0757-0200 & 7 & & RESISTOR \(5.62 \mathrm{~K} 1 \%\). 125W F TC=0+-100 & 24546 & C4-1/8-T0-5621-F \\
\hline A11R22 & 0757-0442 & 9 & & RESISTOR 10 K 1 z , 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A11R23 & 0698-3440 & 7 & & RESISTOR 196 1\% .125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-196R-F \\
\hline A11R24 & 0698-3154 & 0 & & RESISTOR 4.22K \(1 \% .125 \mathrm{~W}\) F TC= \(=0+100\) & 24546 & C4-1/8-T0-4221-F \\
\hline A11R25 & 0698-0083 & 8 & & RESISTOR 1.96K 1\% . 125 W F TC=0+-100 & 24546 & C4-1/8-T0-1961-F \\
\hline
\end{tabular}

Table 6－3．Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & \[
\begin{aligned}
& \mathrm{C} \\
& \mathrm{D}
\end{aligned}
\] & Qty & Description & Mfr Code & Mfr Part Number \\
\hline A11R26 & 0757－0442 & 9 & & RESISTOR 10K 1\％．125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－1002－F \\
\hline A11R27 & 0757－0458 & 7 & 2 & RESISTOR \(51.1 \mathrm{~K} 1 \% .125 \mathrm{WF} T \mathrm{C}=0+-100\) & 24546 & C4－1／8－T0－5112－F \\
\hline A 11 R 28 & 0757－0461 & 2 & 2 & RESISTOR 68．1K 1\％． 125 W F T C \(=0+-100\) & 24546 & C4－1／6－T0－6812－F \\
\hline A11R29 & 0757－0464 & 5 & 2 & RESISTOR 90．9K 1\％．125 F TC \(=0+-100\) & 24546 & C4－1／8－T0－9092－F \\
\hline Al1R30 & 0757－0467 & 8 & 2 & RESISTOR 121K \(1 \%\) ，125W F TC＝0＋－100 & 24546 & C4－1／8－T0－1213－F \\
\hline A11R31 & 0757－0466 & 7 & & RESISTOR 110K 18.125 W T \(\mathrm{C}=0+-100\) & 24546 & C4－1／8－T0－1103－F \\
\hline A11832 & 0698－3243 & 8 & & RESISTOR 178k 17 ，125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－1783－F \\
\hline A11R33 & 0698－3243 & 8 & & RESISTOR 178k 1 x ，125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－1783－F \\
\hline A11R34 & 0698－3266 & 5 & 4 & RESISTOR 237k ix ． 125 W F T C \(=0+0+100\) & 24546 & C4－1／8－50－2373－F \\
\hline A11R35 & 0698－3266 & 5 & & RESISTOR 237K 12，125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－2373－F \\
\hline A11R36 & 0698－3459 & 8 & 2 & RESISTOR 383K \(1 \%\) ，125W F TC＝0 +-100 & 28480 & 0698－3459 \\
\hline A11R37 & 0698－3162 & 0 & 2 & RESISTOR 46．4K 1\％． 125 W F \(\mathrm{TC}=0+-100\) & 24546 & C4－1／8－T0－4692－F \\
\hline A11R38 & 0698－3155 & 1 & & RESISTOR 4．64K 1\％．125W F TC＝0＋－ 100 & 24546 & C4－1／8－T0－4641－F \\
\hline A11R39 & 2100－2574 & 3 & 2 & RESISTOR－TRMR 500102 C SIDE－ADJ 1－TRN & 30983 & ET50×501 \\
\hline A11R40 & 0698－3155 & 1 & & RESISTOR 4．64k 1x，125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－4641－F \\
\hline A11R41 & 0698－0083 & 8 & & RESISTOR \(1.96 \mathrm{~K} 1 \%\) ． 125 W F T C \(=0 *-100\) & 24546 & C4－1／8－T0－1961－F \\
\hline Al1R42 & 0757－0442 & 9 & & RESISTOR 10K 17 ． 125 W F TC＝0 +-100 & 24546 & C4－1／8－T0－1002－F \\
\hline Al1R43 & 0698－3442 & 9 & & RESISTOR 237 1\％．125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－237R－F \\
\hline A11R44 & 0698－3437 & 2 & & RESISTOR 13312 12 125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－133R－F \\
\hline A11R45 & 0757－0405 & 4 & & RESISTOR 1621 X ．125 F F TC \(=0+-100\) & 24546 & C4－1／8－T0－162R－F \\
\hline A11R46 & 0698－3439 & 4 & & RESISTOR 178 1\％． 125 W F TC \(=0+-100\) & 24546 & C4－1／8－r0－178R－F \\
\hline A11R47 & 0698－3440 & 7 & & RESISTOR 196 1\％． 1254 F TC \(=0+-100\) & 24546 & C4－1／8－T0－196R－F \\
\hline A11R48 & 0698－3132 & 4 & & RESISTOR 261 1\％．125W F TC＝0＊－100 & 24546 & C4－1／8－50－2610－F \\
\hline A11R49 & 0698－3443 & 0 & & RESISTOR \(2871 \%\) ． 125 W F TC \(=0+-100\) & 24546 & C4－1／8－T0－287R－F \\
\hline Al1R50 & 0698－3445 & 2 & & RESISTOR 34812 ．125w F TC \(=0+-100\) & 24546 & C4－1／8－T0－348R－F \\
\hline Al1RS1 & 0698－3447 & 4 & & RESISTOR \(4221 \%\) ，125W F TC＝0 +-100 & 24546 & C4－1／8－T0－422R－F \\
\hline Al1R52 & 0698－0082 & 7 & & RESISTOR 464 1x ．125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－4640－F \\
\hline A12R53 & 0757－0317 & 7 & 2 & RESISTOR 1．33K 12.125 W F \(\mathrm{TC}=0+-100\) & 24546 & C4－1／8－T0－1331－F \\
\hline A11R54 & 2100－2574 & 3 & & RESISTOR－TRMR \(50010 \%\) C SIDE－ADJ 1－TRN & 30983 & ET50×501 \\
\hline A11R55 & 0698－3258 & 5 & 1 & RESISTOR 5．36K 12 ，125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－5361－F \\
\hline A11R56 & 0698－3132 & 4 & & RESISTOR 261 \(1 \%\) ，125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－2610－F \\
\hline A 11857 & 0757－0834 & 3 & 2 & RESISTOR 5．62k 12.5 K F TC \(=0+-100\) & 28480 & 0757－0834 \\
\hline A 11 R 58 & 0698－0083 & 8 & & RESISTOR 1.96 K 1\％． 125 WF TC \(=0+-100\) & 24546 & C4－1／8－T0－1961－F \\
\hline A11R59 & 0757－0442 & 9 & & RESISTOR 10 K 12.125 W F TC \(=0+-100\) & 24546 & C4－1／8－T0－1002－F \\
\hline A11R60 & 2100－2633 & 5 & 3 & RESISTOR－TRMR IK 10\％C SIDE－ADJ I－TRN & 30983 & ET50×102 \\
\hline A11R63 & 0757－0290 & 5 & & RESISTOR 6．19k \(1 \%\) ． 125 W F T C \(=0+-100\) & 19701 & MF 4C1／8－T0－6191－F \\
\hline A11R62 & 0757－0441 & 8 & & RESISTOR 8．25k i\％．125W F TC \(=0+-100\) & 24546 & C4－1／8－70－8251－F \\
\hline A11R63 & 0698－0083 & 8 & & RESISTOR 1．96k ix ．125W F TC＝0＋－ 100 & 24546 & C4－1／8－T0－1961－F \\
\hline A11R64 & 0757－0442 & 9 & & RESISTOR \(10 \mathrm{~K} 1 \% \quad 1254\) F T C \(=0+-100\) & 24546 & C4－1／8－T0－1002－F \\
\hline A11R65 & 0757－0279 & 0 & & RESISTOR 3．16K 1x ，125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－3161－F \\
\hline A 11 R 66 & 0757－0442 & 9 & & RESISTOR 10K \(1 \%\) ，125W F TC \(=0+-100\) & 24546 & C4－1／8－70－1002－F \\
\hline A11R67 & 2100－2633 & 5 & & RESISTOR－TRMR 1K 10X C SIDE－ADJ 1－TRN & 30993 & ET50×102 \\
\hline A 11 R 68 & 0757－0440 & 7 & & RESISTOR 7．5K 12，125世 F TC＝0＋－100 & 24546 & C4－1／8－T0－7501－F \\
\hline Al1R69 & 0757－0444 & 1 & & RESISTOR \(12.1 \mathrm{~K} 1 \%\) ．125W F \(T\) C \(=00+100\) & 24546 & C4－1／8－T0－1212－F \\
\hline A11R70 & 0698－0083 & 8 & & RESISTOR 1.96 K 1 X ，125W F \(\mathrm{TC}=0+-100\) & 24546 & C4－1／8－T0－1961－F \\
\hline A11R71 & 0757－0442 & 9 & & RESISTOR 10K 1\％． 125 W F TC \(=0+-100\) & 24546 & C4－1／8－T0－1002－F \\
\hline Al1R72 & 0698－3157 & 3 & & RESISTOR \(19.6 \mathrm{~K} \quad 1 \mathrm{X}, 125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4－1／8－T0－1962－F \\
\hline A11R73 & 2100－2521 & 0 & 2 & RESISTOR－TRMR 2 K 10 X C SIDE－ADJ 1－TRN & 30983 & ET50x202 \\
\hline A11874 & 0757－0288 & 1 & & RESISTOR 9．09K 1\％．125W F TC＝0＊－100 & 19701 & MFAC1／8－T0－9091－F \\
\hline A11R75 & 0698－0083 & 8 & & RESISTOR 1．96K 12，125 F \(T C=0+-100\) & 24546 & C4－1／8－T0－1961－F \\
\hline A11R76 & 0757－0442 & 9 & & RESISTOR \(10 \mathrm{~K} 1 \mathrm{1X}, 125 \mathrm{~W}\) F TC \(=0+-100\) & 245.46 & C4－1／8－T0－1002－F \\
\hline A11R77 & 2100－2521 & 0 & & RESISTOR－TRM 2 L 10x C SIDE－ADJ 1－TRN & 30983 & ET50x202 \\
\hline A 11 R 78 & 0757－0444 & 1 & & RESISTOR 12． 1 K 1x ，125W F TC＝0 +-100 & 24546 & C4－1／8－T0－1212－F \\
\hline A11R99 & 0698－0083 & 8 & & RESISTOR 1．96k ix ． 125 W F \(\mathrm{TC}=0+-100\) & 24546 & C4－1／8－T0－1961－F \\
\hline A11R80 & 0757－0442 & 9 & & RESISTOR 10K \(1 \mathrm{\chi}\) ，125W F TC＝0＊－100 & 24546 & C4－1／8－T0－1002－F \\
\hline A11R81 & 0683－8245 & 9 & & RESISTOR 日20K 54.254 FC \(\mathrm{TC}=-800 /+900\) & 01121 & CE8825 \\
\hline A \(11 \mathrm{Re2}\) & 0698－3243 & 8 & & RESISTOR 178K 1\％，125W F TC＝0 +-100 & 24546 & C4－1／8－T0－1783－F \\
\hline A11R83 & 2100－2489 & 9 & 1 & RESISTOR－TRMR SK 10 X C SIDE－ADJ 1－TRN & 30983 & ET50x502 \\
\hline A \(11 \mathrm{R8} 4\) & 0698－3136 & 8 & & RESISTOR 17．日k 12.125 W F \(\mathrm{CC}=0+-100\) & 24546 & C4－1／8－T0－1782－F \\
\hline A11R85 & 0698－3440 & 7 & & RESISTOR 19618.125 W F \(\mathrm{TC}=0+-100\) & 24546 & C4－1／8－T0－196R－F \\
\hline A11R86 & 0698－0082 & 7 & & RESISTOR \(4641 \%, 125 \mathrm{~W}\) F \(\mathrm{TC}=0+-100\) & 24546 & C4－1／8－T0－4640－F \\
\hline A11R87 & 0698－0083 & 8 & & RESISTOR 1．96K 1\％． 125 W F TC＝\(=04-100\) & 24546 & C4－1／8－T0－1961－F \\
\hline A 11 l 88 & 0757－0442 & 9 & & RESISTOR 10K \(1 \%\) ，125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－1002－F \\
\hline Al1R89 & 0757－0200 & 7 & & RESISTOR 5.62 K 1\％．125 F \(\mathrm{TC}=0+-100\) & 24546 & C4－1／8－T0－5621－F \\
\hline A 11890 & 2100－2522 & 1 & 1 & RESISTOR－TRMR 10 K 10\％C SIDE－ADJ 1－TRN & 30983 & ETS0×103 \\
\hline A 11 R 91 & 0757－0123 & 3 & 1 & RESISTOR 34．8K 1\％． 125 W F TC＝0 +-100 & 28480 & 0757－0123 \\
\hline A11R92 & 0757－0403 & 2 & & RESISTOR \(1211 \%\) ，125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－121R－F \\
\hline A11893 & 0698－3154 & 0 & & RESISTOR 4．22K \(1 \%\) ，125W F TC＝0t－100 & 24546 & C4－1／8－T0－4221－F \\
\hline A11894 & 0698－3444 & 1 & & & 24546 & C4－1／8－T0－316R－F \\
\hline A11R95 & 0698－0085 & \(\square\) & & RESISTOR 2．61K 1 X ． 125 W F \(\mathrm{TC}=0+-100\) & 24546 & C4－1／8－T0－2611－F \\
\hline A 11896 & 0757－0402 & 1 & 1 & RESISTOR \(1101 \%\) ． 125 W F TC \(=0+-100\) & 24546 & CA－1／8－T0－111－F \\
\hline A11R97 & 0757－0288 & 1 & & RESISTOR 9．09K 1\％．125W F TC＝0＋－100 & 19701 & MF 4C1／8－T0－9091－F \\
\hline A 11898 & 0698－0085 & 0 & & RESISTOR 2．61K i\％． 125 WF TC＝0 +-100 & 24546 & C4－1／8－T0－2611－F \\
\hline A11R99 & 0757－0421 & 4 & & RESISTOR \(8251 \%\) ． 125 W F TC \(=0+-100\) & 24546 & C4－1／8－T0－825R－F \\
\hline A11R100 & 0757－0395 & 1 & 1 & RESISTOR 56．2 1\％．125N F TC＝0＋－100 & 24546 & C4－1／8－T0－56R2－F \\
\hline
\end{tabular}

Table 6-3. Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & \[
\begin{aligned}
& \text { C } \\
& \text { D }
\end{aligned}
\] & Qty & Description & Mfr Code & Mfr Part Number \\
\hline A11R101 & 0698-3439 & 4 & & RESISTOR \(1781 \%\). 125 W F TC=0+-100 & 24546 & C.4-1/8-T0-178R-F \\
\hline A11R102 & 0698-3444 & 1 & & RESISTOR 316 1\% . 125 W F TC= \(0+-100\) & 24546 & C4-1/8-T0-316R-F \\
\hline A11R103 & 0698-3438 & 3 & & RESISTOR 147 1\% .125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-147R-F \\
\hline A11R104 & 0698-0082 & 7 & & RESISTOR 464 1\% , 125W F TC=0+-100 & 24546 & C4-1/8-T0-4640-F \\
\hline A11R105 & 0757-0442 & 9 & & RESISTOR 10K \(1 \%\). 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline Al1R106 & 0698-3441 & 8 & & RESISTOR \(2151 \%\). 125W F TC= \(0+-100\) & 24548 & C4-1/8-T0-215R-F \\
\hline A11R107 & 0757-0280 & 3 & & RESISTOR \(1 \mathrm{~K} 1 \%, 125 \mathrm{~W}\) F TC \(=0+100\) & 24546 & \[
C 4-1 / 8-\mathrm{T} 0-1001-\mathrm{F}
\] \\
\hline Al1u1 & 1820-0054 & 5 & & IC GATE TTL NAND QUAD 2-INP & 01295 & SN7400N \\
\hline A11uz & 1820-0214 & 9 & 1 & IC DCDR TTL BCD-TO-DEC 4-TO-10-LINE & 01295 & SN7442AN \\
\hline A1103 & 1820-0054 & 5 & & IC GATE TTL NAND QUAD 2-INP & 01295 & SN7400N \\
\hline A12 & 08660-60018 & 6 & 1 & BOARD ASSEMBLY, SLZ DETECTOR (EXCEPT OPTION 004) & 28480 & 08660-60018 \\
\hline A12 & 08660-60040 & 4 & & BOARD ASSEMBLY, N2 LOOP-SL1 LOOP COUPLER (OPTION 004 ONLY) & 28480 & 08660-60040 \\
\hline A12C1 & 0160-0174 & 9 & & CAPACITOR-FXD 47UF +80-20\% 25UDC CER & 28480 & 0160-0174 \\
\hline Al2C2
Al2c3 & 0180-2207 & 5
9 & & CAPACITOR-FXD
CAPACITOR-FXD & 56289
28480 & 150D107×9010R2
\(0160-0174\) \\
\hline A12c3 & 0160-0174 & 9 & & CAPACITOR-FXD . \(47 \mathrm{UF}+80-20 \%\) 25UDC CER & 28480 & 0160-0174 \\
\hline A12C4
A12C5 & \(0160-0174\)
\(0160-0174\) & 9 & & CAPACITOR-FXD
CAPACITOR - FXD & 28480
28480 & \(0160-0174\)
\(0160-0174\) \\
\hline A12C6 & 0180-0058 & 0 & & CAPACITOR-FXD 50UF+75-10\% 25UDC AL & 56289 & 30D5066025CC2 \\
\hline A12C7 & 0160-2055 & 9 & & CAPACITOR-FXD . \(01 \mathrm{UF}+80-20 \% 100 \mathrm{UDC}\) CER & 28480 & 0160-2055 \\
\hline A12C8 & 0150-0121 & 5 & & CAPACITOR-FXD , 1UF +80-20\% 50VDC CER & 28480 & 0150-0121 \\
\hline A1259 & 0160-0301 & 4 & 2 & CAPACITOR-FXD . \(012 \mathrm{UF}+-10 x\) 200UDC POLYE & 28480 & 0160-0301 \\
\hline A12C10 & 0160-2055 & 9 & & CAPACITOR-FXD, 01UF +80-20\% 100UDC CER & 28480 & 0160-2055 \\
\hline A12C11 & 0160-0301 & 4 & & CAPACITOR-FXD .012UF +-10\% 200UDC POLYE & 28480 & 0160-0301 \\
\hline A12C12 & 0160-2261 & 9 & 2 & CAPACITOR-FXD 15PF +-5\% \(500 \cup \mathrm{DC}\) CER 0 0 - 30 & 28480 & 0160-2261 \\
\hline A12C13 & 0160-2261 & 9 & & CAPACITOR-FXD 15PF +-5\% 500VDC CER 0+-30 & 28480 & 0160-2261 \\
\hline A12C14 & 0160-0174 & 9 & & CAPACITOR-FXD - \(47 \mathrm{UF}+80-20 \% 25 U D C\) CER & 28480 & 0160-0174 \\
\hline A12C15 & 0180-2141 & 6 & 1 & CAPACITOR-FXD 3.3UF+-10\% 50UDC TA & 56289 & 150D335×905082 \\
\hline A12C16 & 0160-2055 & & & CAPACITOR-FXD . 01 UF +80-20X 100 UDC CER & 28480 & \[
0160-2055
\] \\
\hline A12C17 & 0180-0058 & 0 & & CAPACITOR-FXD 50UF+75-10\% 25UDC AL & 56289 & 30D5066025CC2 \\
\hline A12C18 & 0160-0299 & 9 & 2 & CAPACITOR-FXD 1800PF +-10\% 200UDC POLYE & 28480 & 0160-0299 \\
\hline A12C19 & 0160-0939 & 4 & 1 & CAPACITOR-FXD 430PF +-5\% 300UDC MICA & 28480 & 0160-0939 \\
\hline A12C20 & 0160-0174 & 9 & & CAPACITOR-FXD . 47 UF +80-20\% 25UDC CER & 28480 & 0160-0174 \\
\hline A12c21 & 0160-0299 & & & CAPACITOR-FXD 1800PF +-10\% 200UDC POLYE & 28480 & 0160-0299 \\
\hline A12C22 & 0180-0291 & 3 & & CAPACITOR-FXD 1UF+-10\% 35UDC TA & 56289 & 150D10599035A2 \\
\hline A12C23 & 0160-2055 & 9 & & CAPACITOR-FXD \(010 \mathrm{UF}+80-20 \% 100 \cup D C\) CER & 28480 & 0160-2055 \\
\hline A12c24 & 0160-3534 & 1 & 1 & CAPACITOR-FXD 510PF +-5\% 100 UDC MICA & 28480 & 0160-3534 \\
\hline A12C25 & 0180-0291 & 3 & & CAPACITOR-FXD 1UF+-10\% 35UDC TA & 56289 & 150D105×9035A2 \\
\hline A12E1 & 10534 C & 8 & 1 & MIXER, 200 7 Hz & 28480 & 10534 C \\
\hline A12l1 & 9140-0179 & 1 & & INDUCTOR RF-CH-MLD 22UH 10\%.166DX.385LG & 29480 & 9140-0179 \\
\hline A12L2 & 9140-0114 & 4 & & INDUCTOR RF-CH-MLD \(10 \mathrm{UH} 10 \%\), 166DX. 385LG & 28480 & 9140-0114 \\
\hline A12L3 & 9140-0179 & 1 & & INDUCTOR RF-CH-MLD 22UH 10x , 166DX. 385LG & 28480 & 9140-0179 \\
\hline A12L4 & 9100-1621 & 6 & 1 & INDUCTIR R RF-CH-MLD 180 H 10\% , 166DX. 385LG & 28480 & 9100-1621 \\
\hline A12L5 & 9140-0179 & 1 & & INDUCTOR RF-CH-MLD 22UH 10\% . 166DX.385LG & 28480 & 9140-0179 \\
\hline A12L6 & 9140-0179 & 1 & & INDUCTOR RF-CH-MLD 22UH 10\% .166DX.385LG & 28480 & 9140-0179 \\
\hline A12L7 & 9100-1658 & 9 & 1 & INDUCTOR RF-CH-MLD 1.6MH 5\% .23DX.57LG & 28480 & 9100-1658 \\
\hline A1201 & 1853-0015 & 7 & & TRANSISTOR PNP SI PD \(=200 \mathrm{MW}\) FT \(=500 \mathrm{MHZ}\) & 28480 & 1853-0015 \\
\hline A1202 & 1854-0092 & 2 & & TRANSISTOR NPN SI PD= 200 MW FT \(=600 \mathrm{MHZ}\) & 28480 & 1854-0092 \\
\hline A1293 & 1854-0092 & 2 & & TRANSISTOR NPN SI PD=200M FT \(=600 \mathrm{MHZ}\) & 28480 & 1854-0092 \\
\hline A1294 & 1854-0092 & 2 & & TRANSISTOR NPN SI PD \(=200 \mathrm{MW}\) FT \(=600 \mathrm{MHZ}\) & 28480 & 1854-0092 \\
\hline A1205 & 1854-0092 & 2 & & TRANSISTOR NPN SI PD \(=200 \mathrm{MH}\) FT \(=600 \mathrm{MHZ}\) & 28480 & 1854-0092 \\
\hline A1296 & 1854-0092 & 2 & & TRANSISTOR NPN SI PD \(=200 \mathrm{MW}\) FT \(=600 \mathrm{MHZ}\) & 28480 & 1854-0092 \\
\hline A1207 & 1854-0092 & 2 & & TRANSISTOR NPN SI PD \(=200 \mathrm{MH} \mathrm{FT}=600 \mathrm{MHZ}\) & 28480 & 1854-0092 \\
\hline A1208t & 1853-0036 & 2 & & TRANSISTOR PNP SI PD \(=310 \mathrm{MW} \quad \mathrm{FT}=25 \mathrm{MHZ}\) & 28480 & 1853-0036 \\
\hline A1209\% & 1853-0036 & 2 & & TRANSISTOR PNP SI PD=310MW FT \(=250 \mathrm{MHZ}\) & 28480 & 1853-0036 \\
\hline A1201 访 & 1853-0036 & 2 & & TRANSISTOR PNP SI PD=310 \({ }^{\text {HW }}\) FT \(=250 \mathrm{MHZ}\) & 28480 & 1853-0036 \\
\hline A12011 \(\dagger\) & 1853-0036 & 2 & & TRANSISTOR PNP SI PD=310MW FT=250MHZ & 28480 & 1853-0036 \\
\hline A12012 & 1854-0092 & 2 & & TRANSISTOR NPN SI PD=200MW FT \(=600 \mathrm{MHZ}\) & 28480 & \[
1854-0092
\] \\
\hline A12R1 & 0757-0399 & 5 & 2 & RESISTOR 82.5 1\% . 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-82R5-F \\
\hline A12R2 & 0757-0400 & 9 & 2 & RESISTOR \(90.91 \%\). 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-90R9-F \\
\hline A12R3 & 0757-0399 & 5 & & RESISTOR 82.5 1\%, 125w F TC \(=0+-100\) & 24546 & C4-1/8-T0-82R5-F \\
\hline A12R4 & 0698-3151 & 7 & & RESISTOR 2.87K 1\% .125 F F TC=0+-100 & 24546 & C4-1/8-T0-2871-F \\
\hline A12R5 & 0698-3151 & 7 & & RESISTOR 2.87K 1\% . 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-2871-F \\
\hline A12R6 & 0698-3445 & 2 & & RESISTOR \(3481 \%\), 125 F F TC=0+-100 & 24546 & C4-1/8-T0-348R-F \\
\hline A12R7 & 0757-0416 & 7 & & RESISTOR \(5111 \%\), 125W F TC \(=0+100\) & 24546 & C4-1/8-T0-511R-F \\
\hline A12R8 & 0757-0441 & 8 & & RESISTOR 8.25K \(1 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-8251-F \\
\hline A12R9 & 0757-0279 & 0 & & RESISTOR 3.16K 1\% , 1251 F TC \(=0+-100\) & 24546 & C4-1/8-T0-3161-F \\
\hline A12R10 & 0757-0420 & 3 & & RESISTOR 750 1\% . 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-751-F \\
\hline A12R11 & 0698-3442 & 9 & & RESISTOR 237 1\% . 125W F TC=0+-100 & 24546 & C4-1/8-T0-237R-F \\
\hline A12R12 & 0757-0440 & 7 & & RESISTOR 7.5K 1\% . 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-7501-F \\
\hline A12R13 & 0757-0394 & 0 & & RESISTOR 51.1 iz , 125W F \(\quad\) TC \(=0+-100\) & 24546 & C4-1/8-T0-51R1-F \\
\hline A12R14 & & & & NOT ASSIGNED & & \\
\hline A12R15 & 0757-0294 & 9 & 1 & RESISTOR 17.8 17 , 125W F TC=0+-100 & 19701 & MF 4C1/8-T0-17R8-F \\
\hline
\end{tabular}

Table 6-3. Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reference \\
Designation
\end{tabular} & HP Part Number & C & Qty & Description & Mfr Code & Mfr Part Number \\
\hline A12R16 & 0757-0280 & 3 & & RESISTOR ik \(1 \times \quad 125\) W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1001-F \\
\hline A12R17 & 0757-0280 & 3 & & RESISTOR \(1 \mathrm{~K} 1 \mathrm{X}, 125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-1001-F \\
\hline A12R18 & 0757-0421 & 4 & & RESISTOR 825 1\%, 125W F TC \(=0+-100\) & 24546 & C4-1/8- \({ }^{\text {c }} 0\)-825R-F \\
\hline A12R19 & 0757-0280 & 3 & & RESISTOR 1K \(1 \% .125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-10-1001-F \\
\hline A12R20 & 0757-0421 & 4 & & RESISTOR E25 1\% , 125w F TC=0+-100 & 24546 & C4-1/8-T0-825R-F \\
\hline A12R21 & 0698-0082 & 7 & & RESISTOR 464 1\% . 125 F TC \(=0+-100\) & 24546 & C4-1/8-10-4640-F \\
\hline A12R22 & 0698-0083 & 8 & & RESISTOR \(1.96 \mathrm{~K} 1 \%\), 125 W F \(\mathrm{TC}=0+-100\) & 24546 & C4-1/8-T0-1961-F \\
\hline A12R23 & 0698-0083 & 8 & & RESISTOR 1.96k \(1 \%\). 125 F \(T C=0+-100\) & 24546 & C4-1/8-T0-1961-F \\
\hline Al2R24 & 0698-0083 & 8 & & RESISTOR 1.96 K 1\% . 125 W F \(\mathrm{TC}=0+-100\) & 24546 & C4-1/8-T0-1961-F \\
\hline A12R25 & 0698-0083 & 8 & & RESISTOR 1.96k 1\% . 125 W F TC \(=0+-100\) & 24546 & C4-1/8-70-1961-F \\
\hline A12R26 & 0698-0082 & 7 & & RESISTOR 464 1\%, 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-4640-F \\
\hline A12R27 & 0757-0442 & 9 & & RESISTOR 10K 1\%, 125W F TC=0 + - 100 & 24546 & C4-1/8-T0-1002-F \\
\hline A12R28 & 0757-0442 & 9 & & RESISTOR 10K \(1 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A12R29 & 0757-0442 & 9 & & RESISTOR 10K 1\% . 1254 F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A 12 R 30 & 0757-0442 & 9 & & RESISTOR 10K 1\% , 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A12R31 & 0683-3955 & 8 & 1 & RESISTOR 3.9M 5x . 25W FC TC \(=-900 /+1100\) & 01121 & CA3955 \\
\hline A12R32 & 0683-2055 & 7 & 1 & RESISTOR 2M 5Z. 25W FC TC \(=-900 /+1100\) & 01121 & C82055 \\
\hline A12R33 & 0683-1055 & 5 & 1 & RESISTOR IH \(5 x\), 25W FC TC \(=-800 /+900\) & 01121 & C81055 \\
\hline A12R34 & 0698-3263 & 2 & 1 & RESISTOR 500K 1\%, 125W F TC=0\%-100 & 28480 & 0698-3263 \\
\hline A12R35 & 0757-0200 & 7 & & & 24546 & C4-1/8-T0-5621-F \\
\hline A12R36 & 0698-3441 & 8 & & RESISTOR \(2151 \% .125 \mathrm{~F}\) F \(T C=0+-100\) & 24546 & C4-1/8-T0-215R-F \\
\hline A12R37 & 2100-2633 & 5 & & RESISTOR-TRMR IK \(10 X\) C SIDE-ADJ 1-TRN & 30983 & ET50×102 \\
\hline A \(12 R 38\) & 0757-0200 & 7 & & RESISTOR 5. 62k \(1 \%\), 1254 F TC=0 +-100 & 24546 & C4-1/8-T0-5621-F \\
\hline A12R39 & 0698-3150 & 6 & & RESISTOR 2.37K \(1 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-2371-F \\
\hline A12R40 & 0757-0418 & 9 & & RESISTOR \(6191 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-Y0-619R-F \\
\hline A12R41 & 0698-3155 & 1 & & RESISTOR 4.64K 12, 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-4641-F \\
\hline A \(12 R 42\) & 0757-0280 & 3 & & RESISTOR 1K 1\%. 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1001-F \\
\hline A12R43 & 0757-0421 & 4 & & RESISTOR \(8251 \%\), 125 F F TC \(=0+-100\) & 24546 & C4-1/8-T0-825R-F \\
\hline A12R44 & 0698-3443 & 0 & & RESISTOR \(2871 \%\). 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-287R-F \\
\hline A12R45 & 0698-3151 & 7 & & RESISTOR 2.87\% 1\% , 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-2871-F \\
\hline A12R46 & 0698-0084 & 9 & & RESISTOR 2.15K 1\% , 125W F TC=0 +-100 & 24546 & C4-1/8-T0-2151-F \\
\hline A12R47 & 0757-0280 & 3 & & RESISTOR IK \(18.125 W\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-1001-F \\
\hline A12R48 & 0757-0280 & 3 & & QESISTOR 1K 1\%, 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1001-F \\
\hline A12R49 & 0698-0082 & 7 & & RESISTOR 464 1\% . 125W F TC \(=0+-100\) & 24546 & C \(4-1 / 8-\mathrm{TO}\)-4640-F \\
\hline A12R50 & 0757-0401 & 0 & & RESISTOR 1001 X , 125 4 F TC \(=0+-100\) & 24546 & C4-1/8-T0-101-F \\
\hline A12R51 & 0757-0280 & 3 & & RESISTOR 1K 1x, 125W F TC=0 +-100 & 24546 & C4-1/8-T0-1001-F \\
\hline A12U1 & 1820-0054 & 5 & & IC GATE TTL NAND QUAD 2-INP & 01295 & SN7400n \\
\hline Al 2 U 2 & 1820-0077 & 2 & 1 & IC FF TTL D-TYPE POS-EDGE-TRIG CLEAR & 01295 & SN7474N \\
\hline A12U3 & 1820-0054 & 5 & & IC GATE TTL NAND QUAD \(2-1\) INP & 01295 & SN7400N \\
\hline A1204 & 1820-0054 & 5 & & IC GATE TTL NAND QUAD 2-INP & 01295 & SN7400N \\
\hline A1205 & 1820-0068 & 1 & 1 & IC GATE TTL NAND TPL 3-INP & 01295 & SN7410N \\
\hline A12U6 & 1820-0054 & 5 & & IC GATE TTL NAND QUAD 2-INP & 11295 & SN7400N \\
\hline A1207 & 1820-0054 & 5 & & IC GATE TTL NAND QUAD 2-INP & 01295 & SN7400N \\
\hline A12ub & 1820-0054 & 5 & & IC GATE TTL NAND QUAD 2-INP & 01295 & SN7400N \\
\hline A 1209 & 1820-0751 & 9 & & IC CNTR TTL DECD NEG-EDGE-TRIG PRESET & 01295 & SN74196N \\
\hline A13 & 08660-60012 & 0 & 1 & BOARD ASSEMBLY, N2 OSCILLATOR (EXCEPT OPTION 004) & 28480 & 08660-60012 \\
\hline A 13 & 08660-60339 & 4 & 1 & BOARD ASSEMBLY, N2 OSCILLATOR (OPTION 004 ONLY) & 28480 & 08660-60339 \\
\hline Al3C1 & 0180-0058 & 0 & & CAPACITOR-FXD 50UF+75-10\% 25UDC AL & 56289 & \(3005066025 C C 2\) \\
\hline A13C2 & 0180-0228 & 6 & & CAPACITOR-FXD 22UF*-10\% 15UDC TA & 56289 & 150D226x9015B2 \\
\hline A13C3 & 0180-0049 & 9 & & CAPACITOR-FXD 2OUF \(+75-10 \%\) SOUDC AL & 56289 & \(30 \mathrm{D2066050CC2}\) \\
\hline A13C4 & 0180-2207 & 5 & & CAPACITOR-FXD 100 UF* \(-10 \%\) 10UDC TA & 56289 & 150D107x9010R2 \\
\hline A 3 3C5 & 0150-0121 & 5 & & CAPACITOR-FXD , 1UF +80-20z 50UDC CER & 28480 & 0150-0121 \\
\hline A13C6 & 0150-0121 & 5 & & CAPACITOR-FXD , 1UF \(+80-20 X\) 5OUDC CER & 28480 & 0150-0121 \\
\hline A13c7 & 0150-0121 & 5 & & CAPACITOR-FXD, 1UF +80-20x SOUDC CER & 28480 & 0150-0121 \\
\hline A 13 CB & 0160-3459 & 9 & & CAPACITOR-FXD OLUF +-20x 100 UDC CER & 28480 & 0160-3459 \\
\hline A 1359 & & & & NOT ASSIGNED & & \\
\hline A13C10 & 0180-0228 & 6 & & CAPACITOR-FXD 22UF+-10x 15UDC TA & 56289 & \(1500226 \times 901582\) \\
\hline A13C11 & 0180-0116 & 1 & & CAPACITOR-FXD 6.8UF+-10\% 35UDC TA & 56289 & \(1500685 \times 983582\) \\
\hline A13C12 & 0180-0228 & 6 & & CAPACITOR-FXD 22UF*-10x 15UDC TA & 56289 & \(150 \mathrm{D} 226 \times 901582\) \\
\hline A13C13 & 0180-2210 & 0 & & CAPACI YOR-FXD \(2 \mathrm{UF}+50-10 \% ~ 150 \mathrm{VDC} \mathrm{AL}\) & 56289 & 30D205F150RE2 \\
\hline A13C14 & 0180-0374 & 3 & & CAPACITOR-FXD \(10 \mathrm{UF}+-10 \%\) 20UDC TA & 56289 & 150D106×9020B2 \\
\hline A13C15 & 0160-2055 & 9 & & CAPACITOR-FXD . O1UF \(+80-20 \%\) 100VDC CER & 28480 & 0160-2055 \\
\hline A13C16 & 0160-0386 & 5 & & CAPACITOR-FXD 3.3PF +-. 25PF 500UDC CER & 28480 & 0160-8386 \\
\hline A13C17 & 0160-2204 & 0 & & CAPACITOR-FXD \(100 \mathrm{PF}+5 \chi\) 300VDC MICA & 28480 & 0160-2204 \\
\hline A13E18 & 0160-4084 & 8 & & CAPACITOR-FXD. 1 UF +-20x 50UDC CER & 28480 & 0160-4084 \\
\hline A13C19 & 0121-0059 & 7 & & CAPACITOR-U TRMR-CER 2-BPF 350 U PC-HTG & 52763 & 304324 2/8PF NPO \\
\hline A13C20 & & & & MOT ASSIGNED & & \\
\hline A13C21 & 0160-2055 & 9 & & CAPACITOR-FXD. O1UF \(+80-20 \% 100 \mathrm{UDC}\) CER & 28480 & 0160-2055 \\
\hline A 13 C 22 & 0160-0386 & 5 & & CAPACITOR-FXD 3.3PF +-. 25PF 500UDC CER & 28480 & 0160-0386 \\
\hline A13c23 & 0160-0386 & 5 & & CAPACITOR-FXD 3.3PF *- 25PF SOOUDC CER & 28480 & 0160-0386 \\
\hline A13C24 & 0160-2055 & 9 & & CAPACITOR-FXD. O1UF +80-20\% 100UDC CER & 28480 & 0160-2055 \\
\hline A13C25 & 0160-2055 & 9 & & CAPACITOR-FXD .01UF +80-20\% 100UDC CER & 28480 & 0160-2055 \\
\hline
\end{tabular}

Table 6-3. Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & C & Qty & Description & Mfr Code & Mfr Part Number \\
\hline A13C26 & 0160-2055 & 9 & & CAPACITOR-FXD . O1UF + B0-20\% 100 UDC CER & 28480 & 0160-2055 \\
\hline A13C27 & 0160-2055 & 9 & & CAPACITOR-FXD . \(01 \mathrm{UF}+80-20 \% 100 \mathrm{UDC}\) CER & 28480 & 0160-2055 \\
\hline A13C28 & 0160-3459 & 9 & & CAPACITOR-FXD .02UF +-20\% 100 UDC CER & 28480 & 0160-3459 \\
\hline A13C29 & 0160-0163 & 6 & 1 & CAPACITOR-FXD .033UF +-10\% 200UDC POLYE & 28480 & 0160-0163 \\
\hline A13CR1 & 1901-0040 & 1 & & DIODE-SWITCHING 3OU 5OMA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A13CR2 & & & & NOT ASSIGNED & & \\
\hline A13CR3 & 1901-0040 & 1 & & DIODE-SWITCHING 30U 50MA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A13CR 4 & 1901-0040 & 1 & & DIODE-SWITCHING 30U 50MA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A13CR5 & 1901-0040 & 1 & & DIODE-SWITCHING 30U 50MA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A13CRG & 1901-0040 & 1 & & DIODE-SWITCHING 30U 50MA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A13CR7 & 1901-0040 & 1 & & DIDDE-SWITCHING \(30 \cup 50 \mathrm{MA}\) 2NS DO-35 & 28480 & 1901-0040 \\
\hline A13CRE & 0122-0264 & 8 & & DIODE-UVC 1N5148A 47PF 5\% C4/C60-MIN=3.2 & 04713 & 1 N5148A \\
\hline \[
\begin{aligned}
& \text { A13CR9 } \\
& \text { A13CR10 }
\end{aligned}
\] & 0122-0262 & 6 & & DIODE-UVC 1N5147A 39PF 5\% C4/C60-MIN=3.2 NOT ASSIGNED & 04713 & 1 N51 47A \\
\hline A13CR11 & 1901-0040 & 1 & & DIODE-SWITCHING 30U 50MA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A13CR 12 & 1901-0040 & 1 & & DIODE-SWITCHING \(30 \cup 50 \mathrm{MA}\) 2NS DO-35 & 28480 & 1901-0040 \\
\hline A13CR13 & 1901-0040 & 1 & & DIODE-SWITCHING 30U 50MA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A13CR 14 & 1901-0040 & 1 & & DIODE-SWITCHING 30U 50MA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A13CR15 & 1901-0040 & 1 & & DIODE-SWITCHING 3OU SOMA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A1JCR16 & 1901-0040 & 1 & & DIDDE-SWITCHING 30U 50MA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A13L1 & 9100-1629 & 4 & & INDUCTOR RF-CH-MLD 47 UH 5 L , 166DX.385LG & 28480 & 9100-1629 \\
\hline A13L2 & 9100-1629 & 4 & & INDUCTOR RF-CH-MLD \(47 \mathrm{UH} 5 \%, 166 \mathrm{DX}, 385 \mathrm{LG}\) & 28480 & 9100-1629 \\
\hline A13L3 & \(9100-1629\)
\(9100-1629\) & 4 & & INDUCTOR
IND-CH-MLD
INOCTOR
RF-CH-MLD & 28480
28480 & \(9100-1629\)
\(9100-1629\) \\
\hline A13L5 \(\dagger\) & 08660-80025 & 7 & & COIL-650NH & 28480 & 08660-80025 \\
\hline A13L6 & 9140-0179 & 1 & & INDUCTOR RF-CH-MLD 22UH 10\% .166DX.385LG & 28480 & 9140-0179 \\
\hline A13L7 & 9140-0179 & 1 & & INDUCTOR RF-CH-MLD 22UH \(10 \chi\), 166DX. 385LG & 28480 & 9140-0179 \\
\hline A13L8 & 9100-1674 & 9 & 1 & INDUCTOR RF-CH-MLD 7.5MH 5\% .25DX.75LG & 28480 & 9100-1674 \\
\hline A1381 & 1854-0092 & 2 & & TRANSISTOR NPN SI PD \(=200 \mathrm{MW}\) FT \(=600 \mathrm{MHZ}\) & 28480 & 1854-0092 \\
\hline A1392 & 1854-0345 & 8 & & TRANSISTOR NPN \(2 N 5179\) SI TO-72 PD=200MW & 04713 & 2N5179 \\
\hline A1393 & 1853-0451 & 5 & & TRANSISTOR PNP \(2 N 3799\) SI TO-18 PD=360MW & 01295 & 2N3799 \\
\hline \({ }^{\text {A13 }}\) (394+ & 1854-0087 & 5 & & TRANSISTOR NPN SI PD=360MW FT=75MHZ & 28480 & 1854-0087 \\
\hline A1305 & 1853-0036 & 2 & & TRANSISTOR PNP SI PD=310MW FT=250MHZ & 28480 & 1853-0036 \\
\hline A1396t & 1853-0036 & 2 & & TRANSISTOR PNP SI PD=310MW FT=250MHZ & 28480
28480 & \(1853-0036\)
\(1853-0036\) \\
\hline A1307
A1308
A & \(1853-0036\)
\(1853-0036\) & 2 & & TRANSISTOR PNP SI PD \(=310 \mathrm{MH}\) FT=250NHZ
TRANSISTOR PNP SI PD \(=310 \mathrm{MW} \mathrm{FT}=250 \mathrm{MHZ}\) & 28480
28480 & \(1853-0036\)
\(1853-0036\) \\
\hline \({ }_{\text {A1 }}{ }_{\text {A13989 }}\) & \(1853-0036\)
\(1855-0081\) & 1 & & TRANSISTOR J-FET N-CHAN D-MODE SI & 28480 & 1855-00861 \\
\hline A13Q10 & 1854-0087 & 5 & & TRANSISTOR NPN SI PDm360MW FT=75MHZ & 28480 & 1854-0087 \\
\hline A13Q11 & 1853-0451 & 5 & & TRANSISTOR PNP 2N3799 SI TO-18 PD=360MW & 01295 & 2N3799 \\
\hline A13012 & 1853-0451 & 5 & & TRANSISTOR PNP \(2 N 3799\) SI TO-18 PD \(=360 \mathrm{MW}\) & 01295 & 2N3799 \\
\hline A13013 \({ }^{\text {A1 }}\) & 1853-0036 & 2 & & TRANSISTOR PNP SI PD=310MW FT \(=250 \mathrm{MHZ}\) & 28480 & 1853-0036 \\
\hline A13014t & 1853-0036 & 2 & & TRANSISTOR PNP SI PD=310MW FT=250MHZ & 28480 & 1853-0036 \\
\hline A13015 4 & 1853-0036 & 2 & & TRANSISTOR PNP SI PD=310MW FT \(=250 \mathrm{MHZ}\) & 28480 & 1853-0036 \\
\hline A13016 \({ }^{\text {¢ }}\) & 1853-0036 & 2 & & TRANSISTOR PNP SI PD=310MW FT=250MHZ & 28480 & 1853-0036 \\
\hline A13R1 & 0757-0428 & 1 & & RESISTOR 1.62K 1\% , 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1621-F \\
\hline A13R2 & 0757-0428 & 1 & & RESISTOR 1.62K \(1 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1621-F \\
\hline A13R3 & 0757-0428 & 1 & & RESISTOR \(1.62 \mathrm{~K} 1 \mathrm{z}, 125 \mathrm{~W}\) F \(\mathrm{TC}=0+-100\) & 24546 & C4-1/8-T0-1621-F \\
\hline A 1384 & 0757-0428 & 1 & & RESISTOR 1.62K 1\% .125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1621-F \\
\hline A1385 & 0757-0428 & 1 & & RESISTOR 1.62K 1\% . 125 W F TC=0+-100 & 24546 & C4-1/8-T0-1621-F \\
\hline A13R6 & 0757-0428 & 1 & & RESISTOR 1.62K 1\% . 125 W F TC=0+-100 & 24546 & C4-1/8-T0-1621-F \\
\hline A13R7 & 0757-0428 & 1 & & RESISTOR 1.62K 1\% . 125 W F TC= \(=0+100\) & 24546 & C4-1/8-T0-1621-F \\
\hline A13R8 & 0757-0428 & 1 & & RESISTOR 1.62K 1\% . 125 W F TC=0+-100 & 24546 & C4-1/8-T0-1621-F \\
\hline A13R9 & 0757-0442 & 9 & & RESISTOR 10K 1\% , 125 F \(\quad\) T \(=00+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A13R10 & 0757-0442 & 9 & & RESISTOR 10K 1\% , 125W F TC=0+-100 & 24546 & C4-1/8-T0-1002-F \\
\hline A13R 11 & 0757-0442 & 9 & & RESISTOR \(10 \mathrm{~K} 1 \chi\). 125 W F TC=0+-100 & 24546 & C4-1/8-70-1002-F \\
\hline A13R12 & 0757-0442 & 9 & & RESISTOR 10K 1\% .125 F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A13R 13 & 0757-0442 & 9 & & RESISTOR 10K 1 x . 125 W F TC \(=0+100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A13R14 & 0757-0442 & 9 & & RESISTOR \(10 \mathrm{~K} 1 \% .1254\) F TC \(=0+100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A13R15 & 0757-0442 & 9 & & RESISTOR \(10 \mathrm{~K} 1 \mathrm{X}, 125 \mathrm{~W}\) F TC=0+-100 & 24546 & C4-1/8-T0-1002-F \\
\hline A13R16
A13R17 & 0757-0442 & 9
2 & & & 24546
19701 & C4-1/8-T0-1002-F
MF 4 C \(1 / 8-\mathrm{TO}-3923-\mathrm{F}\) \\
\hline A13R18 & 0757-0472 & 5 & & RESISTOR 200K 1x, 125 F F \(\mathrm{T} C=0+-100\) & 24546 & C4F-1/8-T0-2003-F \\
\hline A13R19 & 0757-0465 & 6 & & RESISTOR \(100 \mathrm{~K} 1 \mathrm{X}, 125 \mathrm{~W}\) F \(\mathrm{TC}=0+-100\) & 24546 & C4-1/8-T0-1003-F \\
\hline A13R20 & 0698-3228 & 9 & & RESISTOR 49.9K \(1 \% .125 \mathrm{~W}\) F TC=0+-100 & 28480 & 0698-3228 \\
\hline A13R21 & 0757-0124 & 4 & 1 & RESISTOR 39.2K \(1 \%\), 125W F TC \(=0+-100\) & 28480 & 0757-0124 \\
\hline A13R22 & 0757-0449 & 6 & 1 & RESISTOR \(20 \mathrm{~K} 1 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-70-2002-F \\
\hline A13R23 & 0757-0442 & 9 & & RESISTOR \(10 \mathrm{~K} 1 \%\). 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A13R24 & 0698-4002 & 9 & & RESISTOR 5K \(1 \%, 125 \mathrm{~W}\) F \(T C=0+-100\) & 24546 & C4-1/8-T0-5001-F \\
\hline A13R25 & 0757-0442 & 9 & & RESISTOR 10 K 1 X , 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline Al \(3 R 26\)
A 3 3R27 & 0698-0085
0757-0274 & 0
5 & & & 24546
24546 & C4-1/8-T0-2611-F
\(\mathrm{C4-1/8-T0-1211-F}\) \\
\hline A13R28 & 0757-0200 & 7 & & RESISTOR \(5.62 \mathrm{~K} 1 \%\), 125W F TC=0+-100 & 24546 & C4-1/8-T0-5621-F \\
\hline A13R29 & 0757-0199 & 3 & & RESISTOR \(21.5 \mathrm{~K} 1 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-2152-F \\
\hline A13R30 & 6757-0439 & 4 & & RESISTOR 6.81K 1\% . 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-6811-F \\
\hline
\end{tabular}

Table 6－3．Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & \[
\left.\begin{array}{l|}
C \\
D
\end{array} \right\rvert\,
\] & Qty & Description & Mfr Code & Mfr Part Number \\
\hline A13R31 & 0698－3162 & 0 & & RESISTOR 46．4K 1\％． 125 W F TC \(=0+-100\) & 24546 & C4－1／8－T0－4642－F \\
\hline A 13832 & 0698－3155 & 1 & & RESISTOR 4．64k \(1 \%\) ，125W F TC \(=0+-100\) & 24546 & C4－1／日－T0－4641－F \\
\hline A 13933 & 0698－0085 & 0 & & RESISTOR 2.61 K 1 x ，125W F TC＝0＋－100 & 24546 & C4－1／8－T0－2611－F \\
\hline A 13834 & 0757－0421 & ， & & RESISTOR 825 1\％． 125 W F \(T C=0+-100\) & 24546 & C4－1／8－T0－825R－F \\
\hline A13R35 & 0698－4037 & 0 & & RESISTOR 46．4 12 ．125w F TC＝0 +-100 & 24546 & C4－1／8－T0－46R4－F \\
\hline A13R36 & 0698－3156 & 2 & & RESISTOR 14．7K 1\％．125世 F TC＝0＋－100 & 24546 & C4－1／8－T0－1472－F \\
\hline A13837 \({ }_{\text {Al }}\) & 2100－1759 & 4 & & RESISTOR－TRAR 2K \(5 \%\) WH SIDE－ADJ 1－TRN NOT ASSICNED & 28480 & 2100－1759 \\
\hline A 13 JR 39 & 2100－1760 & 7 & & RESISTOR－TRMR SK \(5 \%\) WW SIDE－ADJ 1－TRN & 28480 & 2100－1760 \\
\hline A13R40 & 0757－0441 & 日 & & RESISTOR 8．25K 1\％，125W F TC \(=0+-100\) & 24546 & C4－1／日－T0－8251－F \\
\hline A 13R41 & 0757－0279 & 0 & & RESISTOR 3．16K 1\％．125 F F \(\mathrm{T}=00+-100\) & 24546 & C4－1／8－70－3161－F \\
\hline A13R42 & 0757－0317 & 7 & & RESISTOR 1．33k 1\％． 125 W F TC \(=0+-100\) & 24546 & C4－1／8－T0－1331－F \\
\hline A13R43 & 0757－0199 & 3 & & RESISTOR 21．5K 1\％，125W F TC＝0＋－100 & 24546 & C4－1／8－T0－2152－F \\
\hline A13R44 & 0757－0442 & 9 & & RESISTOR 10K 1\％．125w F TC \(=0+-100\) & 24546 & C4－1／8－T0－1002－F \\
\hline A13R45 & 0757－0834 & 3 & & RESISTOR 5．62K 1\％．5世 F TC \(=0+-100\) & 28480 & 0757－0834 \\
\hline A13846 & 0698－3459 & 8 & & RESISTOR 383K 1\％．125W F TC＝ \(0+-100\) & 28480 & 0698－3459 \\
\hline A1 3847 & 0698－0082 & 7 & & RESISTOR 464 12，125 F TC＝0＋－100 & 24546 & C4－1／8－T0－4640－F \\
\hline A13R48 & 0698－3441 & 8 & & RESISTOR 21512.1254 F \(T C=0+-100\) & 24546 & C4－1／8－T0－215R－F \\
\hline A 13849 & 0698－3266 & 5 & & RESISTOR \(237 \mathrm{~K} 1 \mathrm{X}, 125 \mathrm{~W}\) F \(\mathrm{TC}=0+-100\) & 24546 & C4－1／8－70－2373－F \\
\hline A13R50 & 0698－3447 & 4 & & RESISTOR 422 12，125W F TC＝0＋－ 100 & 24546 & C4－1／8－T0－422R－F \\
\hline A 13 R 51 & & & & NOT ASSIGNED & & \\
\hline A13R52 & 0757－0443 & 5 & & RESISTOR 11k 1\％． 125 W F \(\mathrm{TC}=0+-100\) & 24546 & C4－1／日－T0－1102－F \\
\hline Al3R 53 & 0698－3266 & 5 & & RESISTOR 237k 1\％，125世 F TC＝0 +-100 & 24546 & C4－1／8－T0－2373－F \\
\hline A13R54 & 0698－3445 & 2 & & RESISTOR 34日 1 x （125世 F TC＝0 \(0+100\) & 24546 & C4－1／8－T0－348R－F \\
\hline A 13855 & 0698－3243 & 8 & & RESISTOR 178K 1\％，125世 F TC＝0＋－100 & 24546 & C4－1／8－T0－1783－F \\
\hline A 13 PR 56 & 0698－3443 & 0 & & RESISTOR \(2878 \%\) ，125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－287R－F \\
\hline A 13 R 57 & 0737－0401 & 0 & & RESISTOR \(10018.125 W\) F \(T C=0+-100\) & 24546 & C4－1／8－70－101－F \\
\hline A13858 & 0698－3243 & 8 & & RESISTOR 178K 12，125W F TC＝0＋－100 & 24546 & C4－1／8－70－1783－F \\
\hline A 13 R 59 & 0698－3132 & 4 & & RESISTOR 26112 ，125W F TC \(=0+-100\) & 24546 & C4－1／8－70－2610－F \\
\hline A13R60\％ & 0757－0466 & 7 & 2 & RESISTOR 110 K 12.125 W F T C \(=0+-100\) & 24546 & C4－1／8－T0－1103－F \\
\hline A 13 R 61 & 0698－3440 & 7 & & RESISTOR \(1961 \%\) ． 125 F F TC \(=0+-100\) & 24546 & C4－1／8－T0－196R－F \\
\hline A 13 R 62 & 0683－8245 & 9 & & RESISTOR 820k \(5 \%\) ．25W FC TC \(=-800 / 4900\) & 01121 & CH8245 \\
\hline A13263 & 0698－3243 & － & & RESISTOR 178K 1\％，125W F TC＝0＋－100 & 24546 & C4－1／8－70－1793－F \\
\hline A13R64 & 0757－0442 & 9 & & RESISTOR 10K 1\％，125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－1002－F \\
\hline A1 3 R 65 & 0757－0467 & 8 & & RESISTOR 121K 12，125W F TC＝0 +-100 & 24546 & C4－1／8－T0－1213－F \\
\hline A13R66 & 0698－3439 & 4 & & RESISTOR 178 12，125 F F TC＝0＋－100 & 24546 & C4－1／8－70－178R－F \\
\hline A 13 R 67 & 0698－3440 & 7 & & RESISTOR 19612.125 W F TC＝0＋－100 & 24546 & C4－1／8－70－196R－F \\
\hline A13R 68 & 0698－0082 & 5 & & RESISTOR 464 12 ，125W F TC＝0＋－100 & 24546 & C4－1／8－T0－4640－F \\
\hline A1 3869 & 0757－0464 & 5 & & RESISTOR \(90.9 \mathrm{~K} \quad 1 \%\) ，125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－9092－F \\
\hline A13R70 & 0757－0405 & 4 & & RESISTOR 162 12 ．125W F TC＝0＊－100 & 24546 & C4－1／8－T0－162R－F \\
\hline A13R 71 & 0757－0461 & 2 & & RESISTOR 60．1K 1\％．125世 F TC＝0＊－100 & 24546 & C4－1／8－T0－6812－F \\
\hline A13R72 & 0698－3437 & 2 & & RESISTOR \(1331 \mathrm{X}, 125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4－1／8－T0－133R－F \\
\hline Al3R73 & 0757－0200 & 7 & & RESISTOR 5.62 K 1\％． 125 F F TC＝0＋－100 & 24546 & C4－1／8－T0－5621－F \\
\hline A13R74 & 0698－3154 & 0 & & RESISTOR 4．22K 1\％．125W F TC＝0＋－100 & 24546 & C4－1／8－70－4221－F \\
\hline A13R75 & 0698－3445 & 2 & & RESISTOR 34818 ，125W F TC＝0＋－100 & 24546 & C4－1／8－T0－348R－F \\
\hline A13R76 & 0757－0403 & 2 & & RESISTOR 121 12 ．125w F TC＝0＋－100 & 24546 & C4－1／8－T0－121R－F \\
\hline A13877 & 0698－3444 & & & RESISTOR 316 1\％．125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－316R－F \\
\hline A13R78 & 0757－0458 & 7 & & RESISTOR 51． 1 K 12，125世 F TC \(=0+-100\) & 24546 & C4－1／8－T0－5112－F \\
\hline A13R79 & 0698－3442 & 9 & & RESISTOR \(2371 \%\) ，125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－237R－F \\
\hline A13R80 & 0698－3132 & 4 & & RESISTOR 261 1x－125W F TC＝0 +-100 & 24546 & C4－1／8－70－2610－F \\
\hline A 13881 & 0698－3442 & 9 & & RESISTOR 237 iz ，125W F TC＝0＋－100 & 24546 & C4－1／8－T0－237R－F \\
\hline A13R82 & 0757－0400 & 9 & & RESISTOR 90．9 1x，125\％F TC＝0 \(0-100\) & 24546 & C4－1／8－T0－90R9－F \\
\hline A13R83 & 0698－3438 & 3 & & \begin{tabular}{l}
RESISTOR \(1471 \mathrm{x}, 125 \mathrm{~W}\) F \(\mathrm{TC}=0+-100\) \\
（EXCEPT OPTION OO4）
\end{tabular} & 24546 & C4－1／8－T0－147R－F \\
\hline A13R84 & 0698－3441 & 8 & & RESISTOR 2151 x ，125W F TC＝0＋－100 & 24546 & C4－1／8－T0－215R－F \\
\hline Al3Re5 & 0698－3441 & 8 & & RESISTOR 215 1\％． 125 W F TC \(=0+-100\) & 24546 & CA－1／8－70－215R－F \\
\hline A1301 & 1820－0054 & 5 & & IC GATE PTL MAND QUAD 2－INP & 01295 & SN7400N \\
\hline A13U2 & 1820－0054 & 5 & & IC GATE TTL MAND QUAD \(2-I N P\) & 01295 & SNT400N \\
\hline A13U3 & 1820－0054 & 5 & & IC GATE TTL NAND QUAD 2－INP & 01295 & SN7400N \\
\hline A14 & 08660－60011 & 9 & 1 & BOARD ASSEMELY，NZ PHASE DETECTOR （EXCEPT OPTION 004） & 28480 & 08660－60011 \\
\hline A14 & 08660－60039 & 1 & 1 & BOARD ASSEMBLY，NZ PMASE DETECTOR （OPTIDN OOA ONLY） & 28480 & 08660－60039 \\
\hline \[
\begin{aligned}
& A 14 C 1 \\
& A_{1} C 2
\end{aligned}
\] & 0160－2055 & 9 & & CAPACITOR－FXD ．OSUF＋80－20X 100 ODC CER NOT ASSIGNED & 28480 & 0160－2055 \\
\hline A14C3 & 0180－0058 & － & & CAPACITOR－FXD 50UF＋75－10\％25UDC AL & 56289 & \(3005066025 C C 2\) \\
\hline A1 4C4 & 0180－2206 & 4 & & CAPACITOR－FXD GOUFF－10\％GUDC TA & 56289 & \(150 \mathrm{D606} \mathrm{\times 900682}\) \\
\hline A14C5 & 0180－0228 & 6 & & CAPACITOR－FXD 22UF＋－10x 15UDC TA & 56289 & 1500226×901582 \\
\hline A14C6 & 0150－0121 & 5 & & CAPACITOR－FXD． \(14 \mathrm{~F}+80-20 x\) SOUDC CER & 28480 & 0150－0121 \\
\hline A14C7 & 0180－0229 & 7 & & CAPACITOR－FXD 33UF＋－10x 10UDC TA & 56289 & 1500336×901082 \\
\hline A14C8 & 0150－0121 & 5 & & CAPACITOR－FXD． 1 UF \(+80-20 \%\) 50UDC CER & 28480 & 0150－0121 \\
\hline A14C9 & 0160－0157 & 8 & & CAPACITOR－FXD 4700PF＋－10X 200UDC POLYE & 28480 & 0160－0157 \\
\hline A14C10 & 0160－2055 & 9 & & CAPACITOR－FXD ． \(01 \mathrm{UF}+80-20 \%\) 100UDC CER & 28480 & 0160－2055 \\
\hline
\end{tabular}

Table 6-3. Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & \[
\left|\begin{array}{l}
C \\
D
\end{array}\right|
\] & Qty & Description & Mfr Code & Mfr Part Number \\
\hline A14C11 & 0150-0121 & 5 & & CAPACITOR-FXD. \(1 \mathrm{UF}+80-20 \%\) 50VDC CER & 28480 & 0150-0121 \\
\hline Al4C12 & 0150-0121 & 5 & & CAPACITOR-FXD . \(14 F+80-20 X 50 \cup D C\) CER & 28480 & 0150-0121 \\
\hline A14C13 & 0160-2055 & 9 & & CAPACITOR-FXD , 01UF +80-20\% 100UDC CER & 28480 & 0160-2055 \\
\hline A14C14 & 0140-0172 & 5 & & & 72136
28480 & DM19F302F0100WV1CR
\(0160-2055\) \\
\hline A14C15 & 0160-2055 & 9 & & CAPACITOR-FXD .01UF +80-20\% 100UDC CER & 28480 & 0160-2055 \\
\hline A14C16 & 0150-0121 & 5 & & CAPACITOR-FXD.1UF +80-20\% 50UDC CER & 28480 & 0150-0121 \\
\hline A14C17 & 0150-0121 & 5 & & CAPACITOR-FXD.1UF +80-20\% 50UDC CER & 28480 & 0150-0121 \\
\hline A14C18 & 0150-0121 & 5 & & CAPACITOR-FXD. \(14 \mathrm{H}+80-20 \% 50 \cup D C\) CER & 28480 & 0150-0121 \\
\hline A14C19 & 0160-2055 & 9 & & CAPACITOR-FXD . \(01 \mathrm{UF}+80-20 \% 100 \mathrm{UDC}\) CER & 28480 & 0160-2055 \\
\hline A14C20 & 0160-2055 & 9 & & CAPACITOR-FXD . \(01 \mathrm{UF}+80-20 \% 100 \mathrm{UDC}\) CER & 28480 & 0160-2055 \\
\hline A14C21 & 0160-2055 & 9 & & CAPACITOR-FXD .01UF +80-20\% 100UDC CER & 28480 & 0160-2055 \\
\hline A1 4C22 & 0160-3539 & 6 & & CAPACITOR-FXD 820PF +-5\% 1000 DC MICA & 28480 & 0160-3539 \\
\hline A14C23 & 0160-2453 & 1 & & CAPACITOR-FXD . 22UF +-10\% BOUDC POLYE & 28480 & 0160-2453 \\
\hline A \(14 \mathrm{C24}\) & 0170-0040 & 9 & & CAPACITOR-FXD 047UF +-10\% 200UDC POLYE & 56289 & 292P47392 \\
\hline A14C25 & 0180-0229 & 7 & & CAPACITOR-FXD 33LF+-10\% 10UDC TA & 56289 & \(150 \mathrm{D} 336 \times 9010 \mathrm{B2}\) \\
\hline A14C26 & 0180-0374 & 3 & & CAPACITOR-FXD 10UF+-10\% 20UDC TA & 56289 & 150D106×902082 \\
\hline A14CR1 & 1901-0040 & 1 & & DIODE-SWITCHING 300 S0MA \(2 N S\) DO-35 & 28480 & 1901-0040 \\
\hline A1 4CR2 & 1901-0040 & , & & DIODE-SWITCHING \(30 \cup 58 \mathrm{MA}\) 2NS DO-35 & 28480 & 1901-0040 \\
\hline A1 4CR3 & 1901-1066 & 3 & 2 & DIDDE-SWITCHING 15 V 50MA 750PS DO-7 & 28480 & 1901-1066 \\
\hline A1 4CR 4 & 1901-1066 & 3 & & DIDDE-SWITCHING \(15 \cup\) S0MA 750 PS DO-7 & 28480 & 1901-1066 \\
\hline A14L1 & 9100-1629 & 4 & & INDUCTOR RF-CH-MLD \(47 \mathrm{UH} 5 \%, 166 \mathrm{DX}\). 385LG & 28480 & 9100-1629 \\
\hline A14L2 & 9140-0114 & 4 & & INDUCTOR RF-CH-MLD \(100 \mathrm{HH} 10 \%\), 166DX, 385LG & 28480 & 9140-0114 \\
\hline A14L3 & 9100-1629 & 4 & & INDUCTOR RF-CH-MLD \(47 \mathrm{UH} 5 \%, 166 \mathrm{DX}, 385 \mathrm{LG}\) & 28480 & 9100-1629 \\
\hline A14L4 & 9140-0179 & 1 & & INDUCTOR RF-CH-MLD 22UH 10\% . 166 DX . 385 LG & 28480 & 9140-0179 \\
\hline A14L5 & 9140-0114 & 4 & & INDUCTOR RF-CH-MLD 10 UH 10\% , 166DX.385LG & 28480 & 9140-0114 \\
\hline A1 4L6 & 9100-1614 & 7 & 1 & INDUCTOR RF-CH-MLD 020 NH 10\% & 28480 & 9100-1614 \\
\hline A14LT & 9100-1650 & 1 & & INDUCTOR RF-CH-MLD 680UH 5\% .2DX,45LG & 28480 & 9100-1650 \\
\hline A14L8 & 9100-1652 & 3 & & INDUCTOR RF-CH-MLD 820UH 5\% .2DX,45LG & 28480 & 9100-1652 \\
\hline A1481 & 1853-0034 & 0 & & TRANSISTOR PNP SI TO-18 PD=360MW & 28480 & 1853-0034 \\
\hline A1482 & 1853-0034 & 0 & & TRANSISTOR PNP SI TO-18 PD \(=360 \mathrm{MW}\) & 28480 & 1853-0034 \\
\hline A1493 & 1853-0034 & 0 & & TRANSISTOR PNP SI TO-18 PD=360MW & 28480 & 1853-0034 \\
\hline A1494 & 1855-0049 & 1 & & TRANSISTOR-JFET DUAL N -CHAN D-MODE SI & 28480 & 1855-0049 \\
\hline A1485 & 1854-0045 & 5 & & TRANSISTOR NPN SI TO-18 PD=500MW & 28480 & 1854-0045 \\
\hline A1486 & 1853-0015 & 7 & & TRANSISTOR PNP SI PD=200MW FT \(=500 \mathrm{MHZ}\) & 28480 & 1853-0015 \\
\hline A1487 & 1854-0092 & 2 & & TRANSISTOR NPN SI PD \(=200 \mathrm{MW}\) FT \(=600 \mathrm{MHZ}\) & 28480 & 1854-0092 \\
\hline A1 4R1 & 0757-0289 & 2 & & RESISTOR 13.3K \(1 \%\), 125W F TC=0+-100 & 19701 & MF4C1/8-T0-1332-F \\
\hline A14R2 & 0698-0082 & 7 & & RESISTOR \(4641 \%, 125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-4640-F \\
\hline A14R3 & 0757-0439 & 4 & & RESISTOR 6.81K 1\% , 125w F TC=0+-100 & 24546 & C4-1/8-T0-6811-F \\
\hline A14R4 & 0698-0085 & & & RESISTOR \(2.61 \mathrm{~K} 1 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-2611-F \\
\hline A14R5 & 0757-0416 & 7 & & RESISTOR \(5111 \%\). 125 F F TC \(=0+-100\) & 24546 & C4-1/8-T0-511R-F \\
\hline A14R6 & 0757-0416 & 7 & & RESISTOR 511 1\% . 125 W F TC=0+-100 & 24546 & C4-1/8-T0-511R-F \\
\hline A14R7 & 0757-0442 & 9 & & RESISTOR 10 K 1 x . 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A14R8 & 0698-3446 & 3 & & RESISTOR \(3831 \%\), 125w F TC \(=0+100\) & 24546 & C4-1/8-T0-383R-F \\
\hline Al 4R9 & 0757-0424 & 7 & & RESISTOR \(1.1 \mathrm{~K} 1 \mathrm{~K}, 125 \mathrm{~W}\) F \(\mathrm{TC}=0+-100\) & 24546 & C4-1/8-T0-1101-F \\
\hline A14R10 & 0757-0442 & 9 & & RESISTOR \(10 \mathrm{~K} 1 \%\). 125w F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A1 4R11 & 0757-0424 & 7 & & RESISTOR \(1.1 \mathrm{~K} 1 \%\), 125W F TC \(=0+\cdots 100\) & 24546 & C4-1/8-T0-1101-F \\
\hline A14R12 & 0757-0416 & 7 & & RESISTOR \(5111 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-511R-F \\
\hline A1 4R13 & 0698-3450 & 9 & & RESISTOR 42. \(2 \mathrm{~K} 1 \%\). 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-4222-F \\
\hline A14R14 & 0757-0447 & 4 & & RESISTOR 16.2K 1\%, 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1622-F \\
\hline A14R15 & 0698-3430 & 5 & & RESISTOR \(21.51 \%\), 125W F TC=0+-100 & 03888 & PME55-1/8-T0-21R5-F \\
\hline A14R16 & 0757-0424 & 7 & & RESISTOR 1.1K 1\% , 125w F TC= \(0+-100\) & 24546 & C4-1/8-T0-1101-F \\
\hline A14R17 & 0757-0421 & 4 & & RESISTOR 825 1\% .125W F TC=0+-100 & 24546 & C4-1/8-T0-825R-F \\
\hline A14R18 & 0698-3447 & 4 & & RESISTOR \(4221 \%\), 125 F F TC \(=0+-100\) & 24546 & C4-1/8-T0-422R-F \\
\hline A14R19 & 0757-0279 & 0 & & RESISTOR 3.16k \(1 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-3161-F \\
\hline A14R20 & 0757-0279 & 0 & & RESISTOR 3.16K 1 X , 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-3161-F \\
\hline A14R21 & 0757-0279 & 0 & & RESISTOR 3.16K 1\% , 125W F TC=0+-100 & 24546 & C4-1/8-T0-3161-F \\
\hline A14R22 & 0698-3155 & 1 & & RESISTOR 4.64K 1\% . 125 W F T C \(=0+-100\) & 24546 & C4-1/8-T0-4641-F \\
\hline A14R23 & 0757-0290 & 5 & & RESISTOR 6.19K 1\% , 125W F TC=0+-100 & 19701 & MF 4C1/8-T0-6191-F \\
\hline A14R24 & 0698-3150 & 6 & & RESISTOR 2.37K 1\% , 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-2371-F \\
\hline A14R25 & 0757-0394 & - & & RESISTOR 51.1 1\% , 125W F TC=0+-100 & 24546 & C4-1/8-T0-51R1-F \\
\hline A14R26 & 0757-0394 & 0 & & RESISTOR \(51.11 \%\), 125 W F TC=0+-100 & 24546 & C4-1/8-T0-51R1-F \\
\hline A14R27 & 0757-0416 & 7 & & RESISTOR \(5111 \%\), 125W F TC=0+-100 & 24546 & C4-1/8-T0-511R-F \\
\hline A14R28 & 0757-0442 & 9 & & RESISTOR \(10 \mathrm{~K} 1 \%\), 125W F TC=0+-100 & 24546 & C4-1/8-T0-1002-F \\
\hline A14R29 & 0757-0200 & 7 & & RESISTOR \(5.62 \mathrm{~K} 1 \%\). 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-5621-F \\
\hline A14R30 & 0757-0424 & 7 & & RESISTOR 1.1 K 12.125 W F TC=0+-100 & 24546 & C4-1/8-T0-1101-F \\
\hline A14R31 & 0757-0438 & 3 & & RESISTOR 5.11K 1\% , 12SW F TC=0 + 100 & 24546 & C4-1/8-T0-5111-F \\
\hline A14R32 & 0757-0444 & 1 & & RESISTOR 12.1K 1\% , 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1212-F \\
\hline A14R33 & 0757-0444 & 1 & & RESISTAR 12.1K 1\% . 125 W F TC=0 +-100 & 24546 & C4-1/8-T0-1212-F \\
\hline A14R34 & 0757-0424 & 7 & & RESISTOR \(1.1 \mathrm{~K} 1 \% .125 \mathrm{~W}\) F \(\mathrm{TC}=0+-100\) & 24546 & C4-1/8-T0-1101-F \\
\hline A14R35 & 0757-1094 & 9 & & RESISTOR 1.47K 1\% , 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1471-F \\
\hline A14R36 & 0757-0416 & 7 & & RESISTOR 511 1\% , 125W F TC=0+-100 & 24546 & C4-1/8-T0-511R-F \\
\hline A14T1 & 08660-80001 & 9 & & TRANSFORMER, SAMPLER & 28480 & 08660-80001 \\
\hline
\end{tabular}

Table 6-3. Replaceable Parts

Table 6-3. Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & \[
\left|\begin{array}{l}
C \\
D
\end{array}\right|
\] & Qty & Description & Mfr Code & Mfr Part Number \\
\hline A14 & 08660-60039 & 1 & 1 & BOARD ASSY, N2A PHASE DETECTOR (OPT 004 ONLY) & 28480 & 08660-60039 \\
\hline A14Cl & 0160-2055 & 9 & 8 & CAPACITOR-FXD 01UF + B0-20\% 100 VDC CER & 28480 & 0160-2055 \\
\hline A1 4C2 & 0180-0058 & 0 & 1 & CAPACITOR-FXD 50UF+75-10x 25UDC AL & 56289 & 30D506G025CC2 \\
\hline A14C3 & 0180-2206 & 4 & 1 & CAPACITOR-FXD 60UF+-10\% 6UDC TA & 56289 & \(1500606 \times 9006 \mathrm{B2}\) \\
\hline A14C4 & \(0180-0228\)
\(0150-0121\) & 6
5 & 1 & CAPACITOR-FXD
CAPACITOR-FXD
22UF+-10\%
S & 56289
28480 & \({ }_{0}^{150 \mathrm{D} 226 \times 9015 \mathrm{Ca}}\) \\
\hline A14C5 & 0150-0121 & 5 & 7 & CAPACITOR-FXD . \(1 \mathrm{UF}+80-20 \%\) 50UDC CER & 28480 & 0150-0121 \\
\hline A14C6 & 0160-2055 & 9 & & CAPACITOR-FXD . \(014 \mathrm{UF}+80-20 \% 100 \cup D C\) CER & 28480 & 0160-2055 \\
\hline A14C7 & 0150-0121 & 5 & & CAPACITOR-FXD .1UF +80-20X 50UDC CER & 28480 & 0150-0121 \\
\hline A14C8 & 0150-0121 & 5 & & CAPACITOR-FXD, 1UF +80-20\% 50UDC CER & 28480 & 0150-0121 \\
\hline A14C9 & 0160-0157 & 8 & 1 & CAPACITOR-FXD 4700 PF +-10\% 200UDC PDLYE & 28480 & 0160-0157 \\
\hline A14C10 & 0160-2055 & 9 & & CAPACITOR-FXD , 01UF +80-20\% 100UDC CER & 28480 & 0160-2055 \\
\hline A14C11 & 0150-0121 & 5 & & CAPACITOR-FXD.1UF +80-20\% 50UDC CER & 28480 & 0150-0121 \\
\hline A14E12 & 0150-0121 & 5 & & CAPACITOR-FXD.1UF +80-20\% 50UDC CER & 28480 & 0150-0121 \\
\hline A14C13 & 0150-0121 & 5 & & CAPACITOR-FXD . 1 FF +80-202 50UDC CER & 28480 & 0150-0121 \\
\hline A14C14 & 0160-2055 & 9 & & CAPACITOR-FXD 01 OL + \(+80-20 \% 100 \mathrm{DDC} \mathrm{CER}\) & 28480 & 0160-2055 \\
\hline Al4C15 & 0140-0172 & 5 & 1 & CAPACITOR-FXD \(3000 \mathrm{PF}+\sim 1 \% 100 \mathrm{VDC} \mathrm{MICA}\) & 72136 & DM19F302F0100WV1CR \\
\hline A14C16 & 0180-0229 & 7 & 2 & CAPACITOR-FXD 33UF+-10\% 10UDC TA & 56289 & 150D336×901082 \\
\hline A14C17 & 0160-2055 & 9 & & CAPACITOR-FXD .01UF +80-20\% \(100 \cup D C\) CER & 28480 & 0160-2055 \\
\hline A14C18
A14C19
Al & \(0150-0121\)
\(0180-0374\) & 5
3 & 1 & & 28480
56289 & \(0150-0121\)
\(150 \mathrm{D} 106 \times 9020 \mathrm{B2}\) \\
\hline A14C20 & 0160-2055 & 9 & & CAPACITOR-FXD . \(01 \mathrm{UF}+80-20 \% ~ 100 U D C\) CER & 28480 & 0160-2055 \\
\hline A14C21 & 0160-2055 & 9 & & CAPACITOR-FXD . \(01 \mathrm{UF}+80-20 \% 100 \mathrm{UDC}\) CER & 28480 & 0160-2055 \\
\hline A14C22 & 0180-0229 & 7 & & CAPACITOR-FXD 33UF+-10\% 10 UDC TA & 56289 & \(1500336 \times 901082\) \\
\hline A14C23 & 0160-3539 & 6 & , & CAPACITOR-FXD B20PF +-5\% 100 UDC MICA & 28480 & 0160-3539 \\
\hline A14C24 & 0160-2453 & 1 & 1 & CAPACITOR-FXD .22UF +-10\% 80UDC POLYE & 28480 & 0160-2453 \\
\hline A14C25 & 0170-0040 & 9 & 1 & CAPACITOR-FXD .047UF +-10z 200VDC POLYE & 56289 & 292P47392 \\
\hline A14C26 & 0160-2055 & 9 & & CAPACITOR-FXD . 014 C +80-20X 1000 DC CER & 28480 & 0160-2055 \\
\hline A14CR1 & 1901-0040 & 7 & 1 & DIODE-SHITCHING 30U 50MA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A14CR2
A14CR3 & 1901-0179 & 7 & 2 & DIDDE-SWITCHING 150 S0MA 750 PS DO-7 & 28480
28480 & 1901-0179 \\
\hline A14L1 & 9100-1629 & 4 & 2 & INDUCTOR RF-CH-MLD 47UH 5\% . 166 DX . 385 LG & 28480 & 9100-1629 \\
\hline A14L2 & 9140-0114 & 4 & 2 & INDUCTOR RF-CH-MLD 10UH 10x.166DX.385LG & 28480 & 9140-0114 \\
\hline A14L3 & 9100-1629 & 4 & & INDUCTOR RF-CH-MLD 47 UH 5X . 166 DX . 385 LLG & 28480 & 9100-1629 \\
\hline A14L4 & 9100-1650 & 1 & 1 & INDUCTOR RF-CH-MLD \(680 \mathrm{UH} 5 \%\). \(2 \mathrm{DX} \times .45 \mathrm{LG}\) & 28480 & 9100-1650 \\
\hline A14L5 & 9100-1652 & 3 & 1 & INDUCTOR RF-CH-MLD B20UH 5\%, 2DX.45LG & 28480 & 9100-1652 \\
\hline A14L6 & 9140-0114 & 4 & & INDUCTOR RF-CH-MLD 1004 10\% . 166DX.385LG & 28480 & 9140-0114 \\
\hline A1491 & 1853-0034 & 6 & 3 & TRANSISTOR PNP SI TO-18 PD=360MW & 28480 & 1853-0034 \\
\hline A1492 & 1854-0210 & 6 & 2 & TRANSISTOR NPN \(2 N 2222\) SI TO-18 PD=500Mw & 04713 & 2 N 2222 \\
\hline A1493 & 1853-0034 & 0 & & TRANSISTOR PMP SI TO-18 PD=360M & 28480 & 1853-0034 \\
\hline A1494 & 1853-0015 & 7 & 1 & TRANSISTOR PNP SI PD=200MW FT \(=500 \mathrm{MHZ}\) & 28480 & 1853-0015 \\
\hline A1485 & 1854-0210 & 6 & & TRANSISTOR NPN 2 N2222 SI TO-18 PD=500MW & 04713 & 2 N 2222 \\
\hline A14 466
A1 497 & \(1853-0034\)
\(1855-0049\) & 1 & 1 & TRANSISTOR PNP SI TO-18 PD=360MW
TRANSISTOR-JFET DUAL N-CHAN D-MODE SI & 28480
28480 & \[
\begin{aligned}
& 1853-0034 \\
& 1855-0049
\end{aligned}
\] \\
\hline A14R1 & 0757-0440 & 7 & 1 & RESISTOR 7.5K \(1 \chi\), 125W F TC=0+-100 & 24546 & C4-1/8-T0-7501-F \\
\hline A14R2 & 0757-0421 & 4 & 2 & RESISTOR \(8251 \%, 125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-825R-F \\
\hline A14R3 & 0757-0280 & 3 & 3 & RESISTOR \(1 \mathrm{~K} 1 \mathrm{~T}, 125 \mathrm{~F}\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-1001-F \\
\hline A1 4R4
Al & \(0757-0280\)
\(0757-0442\) & 3 & 3 & & 24546
24546 & \[
\begin{aligned}
& C 4-1 / B-T 0-1001-F \\
& C 4-1 / 8-T 0-1002-F
\end{aligned}
\] \\
\hline A14R6 & 0698-3446 & 3 & 1 & RESISTOR \(3831 \%, 125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-383R-F \\
\hline A14R7 & 0698-0082 & 7 & 1 & RESISTOR \(4641 x, 125 W\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-4640-F \\
\hline A14R8 & 0757-0289 & 2 & 1 & RESISTOR 13.3K \(1 \%\), 125W F TC \(=0+-100\) & 19701 & MF4C1/B-T0-1332-F \\
\hline A14R9 & 0757-0439 & 4 & 1 & RESISTOR 6.81K \(1 \chi\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-6811-F \\
\hline A14R10 & 0757-0280 & 3 & & RESISTOR 1K \(1 \mathrm{x}, 125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-1001-F \\
\hline A14R11 & 0757-0442 & 9 & & RESISTOR \(10 \mathrm{~K} 1 \%\), 125w F TC=0+-100 & 24546 & C4-1/8-T0-1002-F \\
\hline A14R12 & 0757-0424 & 7 & 4 & RESISTOR \(1.1 \mathrm{~K} 1 \%, 125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-1101-F \\
\hline A14R13 & 0757-0416 & 7 & 4 & RESISTOR \(5111 z\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-511R-F \\
\hline A14R14 & 0757-0424
\(8698-3430\) & 7
5 & 1 & \begin{tabular}{llll}
RESISTOR & \(1,1 \mathrm{~K}\) & \(1 \chi\) & .125 W \\
RESISTOR & F & \(\mathrm{TC}=0+-100\) \\
RESI & \(1 \%\) & .125 W & F \\
\(\mathrm{TC}=0+-100\)
\end{tabular} & 24546
03888 & C4-1/8-T0-1101-F
PME55-1/8-T0-21R5-F \\
\hline A14R16 & 0757-0424 & 7 & & RESISTOR 1, 1K 1\%, 125 F TC=0+-100 & 24546 & C4-1/8-T0-1101-F \\
\hline A14R17 & 0698-3450 & 9 & 1 & RESISTOR 42.2K 1\% .125w F TC \(=0+-100\) & 24546 & C4-1/8-T0-4222-F \\
\hline A 14 R 18 & 0757-0447 & 4 & 1 & RESISTOR 16.2K \(1 \% .125 \mathrm{~W}\) F TC=0*- 100 & 24546 & C4-1/8-T0-1622-F \\
\hline A14R19 & 0757-0421 & 4 & & RESISTOR \(8251 \%\).125W F TC=0+-100 & 24546 & C4-1/8-T0-825R-F \\
\hline A14R20 & 0698-3447 & 4 & 1 & RESISTOR 422 \(1 \% .125 \mathrm{~W}\) F \(\mathrm{TC}=0+-100\) & 24546 & C4-1/8-T0-422R-F \\
\hline A14R21 & 0757-0279 & 0 & 3 & RESISTOR \(3.16 \mathrm{~K} 1 \mathrm{~K}, 125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-3161-F \\
\hline A14R22 & 0698-3155 & 1 & 3 & RESISTOR 4.64K 1 x . 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-4641-F \\
\hline A1 4R23 & 0757-0290 & 5 & 2 & RESISTOR 6.19K \(1 \%\). 125 W F TC \(=0+-100\) & 19701 & MF4C1/8-T0-6191-F \\
\hline A14R24 & 0757-0279 & & & RESISTOR 3.16 K 1 X . 125 W F \(\mathrm{TC}=0+-100\) & 24546 & C4-1/8-T0-3161-F \\
\hline A14R25 & 0757-0279 & 0 & & RESISTOR \(3.16 \mathrm{~K} 1 \mathrm{X} \cdot 125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-3161-F \\
\hline
\end{tabular}

Table 6-3. Replaceable Parts

Table 6-3. Replaceable Parts

Table 6-3. Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & \[
\left|\begin{array}{l}
c \\
0
\end{array}\right|
\] & Qty & Description & Mfr Code & Mfr Part Number \\
\hline A15U8 & 1820-0751 & 9 & & IC CNTR TTL DECD NEG-EDGE-TRIG PRESET & 01295 & SN74196N \\
\hline A1547 & 1820-0068 & 5 & 1 & IC GATE TTL NAND TPL 3 -INP & 01295 & SNTA10N \\
\hline A15U8 & 1820-0054 & 5 & & IC GATE TIL NAND QUAD 2-INP & 01295 & SN7400N \\
\hline A15U9 \({ }^{\text {A15U10 }}\) & \(1820-0054\)
\(1820-0054\) & 5 & & \begin{tabular}{l}
IC GATE TTL NAND QUAD Z-INP \\
IC GATE TTL NAND QUAD 2 -INP
\end{tabular} & 01295
01295 & SN7400N
SN7400N \\
\hline A16 & 08660-60009 & 5 & 1 & BOARD ASSEMBLY, NI PHASE DETECTOR & 28480 & 08660-60009 \\
\hline A16C1 & 0160-2055 & 9 & & CAPACITOR-FXD . O1UF +80-20X 100 UDC CER & 28480 & 0160-2055 \\
\hline A16C2 & 0180-0058 & 0 & & CAPACITOR-FXD 50UF+75-10\% 25UDC AL & 56289 & 30D5066025CC2 \\
\hline A16C3 & 0180-2206 & 4 & 1 & CAPACITOR-FXD 60UF+-10\% 6UDC TA & 56289 & 1500606×9006E2 \\
\hline A16C4 & 0180-0228 & 6 & 5 & CAPACITOR-FXD 22UF+-10\% 15UDC TA & 56289 & 1500226x901582 \\
\hline A16C5 & 0150-0121 & 5 & & CAPACITOR-FXD , 1UF +80-20x 50UDC CER & 28480 & 0150-0121 \\
\hline A16C6 & 0160-2055 & 9 & & CAPACITOR-FXD.01UF \(+80-20 \times 100 U D C\) CER & 28480 & 0160-2055 \\
\hline A16C7 & 0150-0121 & 5 & & CAPACITOR-FXD, IUF +80-20x 50UDC CER & 28480 & 0150-0121 \\
\hline A16C8 & 0160-0297 & 7 & 1 & CAPACITOR-FXD 1200PF +-10x 200VDC POLYE & 28480 & 0160-0297 \\
\hline A16C9 & 0160-2055 & 9 & & CAPACITOR-FXD . \(014 \mathrm{~F}+80-20 \% 100 U D C\) CER & 28480 & 0160-2055 \\
\hline A16C10 & 0150-0121 & 5 & & CAPACITOR-FXD.1UF +80-20X SOUDC CER & 28480 & 0150-0121 \\
\hline A16C11 & 0150-0121 & 5 & & CAPACITOR-FXD.1UF + 80-20\% SOUDC CER & 28480 & 0150-0121 \\
\hline A 16 Cl 12 & 0160-2055 & 9 & & CAPACITOR-FXD . \(01 \mathrm{UF}+80-20 \% 100 U D C\) CER & 28480 & 0160-2055 \\
\hline A16C13 & 0160-0937 & 2 & 1 & CAPACITOR-FXD \(1000 \mathrm{PF}+-2 \% 300 \cup D C\) HICA & 28480 & 0160-0937 \\
\hline A16C14 & 0160-3459 & 9 & , & CAPACITOR-FXD . O2UF +-20\% 100UDC CER & 28480 & 0160-3459 \\
\hline A16C15 & 0150-0121 & 5 & & CAPACITOR-FXD.1UF + 80-20\% SOUDC CER & 28480 & 0150-0121 \\
\hline A16C16 & 0180-0197 & 8 & 1 & CAPACITOR-FXD 2. 2UF+-10\% 20UDC TA & 56289 & \(1500225 \times 9020 \mathrm{~A} 2\) \\
\hline A16C17 & 0160-2055 & 9 & & CAPACITOR-FXD . \(014 \mathrm{~F}+80-20 \mathrm{X}\) 100UDC CER & 28480 & 0160-2055 \\
\hline A16C18 & 0150-0121 & 5 & & CAPACITOR-FXD 1UF +80-20\% SOUDC CER & 28480 & 0150-0121 \\
\hline A16C19 & 0180-0228 & 6 & & CAPACITOR-FXD 22UF+-10x 15UDC TA & 56289 & 150D226×9015 Fz \\
\hline A16C20 & 0160-2055 & 9 & & CAPACITOR-FXD . \(01 \mathrm{UF}+80-20 \%\) 100UDC CER & 28480 & 0160-2055 \\
\hline A16C21 & 0160-2055 & 9 & & CAPACITOR-FXD.01UF \(+80-20 X\) 100UDC CER & 28480 & 0160-2053 \\
\hline A16C22 & 0160-3539 & 6 & 1 & CAPACITOR-FXD B2OPF +-5\% 100UDC MICA & 28480 & 0160-3539 \\
\hline A16C23 & 0180-1746 & 5 & 1 & CAPACITOR-FXD 15UF+-10z 20UDC TA & 56289 & 150D156x902082 \\
\hline A16C24 & 0180-0229 & 7 & 6 & CAPACITOR-FXD 33UF+-10\% 10 UDC TA & 56289 & 1500336x901082 \\
\hline A16C25 & 0160-3459 & 9 & & CAPACITOR-FXD . O2UF +-20x 100 UDC CER & 28480 & 0160-3459 \\
\hline A16C26 & 0180-0229 & 7 & & CAPACITOR-FXD 33UF+-10\% 10 UDC TA & 56289 & \(1500336 \times 901082\) \\
\hline A16C27 & 0160-0134 & 1 & 2 & CAPACITOR-FXD 220PF \(-5 \%\) 300VDC MICA & 28480 & 0160-0134 \\
\hline A16028 & 0160-0134 & 1 & & CAPACITTR-FXD 220PF +-5x 300UDC MICA & 28480 & 0160-0134 \\
\hline A16C29 & 0160-0302 & 5 & 1 & CAPACITOR-FXD . 018 UF +-10x 200UDC POLYE & 28480 & 0160-0302 \\
\hline A16C30 & 0160-0945 & 2 & 2 & CAPACITOR-FXD 910PF +-5z 100 VDC MICA & 28480 & 0160-0945 \\
\hline A16C31 & 0140-0200 & 0 & 1 & CAPACITOR-FXD 390PF +-5\% 300UDC MICA & 72136 & DH15F39150300WVICR \\
\hline A16CR 1 & 1902-3104 & 6 & 1 & DIODE-ZNR 5.62U \(5 \%\) DO-35 PD=.4W & 28480 & 1902-3104 \\
\hline A16CR2 & 1901-0040 & 1 & 34 & DIODE-SWITCHING 30U 50ma 2 NS DO-35 & 28480 & 1901-0040 \\
\hline A16CR3 & 1901-0040 & 1 & & DIODE-SWITCHING 30 U S0HA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A16CR4 & 1901-0179 & 7 & 2 & DIODE-SHITCHING 150 50MA 750PS DO-7 & 28480 & 1901-0179 \\
\hline A) 6 CR5 & 1901-0179 & 7 & & DIODE-SWITCHING 150 S0MA 750 PS DO-7 & 28480 & 1901-0179 \\
\hline A16CR6 & 1902-0025 & 4 & 1 & DIODE-ZNR \(1005 \%\) DO-35 PD=. 4W \(T C=+.06 \%\) & 28480 & 1902-0025 \\
\hline A16L1 & 9100-1629 & 4 & 10 & INDUCTOR RF-CH-HLD 47UH 5\% . 166 DX . 385 LG & 28480 & 9100-1629 \\
\hline A16L2 & 9140-0114 & 4 & & INDUCTOR RF-CH-MLD 10UM 10\% .166DX.385LG & 28480 & 9140-0114 \\
\hline A16L3 & 9100-1629 & 4 & & INDUCTOR RF-CH-MLD 47UH 5\%, 166Dx.385LG & 28480 & 9100-1629 \\
\hline A16L4 & 9100-1619 & 7 & 1 & INDUCTOR RF-CH-MLD 820NH \(10 \%\) & 28480 & 9100-1614 \\
\hline A16L5 & 08660-80017 & 7 & 2 & INDUCTOR ASSEMBLY & 28480 & 08660-80017 \\
\hline A16L6 & 08660-80017 & 7 & & INDUCTOR ASSEMRLY & 28480 & 08660-80017 \\
\hline A 1691 & 1853-0034 & 0 & 2 & TRANSISTOR PNP SI TO-18 PD=360MW & 28480 & 1853-0034 \\
\hline A 1682 & 1853-0034 & 0 & & TRANSISTOR PNP SI TO-18 PD=360MW & 28480 & 1853-0034 \\
\hline A1603 & 1855-0082 & 2 & 1 & TRANSISTOR J-FET P-CHAN D-MODE SI & 28480 & 1855-0082 \\
\hline A1684 & 1854-0092 & 2 & & TRANSISTOR NPN SI PD \(=200 \mathrm{MH} \quad \mathrm{FT}=600 \mathrm{MHZ}\) & 28480 & 1854-0092 \\
\hline A1695 & 1853-0015 & 7 & & TRANSISTOR PNP SI PD=200MH FT \(=500 \mathrm{MHZ}\) & 28480 & 1853-0015 \\
\hline A1606 & 1854-0045 & 5 & 1 & TRANSISTOR NPN SI TO-18 PD=500ME & 28480 & 1854-0045 \\
\hline A16R1 & 0698-3155 & 1 & & RESISTOR \(4.64 \mathrm{~K} 1 \mathrm{\chi}\), 125 F F TC= \(=0+-100\) & 24546 & C4-1/8-T0-4641-F \\
\hline A16R2 & 0757-0421 & 4 & & RESISTOR \(8251 \%\). 125 W F TC=0+-100 & 24546 & C4-1/8-T0-825R-F \\
\hline A16R3 & 0698-3155 & 1 & & RESISTOR \(4.64 \mathrm{~K} 1 \%\), 125 F W T \(=0+-100\) & 24546 & C4-1/8-T0-4641-F \\
\hline A16R4 & 0698-0082 & 7 & & RESISTOR \(4641 \%\). 125 W F TC= \(=0+-100\) & 24546 & C4-1/8-T0-4640-F \\
\hline A16R5 & 0757-1092 & 7 & 1 & RESISTOR 287 1\% .5W F TC \(=0+-100\) & 28480 & 0757-1092 \\
\hline A16R6 & 0757-0289 & 2 & & RESISTOR \(13.3 \mathrm{~K} 1 \% .125 \mathrm{~W}\) F TC \(=0+-100\) & 19701 & MF4C1/8-T0-1332-F \\
\hline A16R7 & 0757-0439 & 4 & 2 & RESISTOR 6.81K i\% . 125W F TC=0 +-100 & 24546 & C4-1/8-T0-6811-F \\
\hline A16R8 & 0757-0416 & 7 & & RESISTOR \(5111 \%\). 125 F F YC= \(=0+-100\) & 24546 & C4-1/8-T0-511R-F \\
\hline A16R9 & 0757-0420 & 3 & 4 & RESISTOR \(7501 \% \quad 125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-751-F \\
\hline A16R10 & 0698-0085 & 0 & 5 & RESISTOR \(2.61 \mathrm{~K} 1 \%\). 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-2611-F \\
\hline A 16 R 11 & 0757-0416 & 7 & & RESISTOR 511 1\%, 125W F TC=0+-100 & 24546 & C4-1/8-70-511R-F \\
\hline Al 6R 12 & 0757-0442 & 9 & 41 & RESISTOR \(10 \mathrm{~K} 1 \mathrm{\chi}, 125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A16R13 & 0698-3446 & 3 & 2 & RESISTOR \(3831 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-383R-F \\
\hline A16R14 & 0757-0424 & 7 & & RESISTOR \(1.1 \mathrm{~K} \quad 1 \mathrm{Z}\). 125 W F \(\mathrm{TC}=0+100\) & 24546 & C4-1/8-T0-1101-F \\
\hline A16R15 & 0757-0442 & 9 & & RESISTOR 10K \(1 \%\). 125 WF TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline
\end{tabular}

Table 6-3. Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & \[
\begin{aligned}
& \mathrm{C} \\
& \mathrm{D}
\end{aligned}
\] & Oty & Description & Mfr Code & Mfr Part Number \\
\hline A16R16 & 0757-0424 & 7 & & RESISTOR 1.1 K 1 X . 125 W F TC= \(=0+-100\) & 24546 & C4-1/8-T0-1101-F \\
\hline A16R17 & 0757-0416 & 7 & & RESISTOR \(511.1 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-511R-F \\
\hline A16R18 & 0698-3450 & 9 & 2 & RESISTOR 42, 2k \(1 \%\). 1254 A F TC=0+-100 & 24546 & C4-1/8-T0-4222-F \\
\hline A16R19 & 0757-0447 & 4 & 1 & RESISTOR 16.2K 1\% , 125W F TC=0+-100 & 24546 & C4-1/8-T0-1622-F \\
\hline A16R20 & 0698-3430 & 5 & 1 & RESISTOR \(21.51 \%\), 125 F TC=0+-100 & 03888 & PMES5-1/8-T0-21R5-F \\
\hline A16R21 & 0757-0424 & 7 & & RESISTOR 1.1 K 1 z , 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1101-F \\
\hline A16R22 & 0757-0421 & 4 & & RESISTOR \(8251 \%\), 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-825R-F \\
\hline A16R23 & 0698-3447 & 4 & 5 & RESISTOR 422 1X .125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-422R-F \\
\hline A16R24 & 0757-0279 & 0 & 6 & RESISTOR 3.16K 1\% . 125W F TC=0+-100 & 24546 & C4-1/8-T0-3161-F \\
\hline A16R25 & 0698-3153 & 9 & 3 & RESISTOR 3.83K 1x . 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-3831-F \\
\hline A16R26 & 0757-0279 & 0 & & RESISTOR 3.16K 1\% . 125 W F TC=0+-100 & 24546 & C.4-1/8-T0-3161-F \\
\hline A16R27 & 0757-0279 & 0 & & RESISTOR 3.16K 1\% , 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-3161-F \\
\hline A16R28 & 0698-0084 & 9 & & RESISTOR 2.15k \(1 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-2151-F \\
\hline A16R29 & 0757-0200 & 7 & & RESISTOR 5.62K 1\% . 125 W F TC=0+-100 & 24546 & C4-1/8-T0-5621-F \\
\hline A16R30 & 0757-0394 & 0 & 4 & RESISTOR 51.1 \(1 \%\), 125W F TC=0+-100 & 24546 & C4-1/8-T0-51R1-F \\
\hline A16R31 & 0757-0394 & 0 & & RESISTOR \(51.11 \%\), 125W F TC=0+-100 & 24546 & C4-1/8-T0-51R1-F \\
\hline A16R32 & 0757-0280 & 3 & & RESISTOR \(1 \mathrm{~K} 1 \mathrm{\chi}\), 125W F TC=0+-100 & 24546 & C4-1/B-T0-1001-F \\
\hline A16R33 & 0698-3162 & 0 & 3 & RESISTOR 46.4K 1\% . 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-4642-F \\
\hline A16R34 & 0698-3450 & 9 & & RESISTOR 42.2K \(1 \%\), 125W F TC=0+-100 & 24546 & C4-1/8-T0-4222-F \\
\hline A16R35 & 0757-0420 & 3 & & RESISTOR \(7501 \%\). 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-751-F \\
\hline A1 6R36 & 0698-3156 & 2 & & RESISTOR 14.7K 1\% . 125 W F TC=0+-100 & 24546 & C4-1/8-T0-1472-F \\
\hline A16R37 & 0757-0289 & 2 & & RESISTOR 13.3K 1\% , 125W F TC=0 +-100 & 19701 & MF4C1/8-T0-1332-F \\
\hline A16R38 & 2100-1760 & 7 & 3 & RESISTOR-TRMR 5 K 5\% WW SIDE-ADJ 1-TRN & 28480 & 2100-1760 \\
\hline A16R39 & 0757-0280 & 3 & & RESISTOR 1K 1\% , 125W F TC= \(0+-100\) & 24546 & C4-1/8-T0-1001-F \\
\hline A16R40 & 0757-0274 & 5 & 3 & RESISTOR 1.21K 1\% , 125W F TC=0 +-100 & 24546 & C4-1/8-70-1211-F \\
\hline A16R41 & 0698-3156 & 2 & & RESISTOR 14.7K 1\% , 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1472-F \\
\hline A16R42 & 0757-1094 & 9 & 1 & RESISTOR 1,47K 1\% . 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1471-F \\
\hline A16R43 & 0698-3158 & 4 & 1 & RESISTOR 23.7K 1\% , 125W F TC= \(=0+-100\) & 24546 & C4-1/8-T0-2372-F \\
\hline A16R44 & 0757-0394 & 0 & & RESISTOR 51.1 1\%, 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-51Rt-F \\
\hline A16R45 & 0757-0420 & 3 & & RESISTOR \(7501 \% .125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-751-F \\
\hline A16R46 & 0757-0440 & 7 & 2 & RESISTOR 7.5K \(1 \%\), 125W F TC= \(=0+-100\) & 24546 & C4-1/8-T0-7501-F \\
\hline A16R47 & 0757-0441 & 8 & 4 & RESISTOR B.25K 1\% . 125 W F TC=0+-100 & 24546 & C4-1/8-T0-8251-F \\
\hline A16T1 & 08660-80001 & 9 & 1 & TRANSFORMER, SAMPLER & 28480 & 08660-80001 \\
\hline A16TP 1 & 0360-0124 & 3 & 8 & CONNECTOR-SGL CONT PIN, 04-IN-BSC-SZ RND & 28480 & 0360-0124 \\
\hline A16TP2 & 0360-0124 & 3 & & CONNECTOR-SGL CONT PIN , 04-IN-BSC-SZ RND & 28480 & 0360-0124 \\
\hline A16TP3 & 0360-0124 & 3 & & CONNECTOR-SGL CONT PIN .04-IN-BSC-SZ RND & 28480 & 0360-0124 \\
\hline A16TP4 & 0360-0124 & 3 & & CONNECTOR-SGL CONT PIN .04-IN-BSC-SZ RND & 28480 & 0360-0124 \\
\hline A16TP5 & 0360-0124 & 3 & & CONNECTOR-SGL CONT PIN, O4-IN-BSC-SZ RND & 28480 & 0360-0124 \\
\hline A16TP6 & 0360-0124 & 3 & & CONNECTOR-SGL CONT PIN , 04-IN-BSC-SZ RND & 28480 & 0360-0124 \\
\hline A16TP7 & 0360-0124 & 3 & & CONNECTOR-SGL CONT PIN , O4-IN-BSC-SZ RND & 28480 & 0360-0124 \\
\hline A16TPB & 0360-0124 & 3 & & CONNECTOR-SGL CONT PIN , 04-IN-ESC-SZ RND & 28480 & 0360-0124 \\
\hline A16U1 & 1820-0058 & 9 & 1 & IC OP AMP GP TO-99 PKG & 24046 & T0A 27090 \\
\hline A16U2 & 1820-1213 & 0 & , & IC FF TTL LS J-K NEG-EDGE-TRIG PRESET & 01295 & SN74LS113AN \\
\hline A16U3 & 1820-1213 & 0 & & IC FF TTL LS J-K NEG-EDGE-TRIG PRESET & 01295 & SN74LS113AN \\
\hline A16U4 & 1820-0469 & 6 & 1 & IC FF TTL H J-K NEG-EDGE-TRIG & 01295 & SN74H102N \\
\hline A16U5 & 1820-0751 & 9 & & IC CNTR TTL DECD NEG-EDGE-TRIG PRESET & 01295 & SN74196N \\
\hline A16U6 & 1820-0751 & 9 & & IC CNTR TTL DECD NEG-EDGE-TRIG PRESET & 01295 & SN74196N \\
\hline A16U7 & 1820-1203 & 8 & 1 & IC GATE TTL LS AND TPL 3-INP & 01295 & SN74LS11N \\
\hline & & & & A16 MISCELLANEOUS & & \\
\hline & \[
\begin{aligned}
& 08660-20155 \\
& 08660-20155
\end{aligned}
\] & 8 & 2 & SHIELD, INDUCTOR SHIELD, INDUCTOR & \[
\begin{aligned}
& 28480 \\
& 28480
\end{aligned}
\] & \[
\begin{aligned}
& 08660-20155 \\
& 08660-20155
\end{aligned}
\] \\
\hline A17 & 08660-60010 & 8 & 1 & BOARD ASSY, N1 OSCILLATOR & 28480 & 08660-60010 \\
\hline A17C1 & 40180-0058 & 2 & 1 & & 28480 & 40180-0058 \\
\hline A17C2 & 0180-2215 & 5 & 1 & CAPACITOR-FXD 170UF+75-10X 15UDC AL & 56289 & 30D177G015DD2 \\
\hline A17C3 & 0180-0049 & 9 & 4 & CAPACITOR-FXD 20UF+75-10\% 50UDC AL & 56289 & \(30 \mathrm{D} 206 \mathrm{G050CC2}\) \\
\hline A17C4 & 0180-1704 & 5 & 2 & CAPACITOR-FXD 47UF+-10\% 6UDC TA & 56289 & \(1500476 \times 9006 \mathrm{E} 2\) \\
\hline A17C5 & 0150-0121 & 5 & & CAPACITOR-FXD , 1UF +80-20\% 50UDC CER & 28480 & 0150-0121 \\
\hline A17C6 & 0150-0121 & 5 & & CAPACITOR-FXD, 1UF +80-20\% 50UDC CER & 28480 & 0150-0121 \\
\hline A17C7 & 0160-2055 & 9 & & CAPACITOR-FXD . \(010 \mathrm{C}+80-20 \% 100 \mathrm{UDC}\) CER & 28480 & 0160-2055 \\
\hline A17c8 & 0180-0229 & 7 & & CAPACITOR-FXD 33UF+-10\% 10UDC TA & 56289 & 150D336×901082 \\
\hline A17C9 & 0180-0228 & 6 & & CAPACITOR-FXD 22UF+-10\% 15UDC TA & 56289 & 150D226×9015B2 \\
\hline A17C10 & 0180-0229 & 7 & & CAPACITOR-FXD 33UF+-10\% 10 UDC TA & 56289 & \(150 \mathrm{D336} \mathrm{\times 9010R2}\) \\
\hline A17C11 & 0180-0183 & 2 & 2 & CAPACITOR-FXD 10UF+75-10\% 50UDC AL & 56289 & 30D106G050CB2 \\
\hline A17C12 & 0180-0374 & 3 & 1 & CAPACITOR-FXD 10UF+-10\% 20UDC TA & 56289 & 150D106×9020E2 \\
\hline A17C13 & 0160-2055 & 9 & & CAPACITOR-FXD . \(010 \mathrm{UF}+80-20 \% 100 \mathrm{UDC}\) CER & 28480 & 0160-2055 \\
\hline A17C14 & 0160-3047 & 1 & 1 & CAPACITOR-FXD 3280PF +-1\% 100VDC MICA & 28480 & 0160-3047 \\
\hline A17C15 & 0160-0386 & 5 & 6 & CAPACITOR-FXD 3.3PF +-. 25PF 500UDC CER & 28480 & 0180-0386 \\
\hline A17c16 \(\dagger\) & 0160-3879 & 7 & 1 & CAPACITOR-FXD .01UF +-20\% 100UDC CER & 28480 & 0160-3879 \\
\hline A17c17 & 0121-0059 & 7 & 2 & CAPACITOR-U TRMR-CER 2-8PF 350 U PC-MTG & 52763 & 304324 2/8PF NPO \\
\hline A17C18 & 0160-2204 & 0 & & CAPACITOR-FXD \(100 \mathrm{PF}+-5 \%\) 300VDC MICA & 28480 & 0160-2204 \\
\hline A17C19 & 0160-2055 & 9 & & CAPACITOR-FXD . \(010 \mathrm{UF}+80-20 \%\) 100UDC CER & 28480 & 0160-2055 \\
\hline A17c20 & 0160-0301 & 4 & 3 & CAPACITOR-FXD .012UF +-10\% 200UDC POLYE & 28480 & 0160-0301 \\
\hline
\end{tabular}

Table 6-3. Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & C & Qty & Description & Mfr Code & Mfr Part Number \\
\hline A17C21 & 0160-3092 & 6 & 1 & CAPACITOR-FXD 1600PF +-12 100 UDC MICA
NOT ASSIGNED & 28480 & 0160-3092 \\
\hline A17C22
A17C23 & 0160-0386 & 5 & & CAPACITOR-FXD 3.3PF +-.25PF 5OOUDC CER & 28480 & 0160-0386 \\
\hline A17C24 & 0160-0386 & 5 & & CAPACITOR-FXD 3.3PF +-.25PF SOOUDC CER & 28480 & 0160-0386 \\
\hline A17C25 & 0160-2055 & 9 & & CAPACITOR-FXD . O1UF +80-20x 100UDC CER & 28480 & 0160-2055 \\
\hline A17c26 & 0160-2055 & 9 & & CAPACITOR-FXD . 01 UF \(+80-20 \mathrm{~K}\) 100UDC CER & 28480 & 0160-2055 \\
\hline A17C27 & 0160-2055 & 9 & & CAPACITOR-FXD . \(014 \mathrm{C}+80-20 z 100 \mathrm{UDC}\) CER & 28480 & 0160-2055 \\
\hline A17C28 & 0160-2055 & 9 & & CAPACITTRR-FXD . \(11 \mathrm{UF}+80-202100 \mathrm{UDC}\) CER & 28480 & 0160-2055 \\
\hline A17C29 & 0160-2055 & - & & CAPACITOR - FXD . \(14 \mathrm{UF}+80-20 x\) 100UDC CER & 28480 & 0160-2055 \\
\hline A17C30 & 0160-2055 & 9 & & CAPACITOR-FXD . O1UF +80-20z 100UDC CER & 28480 & 0160-2055 \\
\hline A17C31 & 0160-2055 & 9 & & CAPACITOR-FXD.0IUF + B0-20x \(100 \cup D C\) CER & 28480 & 0160-2055 \\
\hline A17C32 & 0150-0121 & 5 & & CAPACITTOR-FXD . \(14 \mathrm{UF}+80-20 \mathrm{X}\) SOUDE CER & 28480 & 0150-0121 \\
\hline A17C33 & 0160-2055 & 9 & & CAPACITOR-FXD.01UF +80-20x 100UDC CER & 28480 & 0160-2055 \\
\hline A17C34 & 0160-2055 & 9 & & CAPACITOR-FXD . \(014 \mathrm{~F}+80-20 \% 100 \cup D C\) CER & 28480 & 0160-2055 \\
\hline A17C35 & 0160-2055 & 9 & & CAPACITOR-FXD . \(01 \mathrm{UF}+80-20 \%\) 100UDC CER & 28480 & 0160-2055 \\
\hline A17C36 & 0160-2055 & 9 & & CAPACITOR-FXD . 014 F +80-20\% 100 UDC CER & 28480 & 0160-2055 \\
\hline A17C37 & 0160-0162 & 5 & 1 & CAPACITOR-FXD . O22UF +-302 \(200 \cup \mathrm{DC} \mathrm{POLYE}\) & 28480 & 0160-0162 \\
\hline A17C38 & 0140-0210 & 2 & 1 & CAPACITOR -FXD 270PF *-5\% 300UDC MICA & 72136 & DM15F271J0300wVICR \\
\hline A17C39 & 0160-2055 & 9 & & CAPACITOR-FXD . O1UF \(+80-20 x 100 U D C\) CER & 28480 & 0160-2055 \\
\hline A17CR1 & 1901-0040 & 1 & & DIODE-SWITCHING 30U 50MA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A17CR2 & 1901-0040 & 1 & & DIODE-SWITCHING 30V 50MA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A17CR3 & 1901-0040 & 1 & & DIODE-SHITCHING 30 C 50MA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A17CR 4 & 1901-0040 & 1 & & DIDDE-SWITCHING 30U 50MA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A17CR5 & 1901-0040 & 1 & & DIODE-SWITCHING 30U 50mA 2NS NO-35 & 28480 & 1901-0040 \\
\hline A17CR6 & 0122-0264 & 8 & 2 & DIODE-UUC 1 N5148A 47PF \(52 \mathrm{CA} / \mathrm{C60-MIN}=3.2\) & 04713 & INS148A \\
\hline A17CR7 & 0122-0262 & 6 & 2 & DIODE-UVC 1 N5147A 39PF 5\% C4/C60-MIN=3.2 & 04713 & 1 W5147A \\
\hline A17CRE & 1901-0040 & 1 & & DIODE-SWITCHING 30U 50mA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A17CR9 & 1901-0040 & 1 & & DIODE-SWITCHING 30U 50MA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A17CR10 & 1901-0040 & 1 & & DIODE-SHITCHING 30U 50MA 2 NS DO-35 & 28480 & 1901-0040 \\
\hline A17CR11 & 1901-0040 & 1 & & DIODE-SHITCHING 30U SOMA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A17CR12 & 1901-0040 & 1 & & DIODE-SWITCHING 30U 50MA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A17CR13 & 1901-0040 & 1 & & DIODE-SWITCHING 30U 50ha 2NS DO-35 & 28480 & 1901-0040 \\
\hline A17CR 14 & 1901-0040 & 1 & & DIODE-SHITCHING 30U 50MA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A17CR15 & 1901-0040 & 1 & & DIODE-SHITCHING 30U 50MA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A17CR16 & 1901-0040 & 1 & & DIODE-SWITCHING 30 U SOMA 2 NS DO-35 & 28480 & 1901-0040 \\
\hline A17CR17 & 1901-0040 & 1 & & DIODE-SWITCHING 30U SOMA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A17L1 & 9100-1629 & 4 & & INDUCTOR RF-CH-MLD A7UH 5\% .166DX. 385LG & 28480 & 9100-1629 \\
\hline A17L2 & \(9100-2562\) & , & 2 & INDUCTOR RF-CH-MLD \(100 \mathrm{UH} 10 \%\) & 28480 & 9100-2562 \\
\hline A17L3 & 9100-1629 & - & & INDUCTOR RF-CH-MLD \(47 \mathrm{UH} 5 \% .166 \mathrm{DX}\). 385LG & 28480 & 9100-1629 \\
\hline A1744 & 9100-1629 & 4 & & INDUCTOR RF-CH-MLD \(47 \mathrm{UH} 5 \% .1660 \mathrm{X}\). 385LG & 28480 & 9100-1629 \\
\hline A17L5 & 9140-0179 & 1 & & INDUCTOR RF-CH-MLD 22UH 10 X . 166DX. 385LG & 28480 & 9140-0179 \\
\hline & \(08660-80025\)
\(9100-1652\) & 7
3 & 2 & COIL-650NH \({ }^{\text {INDUCTOR RF-CH-MLD }}\) E2OUH \(5 \%\), 2DX, 45LG & 28480
28480 & 08660-80025 \\
\hline A17L7
A17LB & \(9100-1652\)
\(9100-2566\) & 3 & 1 & & 28480
28480 & \[
\begin{aligned}
& 9100-1652 \\
& 9100-2566
\end{aligned}
\] \\
\hline A17L9 & \(9100-2568\) & 2 & 1 & INDUCTOR RF-CH-MLD 390UH \(10 \%\) & 28480 & \(9100-2568\) \\
\hline A1791 & 1854-0092 & 2 & & TRANSISTOR NPN SI PD \(=200 \mathrm{MH} \quad \mathrm{FT}=600 \mathrm{MHZ}\) & 28480 & 1854-0092 \\
\hline A1792 & 1853-0451 & 5 & 6 & TRANSISTOR PNP 2N3799 S1 T0-18 PD \(=360 \mathrm{MW}\) & 01295 & 2N3799 \\
\hline A1793 & 1854-0345 & - & 2 & TRANSISTOR NPN 2N5179 5I TO-72 PD=200HW & 04713 & 2N5179 \\
\hline A1794 & 1853-0451 & 5 & & TRANSISTOR PNP 2N3799 SI TO-18 PD \(=360 \mathrm{MW}\) & 01295 & 2 N 3790 \\
\hline A1705 & 1855-0081 & 1 & 2 & TRANSISTOR J-FET N -CHAN D-MIDE SI & 28480 & 1855-0081 \\
\hline A1796 & 1854-0087 & 5 & 3 & TRANSISTOR NPN SI PD \(=360 \mathrm{MW}\) FT \(=75 \mathrm{KHZ}\) & 28480 & 1854-0007 \\
\hline A1787 & 1853-0451 & 5 & & TRANSISTOR PNP 2N3799 SI TO-18 PD=360MW & 01295 & 2N3799 \\
\hline A1798 & 1854-0092 & 2 & & TRANSISTOR NPN SI PD=200M4 FT \(=600 \mathrm{MHZ}\) & 28480 & 1854-0092 \\
\hline A1799 & 1854-0087 & 5 & & TRANSISTOR NPN SI PD \(=360 \mathrm{MW}\) FT \(=75 \mathrm{MHZ}\) & 28480 & 1854-0087 \\
\hline A17910 & 1854-0092 & 2 & & TRANSISTOR NPN SI PD=200MW FT \(=600 \mathrm{MHZ}\) & 28480 & 1854-0092 \\
\hline A17911t & 1853-0036 & 2 & 25 & TRANSISTOR PNP SI PD=310MW FT-250MHZ & 28480 & 1853-0036 \\
\hline A17912 & 1853-0036 & 2 & & TRANSISTOR PNP SI PD=310MH FT=250MHZ & 28480 & 1853-0036 \\
\hline A17913 & 1853-0036 & 2 & & TRANSISTOR PMP SI PD=310MW FT=250MHZ & 28480 & 1853-0036 \\
\hline A17914* & 1853-0036 & 2 & & TRANSISTOR PNP SI PD=310MW FT-250MHZ & 28480 & 1853-0036 \\
\hline A17915 & 1854-0092 & 2 & & TRANSISTOR NPN SI PD \(=200 \mathrm{HW} \mathrm{FT}=600 \mathrm{MHZ}\) & 28480 & 1854-0092 \\
\hline A17916才 & 1853-0036 & 2 & & TRANSISTOR PNP SI PD=310MW FT=250MHZ & 28480 & 1853-0036 \\
\hline A1791T & 1853-0036 & 2 & & TRANSISTOR PNP SI PD=310MW FT=250MHZ & 28480 & 1853-0036 \\
\hline A17918 & 1853-0036 & 2 & & TRANSISTOR PNP SI PD=310MW FT=250MHZ & 28480 & 1053-0036 \\
\hline A17919 & 1853-0036 & 2 & & TRANSISTOR PNP SI PD=310MW FT=250MHZ & 28480 & 1853-0036 \\
\hline A17R1 & 0757-0428 & 1 & 8 & RESISTOR 1.62K 12.125 W F TC=0+-100 & 24546 & C4-1/8-T0-1621-F \\
\hline A17R2 & 0757-0428 & 1 & & RESISTOR 1.62K 1\% . 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1621-F \\
\hline A17R3 & 0757-0428 & 1 & & RESISTOR \(1.62 \mathrm{~K} \quad 1 \%\), 125 F TC \(=0+-100\) & 24546 & C4-1/8-T0-1621-F \\
\hline A17R4 & 1757-0428 & 1 & & RESISTOR 1.62K 1\% . 225 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1621-F \\
\hline A17R5 & 0757-0428 & 1 & & RESISTOR 1.62K 1\% , 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1621-F \\
\hline A17R6 & 0757-0428 & 1 & & RESISTOR 1.62k 1\% .125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1621-F \\
\hline A1787 & 0757-0428 & 1 & & RESISTOR 1.62 K 12.125 W F TC= \(0+-100\) & 24546 & C4-1/8-T0-1621-F \\
\hline A17R8 & 0757-0428 & 1 & & RESISTOR 1.62K 1x . 125w F TC \(=0+-100\) & 24546 & C.-1/8-T0-1621-F \\
\hline A17R9 & 0757-0442 & 9 & & RESISTOR 10 K 1 x , 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A17R10 & 0757-0442 & 9 & & RESISTOR 10K 1 X , 125W F \(T C=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline
\end{tabular}

Table 6-3. Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & \[
\begin{aligned}
& \mathrm{C} \\
& \mathrm{D}
\end{aligned}
\] & Oty & Description & Mfr Code & Mfr Part Number \\
\hline A17R11 & 0757-0442 & 9 & & RESISTOR 10K 1\% . 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A17R12 & 0757-0442 & 9 & & RESISTOR 10K \(1 \%\), 125 F F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A17R13
A17R14 & -0757-0442 & 9 & & RESISTOR
RESISTOR
10K
R & 24546
24546 & C4-1/8-T0-1002-F
C4-1/8-T0-1002-F \\
\hline A17R15 & 0757-0442 & 9 & & RESISTOR 10K \(1 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A17R16 & 0757-0442 & 9 & & RESISTOR 10 K 1 z . 125 W F TC=0+-100 & 24546 & C4-1/8-T0-1002-F \\
\hline A17R17 & 0757-0479 & 2 & 2 & RESISTOR 392K \(1 \%\). 125 W F TC \(=0+-100\) & 19701 & MF4C1/8-T0-3923-F \\
\hline A17R18 & 0757-0472 & 5 & 2 & RESISTOR 200K \(1 \% .125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-2003-F \\
\hline A17R19 & 0757-0465 & 6 & & RESISTOR \(100 \mathrm{~K} 1 \%\). 125 W F \(\mathrm{TC}=0+-100\) & 24546 & C4-1/8-T0-1003-F \\
\hline A17R20 & 0698-3228 & 9 & 2 & RESISTOR 49.9 K 1 x . 125 W F TC= \(=0+-100\) & 28480 & 0698-3228 \\
\hline A17R21 & 0757-0124 & 4 & 1 & RESISTOR 39.2K 12 z . 125w F TC=0+-100 & 28480 & 9757-8124 \\
\hline A17R22 & 0757-0449 & 6 & 1 & RESISTOR 20K 1\% , 125W F TC=0+-100 & 24546 & C4-1/8-T0-2002-F \\
\hline A17R23 & 0757-0442 & 9 & & RESISTOR \(10 \mathrm{~K} 1 \%\). 125 W F \(\mathrm{TC}=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A17R24 & 0698-4002 & 9 & 1 & RESISTOR 5K 1\% , 125世 F TC=0+100 & 24546 & C4-1/8-T0-5001-F \\
\hline A17R25 & 0757-0442 & 9 & & RESISTOR \(10 \mathrm{~K} 1 \%\), 125W F TC= \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A17R26 & 0698-3441 & 8 & & RESISTOR \(2151 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-215R-F \\
\hline A17R27 & 0698-0085 & 0 & & RESISTOR \(2.61 \mathrm{~K} \quad 1 \mathrm{~K}\), 125 W F TC=0+-100 & 24546 & C4-1/8-T0-2611-F \\
\hline A17R28
A17R29 & \(2100-1760\)
\(0698-3156\) & 7
2 & & & 28480
24546 & 2100-1760 \\
\hline A17R30 & 0757-0274 & 5 & & RESISTOR 1.21K 1\% . 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1211-F \\
\hline A17R31 & 2100-1759 & 4 & 2 & RESISTOR-TRMR 2K 5\% WW SIDE-ADJ 1-TRN & 28480 & 2100-1759 \\
\hline A17R32 & 0757-0290 & 5 & 2 & RESISTOR 6.19K 1x.125w F TC \(=0+\cdots 100\) & 19701 & MF 4C1/8-T0-6191-F \\
\hline A17833 & 0757-0200 & 7 & & RESISTOR 5.62K \(1 \% .125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-5621-F \\
\hline A17R34 & 0757-0199 & 3 & 2 & RESISTOR \(21.5 \mathrm{~K} 1 \%\). 125W F TC=0+-100 & 24546 & C4-1/8-T0-2152-F \\
\hline A17R35 & 0698-0095 & 0 & & RESISTOR \(2.61 \mathrm{~K} 1 \% .125 \mathrm{~W}\) F \(\mathrm{TC}=0+-100\) & 24546 & C4-1/8-T0-2611-F \\
\hline A17R36 & 0757-0421 & - & & RESISTOR \(8251 \% .125 W\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-825R-F \\
\hline A17R37 & 0698-4037 & 0 & 1 & RESISTOR 46.4 \(1 \%\), 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-46R4-F \\
\hline A17R38
A17R39
A & \(0698-3162\)
\(0698-3155\) & 0
1 & & & 24546
24546 & C4-1/8-T0-4642-F
\(\mathrm{C} 4-1 / \mathrm{T}-\mathrm{T} 0-4641-\mathrm{F}\) \\
\hline Al7R 40 & 0757-0441 & 8 & & RESISTOR 8. 25 K 1\% . 125 W F \(\mathrm{TC}=0+-100\) & 24546 & C4-1/8-T0-8251-F \\
\hline A17R41 & 0757-0279 & , & & RESISTOR 3.16K 1\% . 125 W F TC= \(=0+-100\) & 24546 & C4-1/8-T0-3161-F \\
\hline A17R42 & 0757-0834 & 3 & 2 & RESISTOR 5.62K 1x .5W F TC \(=0+-100\) & 28480 & 0757-0834 \\
\hline A17R43 & 0757-0317 & 7 & 4 & RESISTOR 1.33K 1\% . 125 W F TC=0 \(=0-100\) & 24546 & C4-1/8-70-1331-F \\
\hline A17R44 & 0757-0199 & 3 & & RESISTOR 21.5K 1\% , 1254 F TC=0+-100 & 24546 & C4-1/8-T0-2152-F \\
\hline A17R45 & 0757-0442 & 9 & & RESISTOR \(10 \mathrm{~K} 1 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A17R46 & 0698-3441 & 8 & & RESISTOR \(2151 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-215R-F \\
\hline A17R47 & 0698-3459 & 8 & 2 & RESISTOR 383K \(1 \%\), 125W F TC=0+-100 & 28480 & 0698-3459 \\
\hline A17R48 & 0698-0082 & 7 & & RESISTOR \(4641 \%\), 125W F TC=0+-100 & 24546 & C4-1/8-T0-4640-F \\
\hline A17R49 & 0757-0835 & 4 & 1 & RESISTOR 6.81K 1\% .5W F TC=0+-100 & 28480 & 0757-0835 \\
\hline A17R50 & 0698-3266 & 5 & 4 & RESISTOR 237K 1 x , 125 N F \(\mathrm{TC}=0+-100\) & 24546 & C4-1/8-T0-2373-F \\
\hline A17R51 & 0698-3440 & 7 & 8 & RESISTOR \(1961 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-196R-F \\
\hline A17R52 & 0698-3447 & 4 & & RESISTOR \(42221 \%\), 125W F TC=0+-100 & 24546 & C4-1/8-T0-422R-F \\
\hline A17R53 & 0698-3266 & 5 & & RESISTOR \(237 \mathrm{~K} 1 \%, 125 \mathrm{~W}\) F \(\mathrm{TC}=0+-100\) & 24546 & C4-1/8-T0-2373-F \\
\hline A17R54
A17R55 & \(0698-3445\)
\(0698-3243\) & 2
8 & 4
6 & RESISTOR \(3481 \%\), 125W F TC=0+-100
RESISTOR 178 K & 24546
24546 & C4-1/8-T0-348R-F
\(\mathrm{C4-1/8-T0-1783-F}\) \\
\hline A17R56 & 0698-3443 & 0 & 4 & RESISTOR 287 1\% . 125W F TC=0+-100 & 24546 & C4-1/8-T0-287R-F \\
\hline A17R57 & 0698-3243 & 8 & & RESISTOR 178K \(1 \%\). 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1783-F \\
\hline A17R58 & 0698-3132 & 4 & 4 & RESISTOR \(2611 \%\). 125 WF TC \(=0+-100\) & 24546 & C4-1/8-T0-2610-F \\
\hline A17R59 & 0757-0466 & 7 & 2 & RESISTOR 110K 1x , 125W F TC=0+-100 & 24546 & C4-1/8-T0-1103-F \\
\hline A17R60 & 0683-8245 & 9 & 2 & RESISTOR 820K \(5 \chi\). 25W FC TC \(=-800 /+900\) & 01121 & CE8245 \\
\hline A17R61 & 0698-3243 & 8 & & RESISTOR 178K \(1 \%\). 125 W F TC=0+-100 & 24546 & C4-1/8-T0-1783-F \\
\hline A17R62 & 0698-3440 & 7 & & RESISTOR \(1961 \%\). 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-196R-F \\
\hline A17R63 & 0698-3440 & 7 & & RESISTOR \(1961 \%\). 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-196R-F \\
\hline A17R64 & 0698-0082 & 7 & & RESISTOR 464 1\%, 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-4640-F \\
\hline A17R65 & 0757-0467 & - & 2 & RESISTOR \(121 \mathrm{~K} 1 \%\). 125 W F \(\mathrm{TC}=0+-100\) & 24546 & C4-1/8-T0-1213-F \\
\hline A17R66 & 0698-3439 & 4 & 2 & RESISTDR \(1781 \%\). 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-178R-F \\
\hline A17R67 & 0757-0200 & 7 & & RESISTOR \(5.62 \mathrm{~K} 1 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/B-T0-5621-F \\
\hline A17R68 & 0698-3154 & 0 & 9 & RESISTOR 4.22K \(1 \%\), 125H F TC=0 +-100 & 24546 & C4-1/8-T0-4221-F \\
\hline A17R69 & 0757-0464 & 5 & 2 & RESISTOR 90.9K 1x . 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-9092-F \\
\hline A17R70 & 0698-3445 & 2 & & RESISTOR \(3481 \%\). 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-348R-F \\
\hline A17R71 & 0757-0405 & 4 & 2 & RESISTOR \(1621 \%\). 125 W F TC= \(=0+-100\) & 24546 & C4-1/8-T0-162R-F \\
\hline A17R72 & 0757-0461 & 2 & 2 & RESISTOR 68.1K 1 X , 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-6812-F \\
\hline A17R73 & 0757-0403 & 2 & 1 & RESISTOR \(1211 \chi\). 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-121R-F \\
\hline A17R74 & 0698-3444 & 1 & 10 & RESISTOR \(3161 \% .125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-316R-F \\
\hline A17R75 & 0698-3437 & 2 & , & RESISTOR \(1331 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-133R-F \\
\hline A17R76 & 0757-0458 & 7 & 2 & RESISTOR \(51.1 \mathrm{~K} 1 \%\), 125W F TC= \(=0+-100\) & 24546 & C4-1/8-T0-5112-F \\
\hline A17R77 & 0698-3442 & 9 & 4 & RESISTOR \(2371 \%\). 125W F TC=0+-100 & 24546 & C4-1/8-T0-237R-F \\
\hline A17R78 & 0757-0401 & 0 & & RESISTOR 100 1\% , 125W F TC=0+-100 & 24546 & C4-1/8-T0-101-F \\
\hline A17R79 & 0757-0200 & 7 & & RESISTOR 5.62 K 1\% . 125 W F TC= \(0+-100\) & 24546 & C4-1/8-T0-5621-F \\
\hline A17R日0 & 0757-0280 & 3 & & RESISTOR \(1 \mathrm{~K} \quad 1 \mathrm{\%}\). 125 W F TC= \(=0+-100\) & 24546 & C4-1/8-T0-1001-F \\
\hline A17R81 & 0698-3154 & 0 & & RESISTOR 4. \(22 \mathrm{~K} 1 \%\), 125W F TC= \(0+-100\) & 24546 & C4-1/8-T0-4221-F \\
\hline A17R82 & 0757-0401 & 0 & & RESISTOR 100. 1 z . 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-101-F \\
\hline A17R83 & 0698-3132 & 4 & & RESISTOR \(2611 \chi\). 125 F TC \(=0+-100\) & 24546 & C4-1/8-T0-2610-F \\
\hline A17R84 & 0698-3444 & 1 & & RESISTOR \(3161 \%\). 125 W F \(\mathrm{TC}=0+-100\) & 24546 & C4-1/8-T0-316R-F \\
\hline A17R85 & 0698-3444 & 1 & & RESISTOR 316 i\% . 125 W F TC= \(0+-100\) & 24546 & C4-1/8-T0-316R-F \\
\hline
\end{tabular}

Table 6－3．Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & \[
\begin{aligned}
& C \\
& D
\end{aligned}
\] & Qty & Description & Mfr Code & Mfr Part Number \\
\hline A17R86 & 0757－0200 & 7 & & RESISTOR 5．62K 1\％．125W F TC＝0＋－100 & 24546 & C4－1／8－70－5621－F \\
\hline A17887 & 0698－3154 & 0 & & RESISTOR 4．22K 1\％． 125 W F TC \(=0+-100\) & 24546 & C4－1／8－T0－4221－F \\
\hline A17R88 & 0698－3444 & 1 & & RESISTOR \(3161 \%\) ，125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－316R－F \\
\hline A17R89 & 0698－3444 & 1 & & RESISTOR \(3161 \chi\) ，125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－316R－F \\
\hline A17R90 & 0698－3444 & 1 & & RESISTOR \(31612.125 W\) F TC \(=0+-100\) & 24546 & C4－1／8－T0－316R－F \\
\hline A17R91 & 0698－3433 & 8 & 2 & RESISTOR \(28.71 \%\) ．125W F TC \(=0+-100\) & 03898 & PME55－8／8－T0－28R \({ }^{\text {P }}\)－F \\
\hline A17R92 & 0698－3432 & 7 & 1 & RESISTOR 26．1 \(1 \% .125 \mathrm{~F}\) F \(\mathrm{TC}=0+-100\) & 03888 & PME55－1／8－T0－26R1－F \\
\hline A17R93 & 0698－3433 & － & & RESISTOR \(28.71 \%\) ． 125 W F TC \(=0+-100\) & 03888 & PMES5－1／日－T0－2BR7－F \\
\hline A17R94 & 0698－3154 & 0 & & RESISTOR 4．22k \(1 \% .125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4－1／8－70－4221－F \\
\hline A17R95 & 0698－0084 & \(\bigcirc\) & & RESISTOR 2．15K 1z ，125 F TC \(=0+-100\) & 24546 & C4－1／8－T0－2151－F \\
\hline A17896 & 0757－0280 & 3 & & RESISTOR 1 K 1 x ． 125 W F TC \(=0+-100\) & 24546 & C4－1／8－T0－1001－F \\
\hline A17R97 & 0698－3153 & 9 & & RESISTOR 3．83K 1\％．125W F TC \(=0+-100\) & 24546 & C4－1／8－T0－3831－F \\
\hline A17R98 & 0757－0442 & 9 & & RESISTOR \(10 K 1 \%\) ，125W F TC＝0＋－100 & 24546 & C4－1／8－T9－1002－F \\
\hline A17R99 & 0698－3441 & 8 & & RESISTAR \(21512,125 W\) F \(T C=0+-100\) & 24546 & C4－1／8－T0－215R－F \\
\hline A1741 & 1820－0054 & 5 & & IC GATE TTL NAND QUAD 2－INP & 01.295 & SNT400N \\
\hline A17 72 & 1820－0054 & 5 & & IC GATE TTL NAND QUAD 2－INP & 01295 & SNT400N \\
\hline A18 & 08660－60015 & 3 & 1 & BOARD ASSY，SLI MIXER & 28480 & 08660－60015 \\
\hline A18c1 & 0180－1704 & 5 & & CAPACITOR－FXD 47UF＋－10X 6UDC TA & 56289 & 1500476×900682 \\
\hline Al 8 Cl & & & & NOT ASSIGNED & & \\
\hline A1853 & 0150－0121 & 5 & & CAPACITOR－FXD．IUF \(480-20 Z 50 U D C\) CER & 28480 & 0150－0121 \\
\hline A18C4
A18C5 & 0160－0174 & 9 & & NOT ASSIGNED
CAPACITOR－FXD ． \(47 \mathrm{UF}+80-20 \mathrm{X}\) 25UDC CER & 28480 & 0160－0174 \\
\hline A18C6 & & & & not assigned & & \\
\hline A18C7 & 0160－2055 & 9 & & CAPACITOR－FXD ． \(014 \mathrm{Cl}+80-20 \%\) 100UDC CER & 28480 & 0160－2055 \\
\hline A18C8 & 0150－0121 & 5 & & CAPACITOR－FXD ．IUF＋ \(80-20 \%\) SOUDC CER & 28480 & 0150－0121 \\
\hline A18C9 & 0160－2055 & 9 & & CAPACITOR－FXD． 014 C ＋80－20X 1000 DC CER & 28480 & 0160－2055 \\
\hline A18C10 & 0160－0301 & 4 & & CAPACITOR－FXD ． 012 UF ＊－10\％200UDC POLYE & 28480 & 0160－0301 \\
\hline A 18 Cl 11 & 0160－0301 & 4 & & CAPACITOR－FXD ．012UF－ \(10 \%\) 200UDC POLYE & 28480 & 0160－0301 \\
\hline A18C12 & 0160－0174 & 9 & & CAPACITOR－FXD． 47 UF \(+80-20 x\) 25UDC CER & 28480 & 0160－0174 \\
\hline A18C13 & 0160－2055 & 9 & & CAPACITOR－FXD O1UF＋80－20X 100UDC CER & 28480 & 0160－2055 \\
\hline A18C14 & 0160－2055 & 9 & & CAPACITOR－FXD．O1UF＋80－20x 100VDC CER & 28480 & 0160－2055 \\
\hline A18C15 & 0150－0121 & 5 & & CAPACITOR－FXD ． 1 UF ＊80－20X SOUDC CER & 28480 & 0150－0121 \\
\hline A18C16 & 0180－2214 & 4 & 2 & CAPACITOR－FXD 90UF＋75－10z 16UDC AL & 56289 & 30D906G016CC2 \\
\hline A18C17 & 0160－2327 & － & 1 & CAPACITOR－FXD 1000PF＋－20\％100UDC CER & 51642 & 150－110－X5R－102M \\
\hline \({ }^{\text {A } 18 C 18}\) & & & & NOT ASSIGNED & & \\
\hline A18C19
Al 18 C 20 & \(0160-2055\)
\(0180-0141\) & 9 & 2 & CAPACITOR－FXD 01UF \(+80-20 \%\) 100UDC CER
CAPACITOR－FXD SOUF＋75－10\％SOUDC AL & 28480
56289 & \(0160-2055\)
\(30050660500 D 2\) \\
\hline & & & & & & \\
\hline A18C21 & 0180－1819 & 3 & 1 & CAPACITOR－FXD \(100 \mathrm{UF}+75-10 \%\) SOUDC AL & 56289 & 30D1076050DH2 \\
\hline A18C22 & 0180－0141 & 2 & & CAPACITOR－FXD 50UF＋75－10\％SOUDC AL & 56289 & 30D50660500D2 \\
\hline A1 8CR 1 & 1901－0040 & & & DIODE－SHITCHING 30U 50MA 2 NS DO－35 & 28480 & 1901－0040 \\
\hline AlsCr 2 & 1901－0518 & 8 & 1 & DIODE－SM SIG SChOTTKY & 28480 & 1901－0518 \\
\hline A 18E1 & 10534 C & 8 & 1 & MIXER， 200 mhz & 28480 & \(10934 C\) \\
\hline A18L1 & 9100－1629 & 4 & & INDUCTOR RF－CH－MLD ATUH 5\％． 166 DX ．385LG & 28480 & 9100－1629 \\
\hline A18L2 & 9140－0114 & 4 & & INDUCTOR RF－CH－MLD 10UH 10\％．1660X．385LG & 28480 & 9140－0114 \\
\hline A） 813 & 9140－0179 & 1 & & INDUCTOR RF－CH－MLD E2UH 10 X ． 1660 X ．385LG & 28480 & 9140－0179 \\
\hline A1814 & 9140－0179 & ， & & INDUCTOR RF－CH－MLD 22UH 10x ．166DX．385LG & 28480 & 9140－0179 \\
\hline A18L5 & 9100－1621 & 6 & 1 & INDUCTOR RF－CH－MLD 18UH 10X ． 166 DX ．385LG & 28480 & 9100－1621 \\
\hline A18L6 & 9140－0179 & 1 & & INDUCTOR RF－CH－MLD 22UH 10\％． 166 DX ．385LG & 28480 & 9140－0179 \\
\hline A1881 & 1854－0092 & 2 & & TRANSISTOR MPN SI PD＝200MW FT \(=600 \mathrm{MHZ}\) & 28480 & 1854－0092 \\
\hline A1892 & 1854－0092 & 2 & & TRANSISTOR NPN SI PD \(=200 \mathrm{MH} \quad F T=600 \mathrm{MHZ}\) & 28480 & 1854－0092 \\
\hline A1893 & 1853－0451 & 5 & & TRANSISTOR PNP 2 N 3799 SI T0－18 PD＝360MW & 01295 & 2N3799 \\
\hline A1804 \({ }^{\text {＋}}\) & 1854－0087 & 5 & & TRANSISTOR NPN SI PD \(=360 \mathrm{ML}\) FT \(=75 \mathrm{MHZ}\) & 28480 & 1854－0087 \\
\hline A1805 \(\dagger\) & 1853－0036 & 2 & & TRANSISTOR PNP SI PD＝310MW FT \(=250 \mathrm{MHZ}\) & 28480 & 1853－0036 \\
\hline A1806 & 1853－0036 & 2 & & TRANSISTOR PNP SI PD \(=310 \mathrm{HW}\) FT \(=250 \mathrm{MHZ}\) & 28480 & 1853－0036 \\
\hline A1887 & 1853－0036 & 2 & & TRANSISTOR PNP SI PD＝310MH FT \(=250 \mathrm{MHZ}\) & 28480 & 1853－0036 \\
\hline A1808 & 1853－0036 & 2 & & TRANSISTOR PNP SI PD \(=310 \mathrm{MH}\) FT \(=250 \mathrm{MHZ}\) & 28480 & 1853－0036 \\
\hline A1889 & 1853－0036 & 2 & & TRANSISTOR PNP SI PD＝310MH FT \(=250 \mathrm{MHZ}\) & 28480 & 1853－0036 \\
\hline A18810 & 1853－0036 & 2 & & TRANSISTOR PNP SI PD＝310MW FT 250 MHZ & 28480 & 1853－0036 \\
\hline A18Q11 & 1853－0036 & 2 & & TRANSISTOR PNP SI PD \(=310 \mathrm{MW}\) FT \(=250 \mathrm{MHZ}\) & 28480 & 1853－0036 \\
\hline A18日12 & 1853－0036 & 2 & & TRANSISTDR PNP SI PD \(=310 \mathrm{MW}\) FT \(=250 \mathrm{MHZ}\) & 28480 & 1853－0036 \\
\hline A18013† & 1853－0036 & 2 & & TRANSISTOR PNP SI PD \(=310 \mathrm{MH} \quad \mathrm{FT}=250 \mathrm{HHZ}\) & 28480 & 1853－0036 \\
\hline A18日14 & 1854－0092 & 2 & & TRANSISTOR NPN SI PD \(=200 \mathrm{MW}\) FT \(=600 \mathrm{MmZ}\) & 28480 & 1854－0092 \\
\hline A18Q15 & 1854－0092 & 2 & & TRANSISTOR NPN SI PD \(=200 \mathrm{MW}\) FT \(=600 \mathrm{HHZ}\) & 28480 & 1854－0092 \\
\hline A18016t & 1853－0036 & 2 & & TRANSISTOR PNP SI PD＝310MW FT \(=250 \mathrm{MHZ}\) & 28480 & 1853－0036 \\
\hline A18017 & 1853－0036 & 2 & & TRANSISTOR PNP SI PD \(=310 \mathrm{MH} \quad \mathrm{FT}=250 \mathrm{MHZ}\) & 28480 & 1853－0036 \\
\hline A18018 & 1854－0092 & 2 & & TRANSISTOR NPN SI PD＝200MW FT \(=600 \mathrm{MHZ}\) & 28480 & 1854－0092 \\
\hline A18019 & 1853－0036 & 2 & & TRANSISTOR PNP SI PDa310M FT \(=250 \mathrm{MHZ}\) & 28480 & 1853－0036 \\
\hline A18920 \({ }^{\text {\％}}\) & 1853－0036 & 2 & & TRANSISTOR PNP SI PD＝310MW FT \(=250 \mathrm{MHZ}\) & 28480 & 1853－0036 \\
\hline A1892， & 1853－0036 & 2 & & TRANSISTOR PNP SI PD \(=310 \mathrm{ML}\) FT \(=250 \mathrm{MHZ}\) & 28480 & 1853－0036 \\
\hline A18923 & 1853－0036 & 2 & & TRANSISTOR PNP SI PD＝310MW FT＝250MHZ & 28480 & 1853－0036 \\
\hline A18923 & 1853－0036 & 2 & & TRANSISTOR PNP SI PD \(=310 \mathrm{MW}\) FT \(=250 \mathrm{MHZ}\) & 28480 & 1853－0036 \\
\hline A18024 \({ }^{\text {T }}\) & 1853－0036 & 2 & & TRANSISTOR PNP SI PD＝310nW FT \(=250 \mathrm{MHZ}\) & 28480 & 1853－0036 \\
\hline
\end{tabular}

\footnotetext{
＊Indicates factory selected value
}

Table 6-3. Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & C & Qty & Description & Mfr Code & Mfr Part Number \\
\hline A18R1 & 0698-0083 & 8 & 17 & RESISTOR 1.96K \(1 \%\). 125 W F TC=0+-100 & 24546 & C4-1/8-T0-1961-F \\
\hline Al8R2 & 0698-0083 & 8 & & RESISTOR 1.96k \(1 \%\). 125 W F \(\mathrm{TC}=0+-100\) & 24546 & C4-1/8-T0-1961-F \\
\hline A18R3 & 0698-0083 & 8 & & RESISTOR \(1.96 \mathrm{~K} 1 \% .125 \mathrm{~W}\) F \(\mathrm{TC}=0+-100\) & 24546 & C4-1/8-T0-1961-F \\
\hline A18R4 & 0698-0083 & 8 & & RESISTOR \(1.96 \mathrm{~K} 1 \mathrm{X}, 125 \mathrm{~W}\) F TC=0+-100 & 24546 & C4-1/8-T0-1961-F \\
\hline A18R5 & 0698-0083 & 8 & & RESISTOR \(1.96 \mathrm{~K} 1 \mathrm{\chi}\). 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1961-F \\
\hline A18R6 & 0698-0083 & 8 & & RESISTOR \(1.96 \mathrm{~K} \quad 1 \%\). 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1961-F \\
\hline A18R7 & 0698-0083 & 8 & & RESISTOR \(1.96 \mathrm{~K} 1 \%\). 125 W F TC=0+-100 & 24546 & C4-1/8-T0-1961-F \\
\hline A18R8 & 0698-0083 & 8 & & RESISTOR \(1.96 \mathrm{~K} 1 \%\), 125W F TC= \(=0+-100\) & 24546 & C4-1/8-T0-1961-F \\
\hline A1889 & 0757-0442 & 9 & & RESISTOR \(10 \mathrm{~K} 1 \%\). 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A1BR10 & 0757-0442 & 9 & & RESISTOR 10 K 1 X . 125W F TC= \(0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A18R11 & 0757-0442 & 9 & & RESISTOR \(10 \mathrm{~K} 1 \mathrm{\%}\). 125w F TC=0+-100 & 24546 & C4-1/8-T0-1002-F \\
\hline A18R12 & 0757-0442 & 9 & & RESISTOR \(10 \mathrm{~K} 1 \chi\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A1 BR13 & 0757-0442 & 9 & & RESISTOR \(10 \mathrm{~K} 1 \% .125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A18R14 & 0757-0442 & 9 & & RESISTOR \(10 \mathrm{~K} 1 \chi\). 125w F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A18R15 & 0757-0442 & 9 & & RESISTOR \(10 \mathrm{~K} 1 \%\). 125 W F TC=0+-100 & 24546 & C4-1/8-T0-1002-F \\
\hline A18R16 & 0757-0442 & 9 & & RESISTOR \(10 \mathrm{~K} 1 \%\), 125W F TC=0+-100 & 24546 & C4-1/8-T0-1002-F \\
\hline A18R17 & 0757-0479 & 2 & & RESISTOR 392K \(1 \%\), 125W F TC \(=0+-100\) & 19701 & MF4C1/8-T0-3923-F \\
\hline A18R18 & 0757-0472 & 5 & & RESISTOR 200K 1\% , 125W F TC \(=0+100\) & 24546 & C4-1/8-T0-2003-F \\
\hline A18R19 & 0757-0465 & 6 & & RESISTOR \(100 \mathrm{~K} 1 \%, 125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-1003-F \\
\hline A18R20 & 0698-3228 & 9 & & RESISTOR 49.9K 1 z . 125 W F TC \(=0+-100\) & 28480 & 0698-3228 \\
\hline A18R21 & 0683-3955 & 8 & 1 & RESISTOR 3.9M 5\% .25W FC TC \(=-900 /+1100\) & 01121 & CB3955 \\
\hline A18R22 & 0683-2055 & 7 & , & RESISTOR 2M 5\% . 25W FC TC \(=-900 /+1100\) & 01121 & C82055 \\
\hline A18R23 & 0683-1055 & 5 & 1 & RESISTOR 1H 5\% 25W FC TC \(=-800 /+900\) & 01121 & C61055 \\
\hline A18R24 & 0698-3263 & 2 & 1 & RESISTOR 500 K 1 x , 125W F TC=0+-100 & 28480 & 0698-3263 \\
\hline A18R25 & 0698-0083 & 8 & & RESISTOR \(1.96 \mathrm{~K} 1 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1961-F \\
\hline A18R26 & 0757-0442 & 9 & & RESISTOR \(10 \mathrm{~K} 1 \%\). 125 W F TC=0+-100 & 24546 & C4-1/8-T0-1002-F \\
\hline A18R27 & 0757-0200 & 7 & & RESISTOR \(5.62 \mathrm{~K} 1 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-5621-F \\
\hline A18R28 & 0698-3154 & 0 & & RESISTOR 4.22K 1\%, 125W F TC= \(0+-100\) & 24546 & C4-1/8-T0-4221-F \\
\hline A18R29 & 0698-3440 & 7 & & RESISTOR \(1961 \% \quad 125 \mathrm{~W}\) F \(\quad\) TC \(=0+-100\) & 24546 & C4-1/8-T0-196R-F \\
\hline A18R30 & 0698-3154 & 0 & & RESISTOR 4.22K 1\% . 125 W F TC=0+-100 & 24546 & C4-1/8-T0-4221-F \\
\hline A18R31 & 0698-3444 & 1 & & RESISTOR \(3161 \%\), 125W F TC=0+-100 & 24546 & C4-1/8-T0-316R-F \\
\hline A18R32 & 0698-3444 & 1 & & RESISTOR \(3161 \%\). 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-316R-F \\
\hline A18R33 & 0698-0083 & 8 & & RESISTOR \(1.96 \mathrm{~K} 1 \% .125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-1961-F \\
\hline A18R34 & 0757-0442 & 9 & & RESISTOR \(10 \mathrm{~K} 1 \mathrm{\%}\). 125W F TC=0+-100 & 24546 & C4-1/8-T0-1002-F \\
\hline A18R35 & 2100-2574 & 3 & 2 & RESISTOR-TRMR 500 10\% C SIDE-ADJ 1-TRN & 30983 & ET50×501 \\
\hline A18R36 & 0698-3155 & 1 & & RESISTOR 4.64 K 1\% , 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-4641-F \\
\hline A 18 R 37 & 0698-0082 & 7 & & RESISTOR \(4641 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-4640-F \\
\hline A18R38 & 0698-0083 & 8 & & RESISTOR \(1.96 \mathrm{~K} 1 \%\). 125W F TC= \(=0+-100\) & 24546 & C4-1/8-T0-1961-F \\
\hline A 18R39 & 0757-0442 & 9 & & RESISTOR 10K 1\% , 125W F TC=0+-100 & 24546 & C4-1/8-T0-1002-F \\
\hline A18R40 & 2100-2574 & 3 & & RESISTOR-TRMR 50010 X C SIDE-ADJ 1-TRN & 30983 & ET50×501 \\
\hline A19R41 & 0698-3258 & 5 & 1 & RESISTOR 5.36K \(1 \%\). 125 W F TC=0+-100 & 24546 & C4-1/8-T0-5361-F \\
\hline A18R42 & 0698-0083 & 8 & & RESISTOR 1.96 K 1 z . 125 W F TC= \(=0+-100\) & 24546 & C4-1/8-T0-1961-F \\
\hline A18R43 & 0757-0442 & 9 & & RESISTOR \(10 \mathrm{~K} 1 \%\). 125 W F TC=0+-100 & 24546 & C4-1/8-T0-1002-F \\
\hline A18R 44 & 2100-2633 & 5 & & RESISTOR-TRMR 1K \(10 \%\) C SIDE-ADJ 1-TRN & 30983 & ET50×102 \\
\hline A18R45 & 0757-0290 & 5 & & RESISTOR 6.19K \(1 \%\). 125 W F TC \(=0+-100\) & 19701 & MF4C1/8-T0-6191-F \\
\hline A18R46 & 0757-0399 & 5 & 2 & RESISTOR \(82.51 \%\). 125 W F \(T C=0+100\) & 24546 & C4-1/8-T0-82R5-F \\
\hline A18R 47 & 0757-0400 & 9 & 1 & RESISTOR \(90.91 \% .125 W\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-90R9-F \\
\hline A18R48 & 0757-0399 & 5 & & RESISTOR 82.5 1x , 125W F TC=0+-100 & 24546 & C4-1/8-T0-82R5-F \\
\hline A18R 49 & 0698-0083 & 8 & & RESISTOR \(1.96 \mathrm{~K} 1 \%\), 125W F TC= \(0+-100\) & 24546 & C4-1/8-T0-1961-F \\
\hline A1BR50 & 0757-0442 & 9 & & RESISTOR 10 K 1 z , 125W F TC=0 +-100 & 24546 & C4-1/8-T0-1002-F \\
\hline A18R51 & 2100-2633 & 5 & & RESISTOR-TRMR 1K 10\% C SIDE-ADJ 1-TRN & 30983 & ETS0×102 \\
\hline A18R52 & 0757-0440 & 7 & & RESISTOR 7.5K 1\% . 125 W F TC=0+-100 & 24546 & C4-1/8-T0-7501-F \\
\hline A18R53 & 0698-0083 & 8 & & RESISTOR \(1.96 \mathrm{~K} 1 \% .125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-1961-F \\
\hline A18R54 & 0757-0442 & 9 & & RESISTOR 10 K 1 z . 125 W F TC= \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A18R55 & 2100-2521 & - & 2 & RESISTOR-TRMR 2K \(10 \%\) C SIDE-ADJ 1-TRN & 30983 & ET50x202 \\
\hline A18R56 & 0757-0288 & 1 & 3 & RESISTOR 9.09K \(1 \%\). 125 W F TC \(=0+-100\) & 19701 & MF4C1/8-T0-9091-F \\
\hline A18R57 & 0757-0394 & 7 & & RESISTOR \(51.11 \%\), 125W F TC= \(0+-100\) & 24546 & C4-1/日-T0-51R1-F \\
\hline A18R58 & 0698-3151 & 7 & & RESISTOR 2.87K 1 K , 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-2871-F \\
\hline A18R59 & 0698-3151 & 7 & & RESISTOR 2.87K \(1 \% .125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-2871-F \\
\hline A18R60 & 0698-0083 & 8 & & RESISTOR \(1.96 \mathrm{~K} 1 \%\). 125 W F TC= \(=0+-100\) & 24546 & C4-1/8-T0-1961-F \\
\hline A18R61 & 0757-0442 & 9 & & RESISTOR \(10 \mathrm{~K} 1 \% .125 \mathrm{~W}\) F TC=0+-100 & 24546 & C4-1/8-T0-1002-F \\
\hline A18R62 & 2100-2521 & 0 & & RESISTOR-TRMR 2K 10\% C SIDE-ADJ 1-TRN & 30983 & ET50×202 \\
\hline A18R63 & 0757-0444 & 1 & 2 & RESISTOR \(12.1 \mathrm{~K} 1 \%\), 125 W F TC=0+-100 & 24546 & C4-1/8-70-1212-F \\
\hline A18R64 & 0698-3445 & 2 & & RESISTOR \(3481 \%\), 125W F TC=0+-100 & 24546 & C4-1/8-T0-348R-F \\
\hline A18R65 & 0757-0416 & 7 & & RESISTOR 511 1\%.125W F TC=0+-100 & 24546 & C4-1/8-T0-511R-F \\
\hline A18R66 & 0698-0083 & 8 & & RESISTOR \(1.96 \mathrm{~K} 1 \%\). 125 W F TC=0+-100 & 24546 & C4-1/8-T0-1961-F \\
\hline A18R67 & 0757-0442 & 9 & & RESISTOR 10 K 17.125 W F TC=0+-100 & 24546 & C4-1/8-T0-1002-F \\
\hline A18R68 & 2100-2489 & 9 & 1 & RESISTIR-TRMR 5K 10\% C SIDE-ADJ 1-TRN & 30983 & ET50×502 \\
\hline A18R69 & 0698-3136 & 8 & 1 & RESISTOR 17.8K 1\% . 125 W F \(\mathrm{TC}=0+-100\) & 24546 & C4-1/8-T0-1782-F \\
\hline A18R70 & 0757-0441 & 8 & & RESISTOR 8.25K \(1 x .125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-8251-F \\
\hline A18R71 & 0757-0279 & 0 & & RESISTOR 3.16K 1\% .125W F TC=0+-100 & 24546 & C4-1/8-T0-3161-F \\
\hline A18R72 & 0698-0083 & 8 & & RESISTOR \(1.96 \mathrm{k} 1 \% .125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-1961-F \\
\hline A18R73 & 0757-0442 & 9 & & RESISTOR \(10 \mathrm{~K} 1 \% .125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A18R74 & 2100-2522 & 1 & 1 & RESISTOR-TRMR \(10 \mathrm{~K} 10 \%\) C SIDE-ADJ 1-TRN & 30983 & ET50×103 \\
\hline A18R75 & 0757-0123 & & 1 & RESISTOR 34.8K 1\% .125W F TC \(=0+-100\) & 28480 & 0757-0123 \\
\hline
\end{tabular}

Table 6-3. Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & \[
\left|\begin{array}{l|}
\mathrm{C} \\
\mathrm{D}
\end{array}\right|
\] & Qty & Description & Mfr Code & Mfr Part Number \\
\hline A18R76 & 0757-0420 & 3 & & RESISTOR \(7501 \%\). 125 W F \(T C=0+-100\) & 24546 & C4-1/8-T0-751-F \\
\hline A18R77 & 0698-3442 & 9 & & RESISTOR \(2371 \%\). 125 W F \(\mathrm{TC}=0+-100\) & 24546 & C4-1/8-T0-237R-F \\
\hline A18R78 & 0698-0085 & 0 & & RESISTOR 2.61k \(1 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-2611-F \\
\hline A18R79 & 0698-3442 & 9 & & RESISTOR \(2371 \%, 1254\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-237R-F \\
\hline A18R80 & 0757-0288 & 1 & & RESISTOR 9.09K 1\% . 125 F F TC=0 +-100 & 19701 & MF4C1/8-T0-9091-F \\
\hline Al \({ }^{\text {ARE1 }}\) & 0698-0082 & 7 & & RESISTOR \(4641 \% \quad .125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-4640-F \\
\hline A18R82 & 0698-0085 & 0 & & RESISTOR \(2.61 \mathrm{~K} 1 \%\), 125W F TC=0+-100 & 24546 & C4-1/8-T0-2611-F \\
\hline A18R83 & 0698-0082 & 7 & & RESISTOR \(4641 \% .125 W\) F TC \(=0+-100\) & 24546 & C4-1/8-70-4640-F \\
\hline A18R84 & 0698-3440 & 7 & & RESISTOR \(1961 \%\), 125 F TC \(=0+-100\) & 24546 & C4-1/8-T0-196R-F \\
\hline A18R85 & 0698-3441 & 8 & & RESISTOR 21512 , 125W F TC=0+-100 & 24546 & C4-1/8-T0-215R-F \\
\hline A18R86 & 0757-0280 & 3 & & RESISTOR 1 K ix. 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1001-F \\
\hline A18R87 & 0757-0401 & 0 & & RESISTOR \(1001 \%\). 125W F \(T C=0+-100\) & 24546 & C4-1/8-T0-101-F \\
\hline A1801 & 1820-0054 & 5 & & IC GATE TTL NAND QUAD 2 -INP & 01295 & SN7400 \\
\hline A18Uz & 1820-0054 & 5 & & IC GATE TTL NAND QUAD 2-INP & 01295 & SN7400N \\
\hline A18U3 & 1820-0214 & 9 & 1 & IC DCDR TTL BCD-TO-DEC 4-TO-10-LINE & 01295 & SNT442AN \\
\hline A19 & 08660-60017 & 5 & 1 & ROARD ASSY, SLI OSCILLATOR & 28480 & -8660-60017 \\
\hline A19C1 & \(0180-0049\)
\(0180-0058\) & 9 & & \(\begin{array}{ll}\text { CAPACITOR-FXD } & 20 U F+75-10 \% \\ \text { CAPACITOR-FXD } & 50 U \mathrm{USC}+75-10 z ~ 25 U D C ~ A L ~\end{array}\) & 56289
56289 & \(3002066050 C C 2\)
\(3005066025 C C 2\) \\
\hline A19C3 & 0150-0121 & 5 & & CAPACITOR-FXD. \(1 \mathrm{UF}+80-20 \%\) SOUDC CER & 28480 & 0150-0121 \\
\hline A19C4 & 0180-0228 & 6 & & CAPACITOR-FXD 2CUF*-10x 15UDC TA & 56289 & 1500226x901582 \\
\hline A19C5 & 0160-0945 & 2 & & CAPACITOR-FXD 910PF +-5\% \(100 \cup \mathrm{DC} \mathrm{MICA}\) & 28480 & 0160-0945 \\
\hline A19C6 & 0150-0121 & 5 & & CAPACITOR-FXD , 1UF +80-20z SOUDC CER & 28480 & 0150-0121 \\
\hline A1967 & 0180-2214 & 4 & & CAPACITOR-FXD 90UF +75-10\% 18 UDC AL. & 56289 & 30D906G016CC2 \\
\hline A19C8 & 0160-0174 & 9 & & CAPACITOR-FXD . \(47 \mathrm{UF}+80-202 \mathrm{z}\) 25UDC CER & 28480 & 0160-0174 \\
\hline A19C9 & 0160-2055 & 9 & & CAPACITOR-FXD . \(014 \mathrm{UF}+80-20 \% 100 \cup D C\) CER & 28480 & 0160-2055 \\
\hline A19C10 & 0160-0161 & 4 & 2 & CAPACIIOR-FXD . OIUF +-10x 200UDC POLYE & 28480 & 0160-0161 \\
\hline A \(19 \mathrm{Cl1}\) & 0160-2220 & 0 & 1 & CAPACITOR-FXD 1200PF +-5\% 300UDC MICA & 28480 & 0160-2220 \\
\hline A19C12 & 0160-0161 & 4 & & CAPACITOR-FXD D1UF *-10z 200UDC POLYE & 28480 & 0160-0161 \\
\hline A19C13 + & 0160-0386 & 5 & & CAPACITOR-FXD 3.3PF *-. 25PF SOOUDC CER & 28480 & 0160-0386 \\
\hline A19C14 \({ }^{+}\) & 0170-0082 & 9 & 2 & CAPACITOR-FXD . O1UF \(+-20 z\) SOUDC POLYE & 84411 & GOIPE1030R5W1 \\
\hline A19C15 \({ }^{\text {f }}\) & 0180-0049 & 9 & & CAPACITOR-FXD 20UF+75-10\% 50UDC AL & 56289 & 30D2066050CC2 \\
\hline A19C16 & 0180-0183 & 2 & & CAPACITOR-FXD 10UF+75-10x 50UDC AL & 56289 & 30D1066050CE2 \\
\hline A19C17 & 0170-0082 & 9 & & CAPACITOR-FXD O1UF +-20\% SOUDC POLYE & 84411 & 601PE1030REWI \\
\hline A19C18 & 0121-0059 & 7 & & CAPACITOR-U TRMR-CER 2-8PF 350 V PC-MTG & 52763 & 304324 2/8PF NPO \\
\hline A19C19 & 0160-2204 & 0 & & CAPACITOR-FXD \(100 \mathrm{PF}+-5 \% 300 \mathrm{VDC}\) MICA & 28480 & 0160-2204 \\
\hline A19020 & 0160-0386 & 5 & & CAPACITOR-FXD 3.3PF *-.25PF 5OOUDC CER & 28480 & 0160-0386 \\
\hline A19C21 & 0160-0386 & 5 & & CAPACITOR-FXD 3.3PF +-.25PF 500UDC CER & 28480 & 0160-0386 \\
\hline Al9c22 & 0160-2055 & 9 & & CAPACITOR-FXD . O1UF +80-20X 100UDC CER & 28480 & 0160-2055 \\
\hline A19C23 & 0160-2055 & 9 & & CAPACITOR-FXD 01UF +80-20\% 100UDC CER & 28480 & 0160-2055 \\
\hline A19C24 & 0160-2055 & 9 & & CAPACITOR-FXD 01UF +80-20x 100UDC CER & 28480 & 0160-2055 \\
\hline A19 925 & 0160-2055 & 9 & & CAPACITOR-FXD . \(014 \mathrm{~F}+80-20 x\) 100UDC CER & 28480 & 0160-2055 \\
\hline A19C26 & 0160-2055 & 9 & & CAPACITOR-FXD . O1UF \(+80-20 \% ~ 100 U D C\) CER & 29480 & 0160-2055 \\
\hline A19C27 & 0160-2055 & 9 & & CAPACITOR-FXD . \(01 \mathrm{UF}+80-20 \%\) 100UDC CER & 28480 & 0160-2055 \\
\hline A19C28 & 0160-2055 & 9 & & CAPACITOR-FXD . O1UF \(+80-20 x ~ 100 U D C ~ C E R ~\) & 28480 & 0160-2055 \\
\hline A19C29 & 0160-2055 & 9 & & CAPACITOR-FXD . 014 L +80-20X \(100 \cup D C\) CER & 28480 & 0160-2055 \\
\hline A19030 & 0160-2055 & - & & CAPACITOR-FXD . O1UF +80-20x 100UDC CER & 28480 & 0160-2055 \\
\hline A19C31 & 0160-2055 & 9 & & CAPACIIOR-FXD.01UF \(+80-20 \mathrm{X} 100 \mathrm{UDC} \mathrm{CER}\) & 28480 & 0160-2055 \\
\hline A19C32 & 0140-0195 & 2 & 1 & CAPACITOR-FXD 130PF +-5x 300UDC MICA & 72136 & DM15F131J0300WUICR \\
\hline A19C33 & 0160-2055 & 9 & & CAPACITOR-FXD . O1UF +80-20x 100UDC CER & 28480 & 0160-2055 \\
\hline A19C34 & 0160-2202 & 8 & 1 & CAPACITOR-FXD 75PF +-5x 300UDC MICA & 28480 & 0160-2202 \\
\hline A19035 & 0160-2200 & 6 & 1 & CAPACITOR-FXD A3PF +-5x 300UDC MICA & 28480 & 0160-2200 \\
\hline A19C36 & 0180-0229 & 7 & & CAPACITOR-FXD 33UF+-10x 10UDC TA & 56289 & \(1500336 \times 901002\) \\
\hline A 19037 & 0160-0157 & 8 & 1 & CAPACITOR-FXD 4700PF +-10x 200UDC POLYE & 28480 & 0160-0157 \\
\hline A19C38 & 0160-0164 & 7 & 1 & CAPACITOR-FXD .039UF \(+-10 x\) 200UDC POLYE & 28480 & 0860-0164 \\
\hline A19039 & 0160-2204 & 0 & & CAPACITOR-FXD \(100 \mathrm{PF}+-5 \% 300 \cup D C\) MICA & 28480 & 0160-2204 \\
\hline A19CR 1 & 1901-0040 & 1 & & DIODE-SWITCHING 30 U SOMA \(2 N S\) DO-35 & 29480 & 1901-0040 \\
\hline A19CR2 & 1901-0040 & 1 & & DIODE-SWITCHING 30 C 50MA 2 NS DO-35 & 28480 & 1901-0040 \\
\hline A19CR3 & 1901-0040 & 1 & & DIODE-SWITCHING 304 SOMA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A19CRA & 1911-0040 & 1 & & DIIDEE-SWITCHING 30U 50MA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A19CRS & 1901-0040 & 1 & & DIODE-SWITCHING 30 U 50MA 2 NS DO-35 & 28480 & 1901-0040 \\
\hline A19CR6 & 1901-0040 & 1 & & DIDDE-SWITCHING 30V 50MA 2 NS DO-35 & 28480 & 1901-0040 \\
\hline A19CR 7 & 1901-0040 & 1 & & DIODE-SWITCHING 30U SOMA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A19CR8 & 1901-0040 & 1 & & DIIDE-SWITCHING 30 U S0MA 2 NS DO-35 & 28480 & 1901-0040 \\
\hline A19CR9 & 1901-0040 & 1 & & DIDDE-SWITCHING 30U SOMA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A19CR 10 & 1901-0040 & 1 & & DIODE-SWITCHING 30050 MA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A19CR11 & 1901-0040 & 1 & & DIODE-SHITCHING 30 U SOMA 2 NS DO-35 & 29480 & 1901-0040 \\
\hline A19CR 12 & 0122-0264 & 8 & & DIODE-VUC 1N5148A 47PF 5\% C4/C60-MIN =3.2 & 04713 & 1N5148A \\
\hline A19CR 13 & 0122-0262 & 6 & & DIODE-UUC INS147A 39PF SX C4/C60-MIN =3.2 & 04713 & \(1 \mathrm{N5147A}\) \\
\hline A19CR 14 & 1901-0040 & 1 & & DIODE-SWITCHING 300 50MA 2 NS DO-35 & 28480 & 1901-0040 \\
\hline A19CR15 & 1901-0040 & 1 & & DIODE-5WITCHING 3OU SOMA 2NS DO-35 & 28480 & 1901-0040 \\
\hline A19CR16 & 1901-0040 & , & & DIODE-SWITCHING 30 U SOMA 2 NS DO-35 & 28480 & 1901-0040 \\
\hline
\end{tabular}

Table 6-3. Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reference \\
Designation
\end{tabular} & \begin{tabular}{l}
HP Part \\
Number
\end{tabular} & \[
\begin{aligned}
& \mathrm{C} \\
& \mathrm{D}
\end{aligned}
\] & Qty & Description & Mfr Code & Mfr Part Number \\
\hline A19L1 & 9100-1629 & 4 & & INDUCTOR RF-CH-MLD 47UH 5\% , 166DX.385LG & 28480 & 9100-1629 \\
\hline A19L2 & 9100-2562 & 6 & & INDUCTOR RF-CH-MLD \(100 \mathrm{UH} 510 \%\) & 28480 & 9100-2562 \\
\hline A19L3 & 9100-1629 & 4 & & INDUCTOR RF-CH-MLD 47 UH 5x , 166DX, 385LG & 28480 & 9100-1629 \\
\hline A19L4 & 9100-1629 & 4 & & INDUCTOR RF-CH-MLD \(47 \mathrm{UH} 5 \%\). 166 DX . 385 LG & 28480 & 9100-1629 \\
\hline A19L5 & 9100-2572 & 8 & 1 & INDUCTOR RF-CH-KLD E20UH 10\% & 28480 & 9100-2572 \\
\hline A1926 \(\dagger\) & 08660-80025 & 7 & & COIL-650NH & 28480 & 08660-80025 \\
\hline A19L7 & 9140-0179 & , & & INDUCTOR RF-CH-MLD 22UH 10\% .166DX.385LG & 28480 & 9140-0179 \\
\hline A19L8 & 9140-0179 & 1 & & INDUCTIOR RF-CH-MLD 22UH \(10 \%\). 166 DX . 385LC & 28480 & 9140-0179 \\
\hline A19L9 & 9100-1611 & 4 & 2 & INDUCTOR RF-CH-MLD 220 NH 20\% & 28480 & 9100-1611 \\
\hline A19L10 & 9100-1611 & 4 & & INDUCTOR RF-CH-MLD 220NH 20\% & 28480 & 9100-1611 \\
\hline A1941 & 1854-0092 & 2 & & TRANSISTOR NPN SI PD \(=200 \mathrm{MH} \quad \mathrm{FT}=600 \mathrm{MHZ}\) & 28480 & 1854-0092 \\
\hline A1902 & 1854-0092 & 2 & & TRANSISTOR NPN SI PD \(=200 \mathrm{MW} \quad \mathrm{FT}=600 \mathrm{MHZ}\) & 28480 & 1854-0092 \\
\hline A1993 & 1854-0092 & 2 & & TRANSISTOR NPN SI PD \(=200 \mathrm{MW}\) FT \(=600 \mathrm{MHZ}\) & 28480 & 1854-0092 \\
\hline A1984 & 1855-0081 & 1 & & TRANSISTOR J-FET N-CHAN D-MODE SI & 28480 & 1855-0081 \\
\hline A1995 & 1854-0345 & 8 & & TRANSISTOR NPN 2N5179 SI TO-72 PD \(=200 \mathrm{MW}\) & 04713 & 2N5179 \\
\hline A1986 & 1853-0451 & 5 & & TRANSISTOR PNP \(2 N 3799\) SI TO-18 PD \(=360 \mathrm{MW}\) & 01295 & 2N3799 \\
\hline A1997 & 1853-0451 & 5 & & TRANSISTOR PNP 2N3799 SI TO-18 PD \(=360 \mathrm{HW}\) & 01295 & 2N3799 \\
\hline A1998 & 1854-0092 & 2 & & TRANSISTOR NPN SI PD=200M FT \(=600 \mathrm{MHZ}\) & 28480 & 1854-0092 \\
\hline A1999 & 1854-0092 & 2 & & TRANSISTOR NPN SI PD \(=200 \mathrm{MW}\) FT \(=600 \mathrm{MHZ}\) & 28480 & 1854-0092 \\
\hline A19810 & 1854-0022 & 8 & 1 & TRANSISTOR NPN SI TO-39 PD=700MW & 07263 & 517843 \\
\hline A19R1 & 0698-3132 & 4 & & RESISTOR 261 1\% . 125 F F TC= \(=0+-100\) & 24546 & C4-1/8-T0-2810-F \\
\hline A19R2 & 0698-3442 & 9 & & RESISTOR \(2371 \%\), 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-237R-F \\
\hline A19R3 & 2100-1760 & 7 & & RESISTOR-TRMR 5K 5\% WW SIDE-ADJ 1-TRN & 28480 & 2100-1760 \\
\hline A19R4 & 0757-0458 & 7 & & RESISTOR 51, \(1 \mathrm{~K} 1 \%\), 125 W F TC=0+-100 & 24546 & C4-1/8-T0-5112-F \\
\hline A1985 & 0698-3437 & 2 & & RESISTOR \(1331 \%\). 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-133R-F \\
\hline A19R6
A19R7 & 0757-0460 & 1 & 1 & RESISTOR 61.9K 1\% .125W F TC=0+-100 NOT ASSIGNED & 24546 & C4-1/8-T0-6192-F \\
\hline Al9R7 & 0757-0461 & 2 & & RESISTOR 68.1K 1\% .125W F TC=0+-100 & 24546 & C4-1/8-T0-6812-F \\
\hline A19R9 & 2100-1759 & 4 & & RESISTOR-TRMR 2K 5\% WW SIDE-ADJ 1-TRN & 28480 & 2100-1759 \\
\hline A19R10 & 0757-0439 & 4 & & RESISTOR 6.81K 1\% . 125 W F \(\mathrm{TC}=0+-100\) & 24546 & C4-1/8-T0-6811-F \\
\hline A19R11 & 0757-0200 & 7 & & & 24546 & C4-1/8-T0-5621-F \\
\hline A19R12 & 0757-0405 & 4 & & RESISTOR \(1621 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-162R-F \\
\hline A19R13 & 0757-0464 & 5 & & RESISTDR 90.9 K 12 l . 125 W F TC=0+-100 & 24546 & C4-1/8-T0-9092-F \\
\hline A19R14 & 0757-0442 & 9 & & RESISTOR \(10 \mathrm{~K} 1 \% .125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-1002-F \\
\hline A19R15 & 0698-3439 & 4 & & RESISTOR 178 1\% , 12514 F TC \(=0+-100\) & 24546 & C4-1/8-T0-178R-F \\
\hline A19R16 & 0757-0467 & 8 & & RESISTOR \(121 \mathrm{~K} 1 \mathrm{X}, 125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & \[
\mathrm{C} 4-1 / 8-\mathrm{TO}-1213-\mathrm{F}
\] \\
\hline A19R17
A19R18 & \(0698-3440\)
\(0757-0466\) & 7 & & RESISTOR \(1961 \%, 125 \mathrm{~W}\) F TC \(=0+-100\)
RESISTOR 110 K 1 l , 125 W TC \(=0+-100\) & 24546
24546 & C4-1/8-T0-196R-F \\
\hline A19R18 & \(0757-0466\)
\(0757-0834\) & 7
3 & & RESISTOR \(110 \mathrm{~K} 1 \%, 125 \mathrm{~W}\) F \(\mathrm{TC}=0+-100\)
RESISTOR 5.62 K 1 z . 5 W F \(\mathrm{TC}=0+-100\) & 24546
28480 & C4-1/8-T0-1103-F
\(0757-0834\) \\
\hline A19R20 & 0698-3132 & 4 & & RESISTOR \(2611 \% .125 \mathrm{~W}\) F \(\mathrm{TC}=0+-100\) & 24546 & C4-1/日-T0-2610-F \\
\hline A19R21 & 0698-3243 & 8 & & RESISTOR 178 KK 1\% 125W F TC=0+-100 & 24546 & C4-1/8-T0-1783-F \\
\hline Al9R22 & 0698-3443 & 0 & & RESISTOR \(2871 \%\), 125 F TC \(=0+-100\) & 24546 & C4-1/8-T0-287R-F \\
\hline A19R23 & 0757-0441 & 8 & & RESISTOR 8.25k 1\% . 125w F TC \(=0+100\) & 24546 & C4-1/8-T0-8251-F \\
\hline A19R24 & 0698-3440 & 7 & & RESISTIR \(1961 \%, 125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-196R-F \\
\hline A19R25 & 0698-3243 & 8 & & RESISTOR 178K 1\% , 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1783-F \\
\hline A19R26 & 0698-3445 & 2 & & RESISTOR 348 1\% .125w F TC \(=0+-100\) & 24546 & C4-1/8-T0-348R-F \\
\hline A19R27 & 0757-0279 & 0 & & RESISTOR 3.16K 1\% , 125W F TC \(=0+\cdots 100\) & 24546 & C4-1/8-T0-3161-F \\
\hline A19R28 & 0698-3266 & 5 & & RESISTOR \(237 \mathrm{~K} 1 \%, 125 \mathrm{~W}\) F TC \(=0+-100\) & 24546 & C4-1/8-70-2373-F \\
\hline A19R29 & 0757-0442 & 9 & & RESISTOR 10K 1\% .125W F TC=0+-100 & 24546 & C4-1/8-T0-1002-F \\
\hline A19R30 & 0698-3447 & 4 & & RESISTOR 422 1\%.125W F TC=0+-100 & 24546 & C4-1/8-T0-422R-F \\
\hline A19R31 & 0698-3266 & 5 & & RESISTOR 237K 1\% , 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-2373-F \\
\hline A19R32 & 0698-0082 & 7 & & RESISTOR 464 1\% 125 W F TC=0+-100 & 24546 & C4-1/8-T0-4640-F \\
\hline A19R33 & 0757-0444 & 1 & & RESISTIR \(12,1 \mathrm{~K} 1 \%\), 125W F TC=0+-100 & 24546 & C4-1/8-T0-1212-F \\
\hline A19R34 & 0698-3459 & 8 & & RESISTOR 383K \(1 \%, 125 \mathrm{~W}\) F TC \(=0+-100\) & 28480 & 0698-3459 \\
\hline A19R35 & 0698-3162 & 0 & & RESISTOR 46, 4K 1x, 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-4642-F \\
\hline A19R36 & 0698-3157 & 3 & 1 & RESISTOR 19.6K 1z , 125W F TC \(=0+-100\) & 24546 & \[
\mathrm{C} 4-1 / 8-\mathrm{T} 0-1962-\mathrm{F}
\] \\
\hline A19R37 & 0757-0288 & 1 & & RESISTOR 9,09K 1\% , 125W F TC=0+-100 & 19701 & MF4C1/8-T0-9091-F \\
\hline A19R38
Al9R39 & -0698-3155 & 1 & & & 24546
24546 & C4-1/8-T0-4641-F
\(\mathrm{C} 4-1 / 8-\mathrm{T} 0-1331-\mathrm{F}\) \\
\hline A19R39
A19R40 & \(0757-0317\)
\(0757-0442\) & 7
9 & & & 24546
24546 & C4-1/8-T0-1331-F
\(\mathrm{C} 4-1 / 8-\mathrm{TO-1002-F}\) \\
\hline A19R41 & 0683-8245 & 9 & & RESISTRR 820K 5\% . 25W FC TC \(=-800 /+900\) & 01121 & CB8245 \\
\hline A19R42 & 0698-3243 & 8 & & RESISTOR 178K 1\% , 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1783-F \\
\hline A19R43 & 0698-3446 & 3 & & RESISTRR \(3831 \chi\). 125 W F TC=0+-100 & 24546 & C4-1/8-T0-383R-F \\
\hline A19R44 & 0698-0082 & 7 & & RESISTOR \(4641 \mathrm{X}, 125 \mathrm{~W}\) F TC \(=0+100\) & 24546 & C4-1/8-T0-4640-F \\
\hline A19R45 & 0757-0200 & 7 & & RESISTOR \(5.62 \mathrm{~K} 1 \%\). 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-5621-F \\
\hline A19R46 & 0698-3154 & 0 & & RESISTOR 4.22K \(1 \%\). 125 W F TC= \(=0+-100\) & 24546 & C4-1/8-T0-4221-F \\
\hline A19R47 & 0698-3441 & 8 & & RESISTOR \(2151 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-215R-F \\
\hline A19R48 & 0698-3444 & 1 & & RESISTOR 316 1\% , 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-316R-F \\
\hline A19R49 & 0757-0401 & 0 & & RESISTOR 100 1\% . 125 W F \(\quad\) TC \(=0+-100\) & 24546 & C4-1/8-T0-101-F \\
\hline A19850 & 0698-3440 & 7 & & RESISTOR 196 1\% .125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-196R-F \\
\hline A19R51 & 0757-0200 & 7 & & RESISTOR 5.62K 1x . 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-5621-F \\
\hline A19R52 & 0698-3154 & 0 & & RESISTOR 4.22K 1\% .125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-4221-F \\
\hline A19R53 & 0757-0200 & 7 & & RESISTOR 5.62K 1\% . 125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-5621-F \\
\hline A19R54 & 0698-3154 & 0 & & RESISTOR 4.22K \(17.125 W\) F TC \(=0+-100\) & 24546 & C4-1/8-T0-4221-F \\
\hline A19R55* & 0757-0280 & 3 & 14 & RESISTOR 1K 17.125 W F TC \(=0+-100\) & 24546 & C4-1/8-T0-1001-F \\
\hline
\end{tabular}

Table 6-3. Replaceable Parts

Table 6-3. Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reference \\
Designation
\end{tabular} & HP Part Number & \[
\left|\begin{array}{l}
C \\
D
\end{array}\right|
\] & Qty & Description & Mfr Code & Mfr Part Number \\
\hline & \[
\begin{aligned}
& 0360-0007 \\
& 0360-0009 \\
& 1251-0600 \\
& 4040-0554
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 3 \\
& 0 \\
& 9
\end{aligned}
\] & 1
1
1
1 & \begin{tabular}{l}
TERMINAL-SLDR LUG PL-MTG FOR-*10-SCR \\
TERMINAL-SLDR LUG PL-MTG FOR-*6-SCR CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ COVER, CAPACITOR
\end{tabular} & 28480
28480
28480
28480 & \[
\begin{aligned}
& 0360-0007 \\
& 0360-0009 \\
& 1251-0600 \\
& 4040-0554
\end{aligned}
\] \\
\hline A 21
A 21 & 0960-0151 & 8
7 & 1 & \begin{tabular}{l}
OSCILLATOR-CRYSTAL \(10 \mathrm{MHZ:} \mathrm{STABILITY}\) \\
(EXCEPT OPT'S 001 AND 002) OSCILLATOR-CRYSTAL 10 MHZ: STABILITY (OPT 001 ONLY) \\
(OMIT AZ1 ASSY FOR OPT 002)
\end{tabular} & 28480
28480 & 0960-0151 \\
\hline A22 \(\dagger\) & \[
\begin{aligned}
& 08660-60320 \\
& 08660-20051
\end{aligned}
\] & \[
\begin{aligned}
& 3 \\
& 3
\end{aligned}
\] & 1 & SWITCH ASSY, REFERENCE HOUSING, REF. SWITCH & \[
\begin{aligned}
& 28480 \\
& 28480
\end{aligned}
\] & \[
\begin{aligned}
& 08680-60320 \\
& 08660-20051
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { A22C1 } \\
& \text { A22C2 }
\end{aligned}
\] & 0160-2437 & 1 & 5 & CAPACITOR-FDTHRU \(5000 \mathrm{PF}+80\)-20\% 200 V NOT ASSIGNED & 28480 & 0160-2437 \\
\hline A22c3 & 0160-2437 & 1 & & CAPACITOR-FDTHRU 5000PF +80-20\% 200 U & 28480 & 0160-2437 \\
\hline A22C4 & 0160-2437 & 1 & & CAPACITOR-FDTHRU 5000PF +80-20\% 2000 & 28480 & 0160-2437 \\
\hline A22C5 & 0160-2437 & 1 & & CAPACITOR-FDTHRU \(5000 \mathrm{PF}+80-20 \% 2000\) & 28480 & 0160-2437 \\
\hline A22c6 & 0160-2437 & 1 & & CAPACITOR-FDTHRU 5000PF +80-20\% 2000 & 28480 & 0160-2437 \\
\hline A22, 1 & 1250-0901 & 2 & 3 & CONNECTOR-RF SMB M SGL-HOLE-FR 50-OHM & 28480 & 1250-0901 \\
\hline A22J3
A22J3 & 1250-0901 & 2 & & CONNECTOR-RF SMB M SGL-HOLE-FR 50-OHM NOT ASSIGNED & 28480 & 1250-0901 \\
\hline A22J4 & 1250-0901 & 2 & & CONNECTOR-RF SMB M SGL-HOLE-FR 50-OHM & 28480 & 1250-0901 \\
\hline A22A1 & \[
\begin{aligned}
& 08660-60323 \\
& 08660-60319
\end{aligned}
\] & \[
\begin{aligned}
& 6 \\
& 0
\end{aligned}
\] & 1 & \begin{tabular}{l}
10 MHZ FILTER ASSEMBLY \\
10 MHZ FILTER BOARD ASSEMRLY (INCLUDES ALL A2ZAI PARTS EXCEPT W1, Y1, AND 1200-0173)
\end{tabular} & \[
\begin{aligned}
& 28480 \\
& 28480
\end{aligned}
\] & \[
\begin{aligned}
& 08660-80323 \\
& 08660-60319
\end{aligned}
\] \\
\hline A22A1C1
A22A1C2 & \(0160-0575\)
\(0160-2264\) & 4 & 6
1 & & 28480
28480 & \[
\begin{aligned}
& 0160-0575 \\
& 0160-2264
\end{aligned}
\] \\
\hline A22A1C3 & \[
\begin{aligned}
& 0160-2264 \\
& 0121-0446
\end{aligned}
\] & 2 & 1 & CAPACITOR-FXD 20PF +-5x 500UDC CER 0+-30
CAPACITOR-U TRMR-CER \(4.5-20 P \mathrm{FF} 160 \mathrm{U}\) & 28480
28480 & \[
\begin{aligned}
& 0160-2264 \\
& 0121-0446
\end{aligned}
\] \\
\hline A22alci & 0160-0575 & 4 & & CAPACITOR-FXD .047UF +-20\% 50UDC CER & 28480 & 0160-0575 \\
\hline A22alc5 & 0160-0575 & 4 & & CAPACITOR-FXD . 047UF +-20\% 50UDC CER & 28480 & 0160-0575 \\
\hline Az2aic6 & 0180-2207 & 5 & & CAPACITOR-FXD \(100 \mathrm{UF}+-10 \%\) 10UDC TA & 56289 & 150D107X9010R2 \\
\hline A22A1C7 & 0160-0575 & 4 & & CAPACITOR-FXD .047UF +-20\% SOUDC CER & 28480 & 0160-0575 \\
\hline A22A158 & 0160-0575 & 4 & & CAPACITOR-FXD .047UF +-20\% 50UDC CER & 28480 & 0160-0575 \\
\hline Azzalc9 & 0160-0575 & 4 & & CAPACITOR-FXD .047UF +-20\% 50UDC CER & 28480 & 0160-0575 \\
\hline A22AIK1 & 0490-0916 & 6 & 6 & RELAY-REED 1A 500MA 100 UDC SUDC-COIL & 28480 & 0490-0916 \\
\hline A22A1K2 & 0490-0916 & 6 & & RELAY-REED 1A SOOMA 100VDC SUDC-CDIL & 28480 & 0490-0916 \\
\hline A22A1K3 & 0490-0916 & 6 & & RELAY-REED 1A 500 MA 100 UDC SUDC-COIL & 28480 & 0490-0916 \\
\hline A22A1L1 & 9100-1629 & 4 & & INDUCTOR RF-CH-MLD \(47 \mathrm{UH} 5 \%\), 166DX.385LG & 28480 & 9100-1629 \\
\hline A2ZA1L2 & 9140-0237 & 2 & 1 & INDUCTOR RF-CH-MLD \(200 \mathrm{LH} 5 \%\).166DX,385LG & 28480 & 9140-0237 \\
\hline A22A1Q1 & 1854-0019 & 3 & 2 & TRANSISTOR NPN SI TO-18 PD=360MW & 28480 & 1854-0019 \\
\hline A22A192 & 1854-0019 & 3 & & TRANSISTOR NPN SI TO-18 PD \(=360 \mathrm{MW}\) & 28480 & 1854-0019 \\
\hline A22A1R1
A22A1R2 & \(0698-3438\)
\(2100-3053\) & 3
5 & 1 & RESISTOR \(1471 \%, 125 W\) F TC \(=0+-100\)
RESISTOR-TRMR \(20.20 \%\) SID & 24546 & C4-1/8-T0-147R-F \\
\hline AL2A1R3 & -757-0280 & 5
3 & & RESISTOR \(1 \mathrm{~K} 1 \chi^{\prime} .125 \mathrm{~W}\) F TC=0+-100 & 24546 & C4-1/8-T0-1001-F \\
\hline A22A1R4 & 0757-0317 & 7 & & RESISTOR 1.33K 1\% , 125W F TC=0+-100 & 24546 & C4-1/8-T0-1331-F \\
\hline Az2alr5 & 0757-0401 & 0 & & RESISTIR \(1001 \%\), 125W F TC \(=0+-100\) & 24546 & C4-1/8-T0-101-F \\
\hline A22A1R6 & 2100-2010 & 2 & 1 & RESISTOR-TRMR \(1020 \% \mathrm{C}\) TOP-ADJ 1-TRN & 73138 & 82Pr10 \\
\hline A22A1R7
A22A1R8 & 6757-0401 & 0 & & RESISTOR \(1001 \%\), 125 W F TC \(=0+-100\)
RESISTOR
\(1,33 \mathrm{~K}\) & 24546
24546 & C4-1/8-T0-101-F
\(\mathrm{C} 4-1 / 8-\mathrm{TO}-1331-\mathrm{F}\) \\
\hline A22A1R8
A22A1R9 & -0757-0317 & 3 & & & 24546
24546 & C4-1/8-T0-1331-F
\(\mathrm{C} 4-1 / 8-\mathrm{TO}-1001-\mathrm{F}\) \\
\hline A22Alw1 & 08660-60083 & 5 & 1 & CABLE ASSEMBLY, COAX, GRAY & 28480 & 08660-60083 \\
\hline AZ2AIY1 & 0410-0423 & 2 & 1 & CRYSTAL-QUARTZ 10.000 MHZ & 28480 & 0410-0423 \\
\hline \[
\begin{aligned}
& \text { A22A1Z1 } \\
& \text { A22A1Z2 }
\end{aligned}
\] & \(9170-0029\)
\(9170-0029\) & 3 & 2 & CORE-SHIELDING BEAD
CORE-SHIELDING BEAD & 28480
28480 & \[
\begin{aligned}
& 9170-0029 \\
& 9170-0029
\end{aligned}
\] \\
\hline & \[
\begin{aligned}
& 1200-0173 \\
& 1251-2194
\end{aligned}
\] & \[
\begin{aligned}
& 5 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 3
\end{aligned}
\] & \begin{tabular}{l}
A22A1 MISCELLANEOUS \\
INSULATOR-XSTR DAP-GL \\
CONNECTOR-SGL CONT SKT .D21-IN-BSC-SZ
\end{tabular} & \[
\begin{aligned}
& 28480 \\
& 28480
\end{aligned}
\] & \[
\begin{aligned}
& 1200-0173 \\
& 1251-2194
\end{aligned}
\] \\
\hline azzas & 08660-60026 & 6 & 1 & BOARD ASSY, REFERENCE AMPLIFIER SWITCH & 28480 & 08660-60026 \\
\hline A22arcl
AR2A2C2 & \(0160-2055\)
\(0160-2055\) & 9 & & CAPACITOR-FXD
CAPACITOR-FXD & 28480 & 0160-2055 \\
\hline A22A2Cl & 0160-2055 & 9 & & CAPACITOR-FXD . \(01 \mathrm{UF}+80-20 \% 100 \cup \mathrm{DC}\) CER & 28480 & 0160-2055 \\
\hline A22ascz & 0160-2055 & 9 & & CAPACITOR-FXD .01UF +80-20\% 100 UDC CER & 28480 & 0160-2055 \\
\hline A2zasca & \[
0160-2055
\] & 9 & & CAPACITOR-FXD . \(01 \mathrm{UF}+80-20 \% 100\) UDC CER & 28480 & 0160-2055 \\
\hline A2zazc5 & \[
0160-2055
\] & 9 & & CAPACITOR-FXD.01UF +80-20\% 100 UDC CER & 28480 & 0160-2055 \\
\hline \begin{tabular}{l}
A22A2C6 \\
A22A2C7 \\
A22A2C8 \\
A22A2C9
\end{tabular} & \[
\begin{aligned}
& 0180-0291 \\
& 0180-0291 \\
& 0160-2055 \\
& 0160-2055
\end{aligned}
\] & \[
\begin{aligned}
& 3 \\
& 3 \\
& 9 \\
& 9
\end{aligned}
\] & & \begin{tabular}{l}
CAPACITOR-FXD 1UF \(+-10 \%\) 35UDC TA \\
CAPACITOR-FXD 1UF+-10\% 35UDC TA \\
CAPACITOR-FXD . \(01 \mathrm{UF}+80-20 \% 100\) UDC CER \\
CAPACITOR-FXD . \(01 \mathrm{UF}+80-20 \% 100\) UDC CER
\end{tabular} & \begin{tabular}{l}
56289 \\
56289 \\
28480 \\
28480
\end{tabular} & \[
\begin{aligned}
& \text { 150D105X9035A2 } \\
& \text { 150D105X9035A2 } \\
& 0160-2055 \\
& 0160-2055
\end{aligned}
\] \\
\hline
\end{tabular}

Table 6-3. Replaceable Parts

Table 6-3. Replaceable Parts

Table 6-3. Replaceable Parts

Table 6-3. Replaceable Parts
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Reference Designation & HP Part Number & c & Qty & Description & Mfr Code & Mfr Part Number \\
\hline & & & & CABINET PARTS & & \\
\hline \(\frac{1}{2}\) & \begin{tabular}{l}
\(08660-00024\) \\
2360-0198
\end{tabular} & \({ }_{3}^{8}\) & \({ }_{8}^{2}\) & COUER, SIDE
SCREW-MACH 6 -32 .438-IN-LG 100 DEG & 28880
00000 & 08660-00024
ORDER EY DESRIPTION \\
\hline 3 & O8660-00026 & & 1 & \begin{tabular}{l}
COVER, TDP \\
PANEL, REAR
\end{tabular} & \begin{tabular}{l}
28480 \\
28480 \\
\hline 0090
\end{tabular} & \begin{tabular}{l}
08660-00026 \\
08660-00001
\end{tabular} \\
\hline \% & & & \(\stackrel{4}{2}\) & HANDLE ASSY:5H SIDE & & \\
\hline 8 & 08660-20058 & & & GUide, re plug-in & & \\
\hline 10 & - \(08660-20061\) & 5 & \({ }_{2}^{1}\) & FraME,
FRAME,
FRONT
SIDE & 28880
28480 & - \(\begin{aligned} & 08660-20061 \\ & 08660-20076\end{aligned}\) \\
\hline 10
11
12 & \[
\begin{aligned}
& 08660-20076 \\
& 2360-0190 \\
& 2200-0164
\end{aligned}
\] & 5 & \({ }^{12}\) & (ex & & \\
\hline & 5060-0767 & & & Foot Assy fr & 28480 & 5060-0767 \\
\hline 14
15 & \begin{tabular}{l}
1490-0.036 \\
\(2510-0050\) \\
\hline
\end{tabular} & \({ }_{5}^{6}\) & 1 & & \({ }_{0}^{2880000}\) & \({ }^{14990-0030}\) ORDER BY DESCRIPTI \\
\hline 15
17
17 & 25300-011
\(5060-8735\) & & \({ }_{\text {er }}^{8}\) & & & \\
\hline & & & & & & \\
\hline 18
19
20 & \(2510-0101\)
\(08660-60347\) & 4 & & & & ORDER BY DESCRIPTION \\
\hline 18
20
20 & \(08660-00025\)
\(08660-20172\) & ? & \(\frac{1}{2}\) & COUER, BOTYOM,
FIOO, EXTRUDED, & 29480
28480 & \\
\hline 21 & \[
\begin{aligned}
& 08660-20172 \\
& 5000-0052
\end{aligned}
\] & & & & cer 284880 & \(\underbrace{08660-20172}\) \\
\hline
\end{tabular}

Table 6-3. Replaceable Parts

Figure 6-2. DCU Front Panel Parts

Table 6-4. Code List of Manufacturers

\section*{SECTION VII \\ MANUAL CHANGES}

\section*{7-1. INTRODUCTION}

7-2. This section contains manual change instructions for backdating this manual for HP Model 8660C Synthesized Signal Generators that have serial number prefixes that are lower than the prefix listed on the title page. This section also contains instrument modification suggestions and procedures that are recommended to improve the performance and reliability of the generator.

\section*{7-3. MANUAL CHANGES}

7-4. To adapt this manual to your instrument, re-
fer to Table 7-1 and make all of the manual changes listed opposite your serial number. Perform these changes in the sequence listed. Table 7-2 is a summary of changes by component.

7-5. If your instrument serial number is not listed on the title page of this manual or in Table 7-1 below, it may be documented in a yellow MANUAL CHANGES supplement. For additional important information about serial number coverage refer to INSTRUMENTS COVERED BY MANUAL in Section I.

Table 7-1. Manual Changes by Serial Number
\begin{tabular}{|c|c|c|c|}
\hline Serial Prefix & Make Manual Changes & Serial Prefix & Make Manual Changes \\
\hline 1416A & AC through A & 1709A & AC through P \\
\hline 1504A & AC through B & 1722A & AC through \(\mathbf{Q}\) \\
\hline 1508A & AC through C & 1723A & AC through R \\
\hline 1520A & AC through D & 1730A & AC through S \\
\hline 1538A & AC through E & 1748A & AC through T \\
\hline 1542A & AC through F & 1806A & AC through U \\
\hline 1548A & AC through G & 1810A & AC through V \\
\hline 1615A & AC through H & 1815A & AC through W \\
\hline 1629A & AC through I & 1818A & AC through X \\
\hline 1633A & AC through J & 1842A & AC through Y \\
\hline 1636A & AC through K & 1846A & AC through Z \\
\hline 1638A & AC through L & 1850A & AC through AA \\
\hline 1643A & AC through M & 1932A & \(A C, A B\) \\
\hline 1702A & AC through N & 1947A & AC \\
\hline 1707A & AC through 0 & & \\
\hline
\end{tabular}

Table 7-2. Summary of C'langes by Component (1 of 2)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Change & A1 & A3 & A4 & A5 & A6 & A17 & A19 & A20 & A22 & A25 & No Prefix \\
\hline A & & & & & & & & & Partial Parts List & & \\
\hline B & & & & & & & & \[
\begin{aligned}
& \mathrm{K} 1, \mathrm{~K} 2, \\
& \mathrm{R} 7
\end{aligned}
\] & & & \\
\hline C & & & \[
\begin{aligned}
& \mathrm{J} 11, \mathrm{~J} 14, \\
& \mathrm{~W} 6, \mathrm{~A} 8
\end{aligned}
\] & & & & & & & & \\
\hline D & & & & \[
\begin{aligned}
& \text { Q1, Q3, } \\
& \text { Q5, R10, } \\
& \text { L3 }
\end{aligned}
\] & R1, A1CR1, A1R8, A1R9. A1Q3. Q6.Q9 & & & \begin{tabular}{l}
Parts List \\
Assy \\
Part No.
\end{tabular} & & & \[
\begin{aligned}
& \text { CR1,2,3, } \\
& \text { T1 }
\end{aligned}
\] \\
\hline E & & & A4C10 & & & & & & & & \\
\hline F & & & A6C6 & \[
\begin{aligned}
& \text { C7, 14, } \\
& 19
\end{aligned}
\] & \[
\begin{aligned}
& \text { A3K1, } \\
& \text { A3R1, } \\
& \text { A1C6, } \\
& \text { C } 9
\end{aligned}
\] & & & & & & \\
\hline G & & & A2R11 & & & & & & & & \\
\hline H & \[
\begin{aligned}
& \mathrm{A} 11 \mathrm{C} 2, \\
& \mathrm{C} 3
\end{aligned}
\] & A1J3 & & & & C16 & & & & & \\
\hline I & & \begin{tabular}{l}
A1 Assy \\
Part No.
\end{tabular} & & & & & & & & & \\
\hline \(J\) & & A1 Assy Part No. & & & & & & & & & \\
\hline K & & & & & & & C14.17 & CR8 & & & \\
\hline L & A8C4 & & & & & & & & & & \\
\hline M & & & & & & & & & & Parts List Assy Part No. & \\
\hline N & & & \[
\begin{aligned}
& \text { A5C16, } \\
& \text { C22,L10 }
\end{aligned}
\] & & & & & & & & \\
\hline 0 & \begin{tabular}{l}
A8C4, \\
A8U2, \\
A8R3, \\
R31,R32
\end{tabular} & & & & & & & & & & \\
\hline P & & A1 Assy Part No. & & & & & & & & & \\
\hline 0 & A1R25 & & & & & & & & & & \\
\hline \(R\) & \begin{tabular}{l}
A14 Assy \\
Part No.
\end{tabular} & & & & & & & & & & \\
\hline
\end{tabular}

Table 7-2. Summary of Changes by Component (2 of 2)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Change & A1 & A3 & A4 & A5 & A8 & A11 & A12 & A13 & A17 & A18 & A19 & A20 & No Prefix \\
\hline S & & & & C12 & & & & & & & & & \\
\hline T & & & & & & & & & & & & & Accessory Kit \\
\hline U & A3R11 & & & & & & & & & & & & \\
\hline v & & & & & Q8- & \[
\begin{gathered}
\text { Q7- } \\
\text { Q14, } \\
\text { Q16- } \\
\text { Q20 }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Q8- } \\
& \text { Q11 }
\end{aligned}
\] & \[
\begin{gathered}
\text { Q5- } \\
\text { Q8, } \\
\text { Q13- } \\
\text { Q16 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Q11- } \\
\text { Q14, } \\
\text { Q16- } \\
\text { Q19 }
\end{gathered}
\] & \begin{tabular}{l}
Q5- \\
Q13, \\
Q16, \\
Q17, \\
Q19- \\
Q24
\end{tabular} & & & \\
\hline w & & & & & & & & & & & & \begin{tabular}{l}
Assy \\
Part \\
No. \\
CR5
\end{tabular} & L1 \\
\hline X & C2 & A1 Assy Part No. A2 Assy Part No. & & & & & & & & & & & \\
\hline Y & A5C7 & & & & & & & & & & & & \\
\hline Z & & & A5FL2 & & & & & & & & & & \\
\hline AA & & & & & L5 & L8 & & L5 & L6 & & L6 & & \\
\hline AB & & \[
\begin{gathered}
\text { A2 } \\
\text { A2S1 }
\end{gathered}
\] & & & & & & & & & & & \\
\hline AC & & & \[
\begin{array}{|c}
\text { A2R42, } \\
\text { A3C16, } \\
\text { C17, } \\
\text { CR2 }
\end{array}
\] & & & & & & & & & & \\
\hline
\end{tabular}

\section*{MANUAL CHANGES}

\section*{7-6. MANUAL CHANGE INSTRUCTIONS}

\section*{CHANGE A}

Page 6-52, Table 6-3:
Change the parts list for the A 22 Assembly as shown by the following information and the table.
Add A22C2 0160-2437 CAPACITOR FXD \(5000 \mathrm{pF}+80-20\) C 200 WVDC CER.
Add A22J3 1250-0901 CONNECTOR-RF SMB M SGL HOLE FR

Page 8-95, Figure 8-18, Service Sheet 2:
Change the diagram as shown on the partial schematic below.

410

Figure 7-1. Reference Circuit Schematic Backdating (Partial Diagram, Part of Change A)

\section*{MANUAL CHANGES}

\section*{CHANGE A (Cont'd)}

Table 7-3. Replaceable Parts Backdating (Part of Change A)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reference \\
Designation
\end{tabular} & HP Part Number & Qty & Description & Mfr Code & Mfr Part Number \\
\hline 122 & \[
\begin{aligned}
& 0866 n-60043 \\
& 08660-20051
\end{aligned}
\] & 1 & SWITCH ASSY, FEFEDENCE HOUSING, 「EF. SWITCH & \[
\begin{aligned}
& 28480 \\
& 28480
\end{aligned}
\] & \[
\begin{aligned}
& 08 \leqslant 60-50943 \\
& 0 R S 60-20051
\end{aligned}
\] \\
\hline . 22 Cl & 0160-2437 & & CAPACITMR-FXD 5000PF +80-20\% 202WVRE CFF & 29480 & 0150-2437 \\
\hline 422C.2 & 0160-2437 & & CAPACITMR-FXD 5000PF +80-202 200WVDC CER & 29480 & 0140-2437 \\
\hline - 222 r 3 & 0160-2437 & & CAPACITIP-FXC 5000 PF +80-20\% 200 WVOC CER & 29490 & 0160-2437 \\
\hline 122C4 & 0160-2437 & & CAPACITRR-FXD 5000 PF +90-20\% 200WVOC CE2 & 29480 & 0150-2437 \\
\hline 422C5 & 0160-2437 & & CAPACITIR-FXD 5000PF +80-20\% 200 WVDC CEF & 29480 & 0150-2437 \\
\hline \(422 \mathrm{C6}\) & 0160-2437 & & CAPAC.ITMR-FXP 5000PF + 80-20\% 200WVTC CFR & 28480 & 0160-2437 \\
\hline A22J1 & 1250-0901 & & CINNEC TIR-RF SMB M SGL HDLE FR & 2 K 407 & 700168 \\
\hline - 22.12 & 1250-0901 & & CINNECTIRR-RF SMR M SGL HCLE ED & 2K407 & 700186 \\
\hline 422.J3 & 1250-0921 & & CJNNECTIR-RF SMR M SGL HILE FR & \(2 \times 497\) & 700166 \\
\hline - 22 J 4 & 1250-0901 & & CONNFCTRR-RF SMR M SGL HDLE FR & 2K4?7 & 700166 \\
\hline 42211 & 9100-1648 & 1 & COIL: FXD: MOLDFD RF CHOKE: 56OUH 5\% & 24226 & 19/563 \\
\hline A22A1 & 02660-60027 & 1 & BTART ASSY, REFERFNCE SHITCH & 28490 & 08660-6002? \\
\hline A2241C1 & 2160-2055 & & CAPACITRR-FXO . \(1 \mathrm{IUF}+80-20 \% 100 W V O C ~ C E R ~\) & 28480 & 0180-2055 \\
\hline - 22alcz & 0160-2055 & & CAPACITMR-FXD - \(016 \mathrm{~F}+80-20 \%\) 100WVDC CER & 28480 & 0150-2055 \\
\hline A22A1C3 & 0160-2055 & & & 29430 & 0160-2055 \\
\hline - 22 dic4 & 0160-2055 & & CAPACITMR-FXD . \(14 \mathrm{~F}+80-20 \%\) 100WVIC CER & 28490 & 0160-2355 \\
\hline A22A1K1 & 0490-0916 & 6 & RELAY; REEC: 1A 5 - 5 S V CONT: 5 V COIL & \(294 \% 0\) & 0490-0916 \\
\hline A22A1K2 & 0490-0916 & & RELAY: PEFD: 1A -5A 50V CONT: 5V COIL & 28490 & 0470-0015 \\
\hline A2241K3 & 0490-0916 & & RELAY: REFD: 1A .5A 50V CONT; 5V COIL & 28480 & 0490-0915 \\
\hline A22A2 & 08660-60026 & 1 & BTARO ASSY, REFERFNES AMOLIFIER SHITCH & 28490 & 08660-50026 \\
\hline A2242t.1 & 0160-2055 & & & 28480 & 0160-2055 \\
\hline A2242C2 & 0160-2055 & & CAPACITOR-FXD. \(011 \mathrm{~F}+80-20 \%\) IOOWVOC CER & 23480 & 0150-2055 \\
\hline A22A2C3 & 0160-2055 & & CAPACITCR-EXO.01UF + BO-20\% LIOWVOC CER & 28430 & 0150-2055 \\
\hline A 22A2C4 & 0160-2055 & & CAPACITOR-FXO . \(01 U 5+80-20 \% 100 W V C C ~ C F R ~\) & 28490 & \[
0160-2055
\] \\
\hline A 22A2C5 & 0180-2055 & & CAPACITOR-FXO . \(01 U^{\circ} \mathrm{C}+80-20 \%\) IOOWVCC CER & 29480 & 0160-2055 \\
\hline - 2242C6 & 0180-0291 & & & 56299 & \(1500105 \times 9035{ }^{\text {a } 2}\) \\
\hline - \(22 \mathrm{ALC7}\) & 0180-0291 & & CAPACITIR-FXD: 1UF+-10\% 35VOC TA-SCLID & 56299 & \(1500105 \times 903582\) \\
\hline - 224268 & 0160-2055 & & CAPACITCR-EXO . \(01 U F+80-202\) 100WVDC CER & 28490 & 01*0-2055 \\
\hline A22A2C9 & 0160-2055 & & CAPACITCR-FXD . \(014 F+80-20 \% ~ 100 W V D C ~ C E R ~\) & 28480 & 0160-2055 \\
\hline *22A2CR1 & 1901-0040 & & DIDOE-SWITCHING 2NS 30V 50 ms & 28480 & 1901-0040 \\
\hline - 22 A2CR2 & 1901-0040 & & DIODF-SWITC.HING 2NIS 30V 50MA & 28480 & 1901-0040 \\
\hline A22A2K1 & 0490-0916 & & RELAY; REFD; 1A .5A 50V CCNT: 5V COIL & 28480 & 0400-0916 \\
\hline A22A2K2 & 0490-0916 & & RELAY; RFFD; 1A .5A 50V CONT: 5 V COIL & 28480 & 0490-0916 \\
\hline A2242K3 & 0490-0916 & & RELAY: REED: 1A . 5 A 50 V CONT: 5 V COIL & 28490 & 0490-0918 \\
\hline \[
2242 \mathrm{LI}
\] & 9140-0118 & 1 & CNIL; FXD: MOLDED RF CHOKE; 500UH 5\% & 24226 & 19/5n3 \\
\hline - 22 12L2 & 9140-0144 & & COIL: FXD: MOLDF R RF CHOKE; 4.7'JH 10\% & 24226 & \(10 / 471\) \\
\hline 224201 & 1854-0071 & & TRANSTSTMR NPN SI PR \(=300 \mathrm{MW} \quad \mathrm{FT}=200 \mathrm{MHZ}\) & 28480 & 1854-0071 \\
\hline - 224202 & 1854-0071 & & TRANSISTOR NPN SI PD \(=300 \mathrm{MH} \quad \mathrm{FT}=200 \mathrm{MHZ}\) & 29490 & 1854-0071 \\
\hline \$224203 & 1853-0020 & & TRANSISTOR PNP SI CHID PA \(=300 \mathrm{MW}\) & 29480 & 1853-0020 \\
\hline 422A2R1 & 0698-7227 & 1 & RESISTOR 422 OHM 2\%.05H F TUBULAP & 24546 & C3-1/8-T0-422R-G \\
\hline A22A2R2 & 0698-7222 & & RESISTOR 261 DHM 2\%.05W F TUBULAP & 24546 & \[
r 3-1 / 3=+0-261 R=G
\] \\
\hline A22A2R3 & 0698-7240 & 1 & RFSISTOR 1.47K 2 K . 05 W F TU8ULAR & 24546 & \[
C 3-1 / 9=T 0-1471-G
\] \\
\hline \begin{tabular}{l}
A \(22 A 2 R 4\) \\
\hline \(22 A 2 R 5\)
\end{tabular} & 0698-7248 & 1 & RESISTOR 3.16 K 2\% 05 F F TUQULAR & 24546 & \[
(3-1 / 8-70-3161-5
\] \\
\hline - 22 A RR5 & 0698-7222 & & RESISTOR 261 JHM 28.05 W F TURULAR & 24546 & \\
\hline 4.242R6 & 0698-7212 & & RESISTOR 100 OHM 2\% .05W F TURULAR & 24546 & 「3-1/R-TO-100R-G \\
\hline A22A2RT & 0698-7229 & \[
1
\] & RESISTOR 511 OHM \(2 \% .05 \mathrm{~F}\) F TURULAR & 24546 & C3-1/8-T0-511R-G \\
\hline \[
\triangle 22 A 2 R B
\] & 0698-7188 & 2 & \[
\text { RESISTCR } 10 \text { OHM } 27.054 \text { F TURIJLAR }
\] & \[
24546
\] & \[
(3-1 / 8-T 00-10 R=G
\] \\
\hline A22A2R9 & 0698-7188 & & RESISTMR 10 OHM \(2 \% .05 \mathrm{WF}\) TURULAQ & 24546 & C \(3-1 / 8-{ }^{\top} 00-10 R=G\) \\
\hline
\end{tabular}

\section*{CHANGE B}

Page 6-52, Table 6-3:
Change A20K1 and K2 to 0490-0908, RELAY 24 Vdc CONT 5A 115 VAC FOAM 4C, 28480. Change A20R7 to 0757-0198, RESISTOR \(100 \Omega, 1 \%\).5W F TUBULAR .

Page 6-56, Table 6-3:
Delete 08660-00100, 4, DAMPING PAD, FOAM.
Delete 08660-00085, 1, Plate Oscillator Top, 28480, 08660-00085.

\section*{MANUAL CHANGES}

\section*{CHANGE B (Cont'd)}

Page 6-56, Table 6-3: (Cont'd)
Delete 08660-00086, 1, Plate Oscillator Bottom, 28480, 08660-00086.
Add 08660-00028, CLAMP, REF. OSC. (Opt. 002).
Page 6-56, Table 6-3:
Delete 08660-20203, 1, Plate Oscillator Bottom, 28480, 08660-20203.

\section*{CHANGE C}

Page 6-19, Table 6-3:
Change the description of A4J11 to "RF Connector (part of A4W4)."
Add A4J14, 1250-0901 CONNECTOR-RF SMB M SGL HOLE FR.
Page 6-27, Table 6-3:
Delete A4A8, 08660-60325, 100 MHz Band Pass Filter, 28480, 08660-60325.

\section*{Page 6-55, Table 6-3}

Delete W6, 08660-60326, Cable Assembly 100 MHz Band Pass Filter Input, 28480, 08660-60326.
Page 8-97, Figure 8-21 (Service Sheet 3):
Change the diagram as shown in the partial schematic.

Figure 7-2. Reference VCO and Divider Schematic Backdating (Partial Diagram, Part of Change C)

\section*{CHANGE D}

Pages 6-27 and 6-28, Table 6-3:
Change A5Q1, Q3, and Q5 to 1853-0037, TRANSISTOR PNP 2N4236 SI TO-5 PD=1W.
Change A5R10, 0698-0082, RESISTOR-FXD 464 OHMS \(1 \% .125 \mathrm{~W}\) F TC=0 \(\pm 100\).
Change A5U3 to 1820-0247, IC LM305 RGLTR.
Delete immediately after A5Q3 and A5Q5, 1205-0011, HEAT DISSIPATOR SGL TO-5/TO-39 PKG.
Delete A6R1, 0811-3410, RESISTOR . \(1651 \% 25 \mathrm{~W}\) PW TC= \(=0 \pm 90\).
Pages 6-28 and 6-29, Table 6-3:
Change A6A1CR1 to 1902-3262, DIODE-ZNR 24.9V 5\% D0-7 PD=0.4W TC=+0.081\%.
Change A6A1Q3 and A6A1Q6 to 1853-0037, TRANSISTOR PNP SI TO-39 PD=1W.
Change A6A1Q9 to 1854-0003, TRANSISTOR NPN SI TO-39 PD=800 MW.
Add A6A1R8 and R9 0812-0019 RESISTOR . 33 OHM 5\% 3W PW TUBULAR.
Page 6-52, Table 6-3:
Change the A20 Assembly parts list as shown by Table 7-4 below.
Page 6-55, Table 6-3:
Delete CR1, 1901-1001, DIODE MULT SILICON DUAL (P/O T1).
Delete CR2 and CR3, 1906-0065, DIODE-FW BRDG 100V 10A.
Change the description of T1 to COIL FXD.
Add T1CR1 1901-1001 DIODE, MULT. SILICON DUAL.
Page 8-175, Figure 8-107 (Service Sheet 41):
Change the diagram as shown in a partial schematic found in this section (Figure 7-3).

Table 7-4. Replaceable Parts Backdating (Part of Change D)

Mantal Change

\(\qquad\)

\section*{CHANGE E}

Page 5-2, Table 5-1:
Delete A4A4C10, Reference VCO Assembly, to set the reference loop bandwidth and capture range (interacts with A4A2C11). Range of values 10 to 56 pF .

Page 6-22, Table 6-3:
Change A4A4C10 to A4A4C10*, 0160-2197 CAPACITOR-FXD \(10 \mathrm{pF}+5 \sim 500\) WVDC CER (FACTORY SELECTED PART).

Page 8-97, Figure 8-21 (Service Sheet 3): Change A4A4C10 to A4A4C10*.

\section*{CHANGE F}

Page 5-2, Table 5-1:
Delete A4A6C6, HF Loop, to ensure tuning range sufficient to trap the 10 MHz signal. 16 to 24 pF .
Page 6-25, Table 6-3:
Change A4A6C6 to A4A6C6*; add a note in the description "(*Factory Selected Part)".
Pages 6-27 and 6-28, Table 6-3:
Change A5 to 08660-60023.
Change A5C7 to 0180-0374.
Change A5C14 to 0180-1704.
Change A5C19 to 0180-0058.
Change A6A1 to 08660-60024.
Pages 6-28 and 6-29, Table 6-3:
Delete A6A3, 1, 08660-60336, Fan Relay Assembly (Does not incl. A6A3C1).
Delete A6A3K1, 1, 0490-0643, RELAY 1C 24 VDC-COIL 2A 220 VAC.
Delete A6A3R1, 1, 0698-3629, RESISTOR \(2705 \%\) W MO TC=0 \(\pm 200\).
Change A6A1C10 to A6A3C1.
Change A6A1C6 and C9 to 0150-0121.
Change A7 to 5060-9409.
Add A6A2C1, 0160-3679 CAPACITOR-FXD 1 L'F: \(10 \% 220\) WVAC MET (OPT 003 ONLY).
Page 8-99, Figure 8-23 (Service Sheet 4):
Change A4A6C6 to A4A6C6*.
Page 8-175, Figure 8-107 (Service Sheet 41):
Change the schematic as shown in the partial schematic found in this section (Figure 7-4).

Figure 7-4. Power Supply Schematic Backdating (Partial Diagram, Part of Change F)

\section*{MANUAL CHANGES}

\section*{CHANGE G}

Page 6-21, Table 6-3:
Change A4A2R11 to 0757-1090, RESISTOR 261 1\% .5W F TUBULAR.
Page 6-36, Table 6-3:
Delete A13, 08660-60339, N2 Oscillator Assy (Option 004 ONLY).
Change the description of A13, 08660-60012 to include "(except Option 004)".
Page 6-38, Table 6-3:
Delete from the description of A13R83 "(except Option 004)".
Page 8-95, Figure 8-18 (Service Sheet 2):
Change the value of A4A2R11 to \(261 \Omega\).
Page 8-113, Figure 8-39 (Service Sheet 10):
Delete "NOTE 5" after R83.
Delete "NOTE 5" "R83 not used in Option 004 instruments".

\section*{CHANGE H}

Page 6-12, Table 6-3:
Change A1A11C2 and C3 to \(0160-3879\), CAPACITOR-FXD \(0.01 \mu \mathrm{~F}+20 \% 100\) WVDC CER.
Page 6-17, Table 6-3:
Delete A3A1J3, 1251-2194, CONNECTOR; 1-CONT SKT . 021 DIA.
Page 6-45, Table 6-3:
Change A17C16 to 0170-0082, CAPACITOR-FXD . 01 + 20 完 50 WVDC POLYE.
Page 8-173, Figure 8-103 (Service Sheet 40):
Change the diagram as shown in the schematic (Part of Change H).

\(\longrightarrow\)

\section*{MANUAL CHANGES}

\section*{CHANGE I}

Page 6－17，Table 6－3：
Replace the A3A1 Assembly parts list with the table（part of Change I）．
Page 8－173，Figure 8－103（Service Sheet 40）：
Replace the A3A1 Assembly Schematic with the new diagram（part of Change I）．

Table 7－5．Replaceable Parts Backdating（Part of Change I）
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Designation & \begin{tabular}{l}
HP Part \\
Number
\end{tabular} & Oty & Description & \begin{tabular}{l}
Mfr \\
Code
\end{tabular} & Mfr Part Number \\
\hline 4381 & 08660－60189 & 1 & AフAOD ASSV．HD IB OUTPUT & 29600 & Caban－591 99 \\
\hline A3A1C1 & \(0180-0373\) & 1 & CAPACITCD－FXN：．68UE＋－10\％35VDC PA & くれ30ヵ & 150n695 xOozas？ \\
\hline A3A1C？ & 0180－1746 & ！ & CAPACITMR－FXn： \(15 U F+-10 \%\) 2クVAR TA－SML 1） & 54.290 & \\
\hline A 3A1C3 & 0190－0197 & s & CAPACITCR－FXn：2．2UF＊－10\％20VNC TO & Sx 3．43 & \(1500275 \times 002042\) \\
\hline A 341 C 4 & 2190－0197 & & CAPACITMR－FXI：2－21F＊－108 20VOC TA & & \(1500225 \times 00204 ?\) \\
\hline A3A1C5 & 0190－0197 & & CAPAR．ITCP－ExO：2．？UE＊－10\％20VAC Pa & Ca，PR & \(1500225 \times 70270\) ？ \\
\hline A 341 C 6 & 0160－0301 & 1 & CAPACITIR－FXC－ \(212 \mathrm{U}^{\text {e }}\)＊－10\％200wVRE DNIYE & it 300 & 27？\({ }^{\text {P12307 }}\) \\
\hline ＊3AICR1 & 1901－0040 & 1 & OITCF－SWITCHING 2NS 30V 50wa & 29470 & \(1901-0040\) \\
\hline \(43 A 1 C R 2\) & 1002－3059 & 1 & OJTnE－2NQ 3．83V 5E \(n\) O－7 PD＝．4W Tr＝ & n4， 13 & \(52 \quad 10939-62\) \\
\hline 430131 & 1251－2174 & ， & CNWMER TTR：I－CNANT \(S K^{+} .021\) D19 & 9アプロ & 3－331272－0 \\
\hline －3A1J2 & 1251－2194 & & CONNFETRD：1－SONT SKT ．021 IIA & ソリファ & \[
3-331272-0
\] \\
\hline A 3 A 101 & 1953－0020 & 1 & TRANSISTMD ONP SI CHID PR＝309WM & 79400 & 1月53－002？ \\
\hline A 3010 ？ & 1254－0071 & 1 & TRANSIGTOR NPM SI Pn＝ 300 WW FTm 200 mml & 3R400 & 18⿷4－0371 \\
\hline \(\triangle 34121\) & 0757－0442 & ＊ & RFSTSTTR 1OK 12． 125 W F TURULAR & 36546 & \\
\hline A3A18？ & 0757－044？ & & RESISTIT LOK 1\％－125W F PURUIIAR & \[
2 c<4 x
\] & －4－1／9－59－10n？－F \\
\hline A 38183 & 0757－046？ & & RESISTOP LOK 18 ．12 \％F FUAULAR & icaca & C4－1／9－Tn－1002－E \\
\hline \[
\text { A } 3 A \text { IRG }
\] & 0757－0442 & & RESTSTAA LOK 1\％－125W F TUBULAP & 14546 & C \(4-1 / 8-7 n-1002-F\) \\
\hline \[
A 3 A 105
\] & 0757－0279 & 1 & RESISTOR 3．16K 1\％．125w F FUSILLA & 2454 A & －4－1／R－イn－7｜A1－5 \\
\hline A 3AIRG & 0757－0394 & 1 & RFSISTIR 51．1 DNM 1\％． 125 W F TUAIM AR & \(\rightarrow 5 \times 6 \mathrm{~A}\) & \\
\hline A 3A1R7 & 0699－7210 & ， & RESISTOP 2.5 ONM 2\％．05W F TUAILAO & 76544 & ［3－1／A－TうO－3）P5－r， \\
\hline A3A129 & －698－7210 & & RFSISTOR 2．5 OHM 22.05 W E TUAULAR & 26965 & cx－1／8－ten－8705－r \\
\hline － 34129 & 0499－7210 & & & & \\
\hline A3A1017 & 7698－7210 & & RESISTOR E2．5［HM 22.05 H F TURIILAR & 2656.4 & 「3－1／8－TクO－9つの9－「5 \\
\hline － 341011 & 0599－7210 & & RESISTGP 2.5 THM 28.05 F F FIIAILAR & 14446 & C3－1／6－700－8295－6 \\
\hline A 3AIRI2 & 0757－0279 & 1 & RESISTOP 1．78K 1\％－125w F TUPULAR & 74545 & r－1／8－10－1781－E \\
\hline A 3A 1R13 & 0678－3435 & 1 & RFSISTTM 38.3 THM 12－ 1254 F TURUL 40 & 15290 & C4－1／9－70－3383－F \\
\hline A3AIR14 & 0598－7210 & & QESISTOP 82.5 กНM 22.05 W F TIJBULAR & 34563 & \[
\text { C } 3-1 / 8-500-8>P 5-G
\] \\
\hline A 341815 & 0698－7210 & & RFSISTJO A2．5 OHM 2\％．05W F TUBULAR & 26545 & \\
\hline A 3 A1R16 & 0698－7210 & & RESISTOR A 2.5 TMM 2\％．05W F TIJBULAR & 24－4E & c3－1／8－100－920a－f \\
\hline A3A1R17 & 0698－7210 & & RFSISTCO A2．5 CHM \(2 \% .05 \mathrm{~W}\) F PUPILAR & ？ \(4 \times 46\) & \[
r: 3-1 / 9-570-8295-6
\] \\
\hline A 3 A1218 & 2698－3160 & 1 & & 10？ 30 & r \(4-1 / 8-70-3142-F\) \\
\hline A321U1 & 1820－0511 & 3 & IC OGTL SNT4 O8 N GATE & \[
01205
\] & CNTATAY \\
\hline a 3 AlU2 & \[
1820-0134
\] & 1 & IC DETL QFOISTER & 27743 & 93none \\
\hline －3A1U3 & 1820－0054 & 3 & IC OGTL SNTG On N GATE & 01395 & \[
547400 \mathrm{~V}
\] \\
\hline A 3 A1U4 & 1820－0214 & 1 & IC NGTL SN74 42 N OFCODFR & 71275
71295 & \[
\begin{aligned}
& \text { SNT442N } \\
& \text { SNTEATVN }
\end{aligned}
\] \\
\hline A34lus & 1820－0329 & 1 & IC OGTL SNT4 02 N SATF & 712c5 & SNTER2N \\
\hline A 3A1U6 & 1820－0579 & 1 & If OGTL SN74 123 N MULTIVIPOATIR & 21275 & SN．76127． \\
\hline 4321197 & 1820－0076 & 1 & IC．OCTL SNTG 76 N FLIP＝ELTD & \[
3!205
\] & CNT4764 \\
\hline \＆3A1U8 & 1820－0372 & 1 & IC OGFL SNT 4 M ：1 N SATF & 01225 & SNTCH11N \\
\hline 4341J9 & 1820－0054 & & IC DGTL SNTH 00 N GATE & 31225 & SN7400N \\
\hline A 3 A 11110 & \(1820-0174\) & 3 & IC DFSL SN74 34 N INVFRTEC & 01235 & SNT404V \\
\hline
\end{tabular}

Figure 7-7. HP-IB Output Assembly Backdating Schematic (P/O Change I)

\section*{MANUAL CHANGES}

\section*{CHANGE J}

Page 6-15, Table 6-3:
Change the A3A1 Assembly parts list as shown in the table (part of Change J).
Page 8-167, Figure 8-97 (Service Sheet 37):
Change the schematic diagram as shown (part of Change J).
Table 7-6. Replaceable Parts Backdating (Part of Change J)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Designation & \begin{tabular}{l}
HP Part \\
Number
\end{tabular} & Oty & Description & Mfr Code & Mfr Part Number \\
\hline 4341 & 08660-60028 & 1 & BTARD ASSY, DIGITAL IN+ERFACF(FRONT) & 28480 & 08660-6072 \({ }^{\text {a }}\) \\
\hline A3A1C1 & 0160-0154 & 3 & CAPACITER-FXN 2200PF +-10\% 200WVDC PRLYF & 58289 & 297P22292 \\
\hline \(\triangle 3 A 1 C\)
\(\triangle 3 A 1 C\) & \(0180-0197\)
\(0180-0197\) & & CAPACITOR-FXD; \(2.2 U F+-10 \% ~ 20 V D C ~ T A ~\) & 56289
56789 & \(150 \Pi 225 \times 902047\)
\(1500225 \times 002042\) \\
\hline 438164 & 0180-0197 & & CAPACITOR-FXn; 2.2UF*-10\% 2OVDC TA & 54289 & \(1500225 \times 90204\) ? \\
\hline \(83 A_{1 C 5}\) & 0180-1746 & 3 & CAPACITOR-FXD; 15UFt-10\% 20VDC TA-SOLID & 55280 & \(1500156 \times 902082\) \\
\hline A3A1C6 & 0180-0373 & 1 & CAPACITOR-FXD: .68UF + -10\% 35VDC TA & 56289 & \(1500684 \times 703542\) \\
\hline \(\triangle 3 A\) ICR1 & 1902-3059 & 1 & DIODE-ZNR 3.83V 58 DO-7 PD=.4M TC= & 04713 & \[
\text { Sz } 10939-62
\] \\
\hline A 3A 1CR2 & 1901-0040 & & DIODF-SWITCHING 2NS 30V 50MA & 28480 & \[
1901-0040
\] \\
\hline 4.3A 101 & 1853-0020 & & TRANSISTOR PNP SI THIP PD=300M & 28490 & 1853-0020 \\
\hline 234102 & 1854-0071 & & TRANSTSTOR NPN SI PD \(=3004 \mathrm{FFT}=200 \mathrm{MHZ}\) & 28490
29490 & 1854-0077 \\
\hline 434123
434104 & \(1854-0071\)
18540071 & & TRANSTSTOO NPN SI PD=300MW \(\quad 6 T=200 \mathrm{MHZ}\) & 29499
29480 & \(1954-0071\)
\(1854-0071\) \\
\hline 434191 & 0698-315? & 5 & RFSISTAR 19.6k 1\% .125W F TUBULAR & 14299 & C4-1/8-Tク-1962-F \\
\hline A 3819 ? & 0698-3157 & & RESISTOR 19.6K 1\% -125W F TUPULAR & 15299 & C4-1/8- ¢0-1942- \(^{\text {c }}\) \\
\hline A 3A1R 3 & 0898-3435 & 1 & RFSISTJR 38.3 OHM 18 . 125 W F TUBULAR & 15299 & C4-1/8-T0-382 3-F \\
\hline A 34184 & 0757-0394 & 27 & RFSISTIOR 51.1 OHM 18. 125 W F TUBULAR & 24546 & (4-1/8-7)-5101-5 \\
\hline A3AIR 5 & 0757-0279 & 31 & & 24546 & C4-1/8-70-3161-5 \\
\hline A 3A1R 6 & 0757-0442 & & RESISTOR 10K 18. 125 H F TUBULAR & 24546 & C4-1/8-T0-1 002-F \\
\hline A3A1R 7 & 0757-0442 & & RESISTOR 10K 18. 125 W F TUBULAR & 24546 & C4-1/8-T0-1 002-E \\
\hline A 341R
A 3 A & 0757-0442
\(0757-0442\) & & RESISTOR 10 K 1\% 18.125 W F TU8ULAR
RESISTOR
R & 24546
24546 & C4-1/8-T0-1 002-F
C4-1/3-T0-1002-F \\
\hline A 3ARP9
A 3 P1R10 & \(0757-0442\)
\(0757-0442\) & & & 24546
24546 & \(C 4-1 / 9-T 0-1002-F\)
\(C 4-1 / 8-T 0-1002-F\) \\
\hline A 3 A 1211
43412 & 0757-0399
\(0757-0399\) & 13 & & 24546
24546 & C4-1/8-T0-82F 5- \(\mathrm{F}_{1}\)
\(\mathrm{r} 4-1 / 8-\mathrm{T} 0-8295-\mathrm{F}\) \\
\hline A3A1F13 & 0757-0399 & & & 24546
24548 & -4-1/8-10-8205-c \\
\hline A3A1R14 & 0757-0390 & & RESISTOR 82.5 7 HM 18. 12.125 W F TURULAR & 24546 & C4-1/8-T9-8225-F \\
\hline 4381815 & 0757-0399 & & RESISTOR 82.5 JHM 12. 125 W F TUBULAR & 24548 & C4-1/8-10-9255-F \\
\hline A3A1216 & 0757-0399 & & RESISTOQ 82.5 OHM 1\% . 125 W F TUBULAR & 2454.8 & C4-1/8-T0-8205-F \\
\hline 4341217
4341818 & 0757-0399 & & RESISTTJR 82.5 OHM 1\%.125W F TUBULAR & 24548 & C4-1/8-T0-32R 5-F \\
\hline 4341818
4341819 & 0757-0399
\(0757-0399\) & & \begin{tabular}{l}
RESISTOR \\
RESISTOR \\
82.50 OHM \\
\hline 2.5 cHM \\
12
\end{tabular} & 24546
24546
24546 & \(C 4-1 / 8-T 0-8205-F\)
\(C 4-1 / 8-T 0-82 F 5-F\) \\
\hline \(\triangle 341820\) & 0757-0278 & 4 & RESISTOR 1.78 K 18.125 WF FUBULAR. & 24546 & C4-1/8-T0-1781-F \\
\hline 434101 & 1820-0174 & & IC DGTL SN74 04 N INVERTER & 01295 & SN74044 \\
\hline 434102 & 1820-0077 & & IC OGTL SNT4 74 N FLIP-FLISP & 01295 & SN74744 \\
\hline \begin{tabular}{l}
\(4341 U_{3}\) \\
\hline 83144
\end{tabular} & 1820-0069 & & IC OGTL SN74 20 N GATE & 01295 & SN174204 \\
\hline A34115 & \(1820-0054\)
\(1820-0214\) & & \(\begin{array}{llll}\text { IC OGTL } & \text { SN74 } & 00 & \text { N GATF } \\ \text { IC } & \text { OGTL } & \text { SN74 } & 42 \\ \text { N DECNDER }\end{array}\) & 01205
01205 & SN740NV
SN7442V \\
\hline A 3 A1u6
434107 & 18200328 & & IC. OGTL SNT4 02 N GATF & 91295 & CN7402N \\
\hline A 34107
\(43411 / 8\) & 1820-0329 & & IC DGTL SNT4 02 N NATE & 01295 & SN7402N \\
\hline \begin{tabular}{l}
\(43411 / 8\) \\
\hline 34119
\end{tabular} & 1820-0207 & 1 & IC SGTL Multivirpator & 07263 & \(9601 P \mathrm{C}\) \\
\hline -3a 1 V 10 & \(1820-0072\) & 2 & If OGTL SN74 50 N GATE & 01295
01295 & SNT450N \\
\hline \(3341 \times 41\) & 1251-1626 & 3 & CONNECTOR: PC EDGE; 12-CONT; OIO SOLDER & 71785 & 252-12-30-300 \\
\hline \(4341 \times 42\) & 1251-2361 & & CONTACT, CONN, U/W POST TYPE SER. MALE (40 CONTACTS) & 24995 & 86091-2 \\
\hline \(4341 \times 43\) & 1251-2663 & 3 & CONNECTIR: PC ECGE: 18-CDNT; SOLDER EYE & \[
05574
\] & 3VH18/1JN5 \\
\hline A3A1XA4 & 1251-1626 & & CONNECTOR: PC FDGE: 12-CONT: DIP SOLDER & \[
71785
\] & \[
252-12-30-300
\] \\
\hline \(1341 \times 45\) & 1251-2663 & & CONNECTOR: PC EOGE: 18-CONT: SOLDER EYE & 05574 & 3VH18/1 JN5 \\
\hline
\end{tabular}

Figure 7-8. A 3.A 1 Front Interface Board Component Locations Backdating (Part of Change J)

\section*{CHANGE K}

Page 6-52, Table 6-3:
Delete A20CR8, 1901-0050, DIODE-SWITCHING 80V 200 NA 2 NS DO-7.
Page 8-175, Figure 8-107 (Service Sheet 41):
Delete diode A20CR8 with cathode connected to A20K1 and K2 pins 2 and anode connected to A20K1 and K2 pins 1.

\section*{CHANGE L}

Page 6-11, Table 6-3:
Delete A1A8C4, 0140-0196, CAPACITOR-FXD \(150 \mathrm{pF}+5^{\circ} \% 300\) WVDC MICA, 72136, DM15F151JO300WV1CR.

Page 8-159, Figure 8-87 (Service Sheet 33):
Delete A1A8C4 150 pF from pin 5 of U 10 to ground.

\section*{CHANGE M}

Page 6-54, Table 6-3:
Delete A25, 08660-60350, +30V Regulator Assembly
A25C1, 0160-4084, CAPACITOR-FXD \(0.1 \mu \mathrm{~F} \pm 20 \% 50\) VDC CER.
A25CR1, 1902-0644, DIODE-ZNR IN5363B \(30 \mathrm{~V} 5 \% \mathrm{PD}=5 \mathrm{~W}\) TC \(=+29 \mathrm{mV}\).
A25Q1, 1854-0766, TRANSISTOR NPN 2N5428 SI TO-66 PD \(=40 \mathrm{~W}\).
A25Q1MP1, 0340-0162, INSULATOR-XSTR ALUMINUM.
A25Q1MP2, 1205-0085, HEAT SINK TO-66 PKG.
A25R1, 0757-0794, RESISTOR-FXD \(68.1 \Omega 1 \% .5 W\) F TC \(=0 \pm 100\).
A25R2, 0757-0198, RESISTOR-FXD \(100 \Omega 1 \% .5 \mathrm{~W}\) F TC \(=0 \pm 100\).
Delete A25 MISCELLANEOUS
0380-0111 STANDOFF-RVT-ON . 25 LG 6-32 THD . 25 OD BRS.
2190-0006 WASHER-LK HLCL NO. 6 .141-IN-ID.
2360-0119 SCREW-MACH 6-32.438-IN-LG PAN-HD-POZI.
2420-0003 NUT-HEX-DBL-CHAM 6-32 THD .094-IN-THK.
Page 8-175, Figure 8-107, Power Supply Schematic (Service Sheet 41):
Refer to Change D of this Manual Changes Section. Delete at top, near center, of page, the attached schematic for the A25 Assembly (part of Change M).

Figure 7-10. Power Supply Schematic Backdating (Part of Change M)

\section*{CHANGE N}

Page 6-24, Table 6-3:
Change A4A5C16 and C22 to 0160-3878 CAPACITOR-FXD \(1000 \mathrm{pF} \pm 20 \% 100\) WVDC CER.
Change A4A5L10 to \(9100-2250\) COIL MLD \(.18 \mu \mathrm{H} 10 \% \mathrm{Q}=340.095 \mathrm{D} \times 0.25\) LG.
Page 8-103, Figure 8-29 (Service Sheet 6):
Change A4A5C16 and C22 to 1000 .
Change A4A5L10 to . 18 .

\section*{CHANGE 0}

Page 6-11, Table 6-3 and Figure 8-87 (Service Sheet 33):
Add A1A8C4, 0140-0196, CAPACITOR-FXD \(150 \mathrm{pF} \pm 5 \% 300\) WVDC MICA, 72136, DM15F151JO300WV1CR, from pin 5 of U10 to ground.
Change A1A8 to 08660-60180.
Add A1A8R3, 0757-1100 RESISTOR 600 OHM 1\% .125W F TUBULAR.
Delete A1A8R31 0757-0280 RESISTOR 1000 1\% 0.125W F TC=0 \(\pm 100\).
Delete A1A8R32 0757-0280 RESISTOR \(10001 \% 0.125 \mathrm{~W}\) F TC=0 \(\pm 100\).
Change A1A8U2 1820-0583 IC DGTL DM746 00N GATE.
Delete Miscellaneous A1A8. 0360-0124 TERMINAL STUD. 0361-0251 EYELET 0.059 O.D. 0.102 LG. 0.006 THK.

Page 8-159, Figure 8-87 (Service Sheet 33):
Replace the A1A8 schematic diagram as shown (part of CHANGE O).

Figure 7-11. A1A8 Sweep Count Assembly Component Locations Backdating (Part of Change O)

\section*{MANUAL CHANGES}

\section*{CHANGE P}

Page 6-17, Table 6-3:
Replace the A3A1 Assembly parts list with the table (part of Change P).
Page 8-173, Figure 8-103 (Service Sheet 40):
Replace the A3A1 Assembly Schematic with the new diagram (part of Change P).

A3A1

Figure 7-13. Front Output Interface Board Component Location Backdating (Part of Change P)

Table 7-7. Replaceable Parts Backdating (Part of Change P)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Reference \\
Designation
\end{tabular} & \begin{tabular}{l}
HPPart \\
Number
\end{tabular} & Qty & Description \\
\hline A3A1 & 08660-60340 & 1 & ASSEMBLY, FRONT INTERFACE (EXCEPT OPTION 005) \\
\hline A3A1C1 & 0160-0154 & 1 & CAPACITOR-FXD; \(2200 \mathrm{pF}+-10 \% 200\) WVDC POLYE \\
\hline A3A1C2 & 0180-2208 & & CAPACITOR-FXD; 220 UF +-10\% 10 VDC TA \\
\hline A3A1C3 & 0180.1746 & & CAPACITOR-FXD; 15 UF +-10\% 20 VDC TA-SOLID \\
\hline A3A1C4 & 0180.0373 & & CAPACITOR-FXD; 0.68 UF +-10\% 35 VDC TA \\
\hline A3A1C5 & 0180.0197 & & CAPACITOR-FXD; 2.2 UF +-10\% 20 VDC TA \\
\hline A3A1C6 & 0180.0197 & & CAPACITOR-FXD; \(2.2 \mathrm{UF}+-10 \% 20 \mathrm{VDC} \mathrm{TA}\) \\
\hline A3A1C7 & 0180-0197 & & CAPACITOR-FXD; 2.2 UF +-10\% 20 VDC TA \\
\hline A3A1CR1 & 1901.0539 & & DIODESCHOTTKY \\
\hline A3A1CR2 & 1901.0040 & & DIODESWITCHING 30V 50 NA 2 NS 00-35 \\
\hline A3A101 & 1853-0020 & & TRANSISTOR PNP SI PD \(=30 \mathrm{MW}\) FT \(=150 \mathrm{MHZ}\) \\
\hline A3A102 & 1854-0071 & & TRANSISTOR NPN SI PD \(=300 \mathrm{MW} \mathrm{FT}=200 \mathrm{MHZ}\) \\
\hline A3A103 & & & NOT ASSIGNED \\
\hline A3A104 & 1854-0071 & & TRANSISTOR NPN SI PD=300 MW FT= 200 MHZ \\
\hline A3A1R1 & 0698-3157 & & RESISTOR \(19.6 \mathrm{~K} 1 \%\). 125 W F TC \(=0+-100\) \\
\hline A3A1R2 & 0698-3157 & & RESISTOR 19.6K 1\%.125W F TC=0+-100 \\
\hline A3A1R3 & 0757.0442 & & RESISTOR 10K \(1 \% .125 \mathrm{~W}\) F TC=0+-100 \\
\hline A3A1R4 & 0757.0442 & & RESISTOR 10K \(1 \% .125 \mathrm{~W}\) F TC \(=0+-100\) \\
\hline A3A1R5 & 0757-0442 & & RESISTOR 10K 1\%.125W F TC=0+-100 \\
\hline A3A1R6 & 0757.0442 & & RESISTOR 10K \(1 \% .125 \mathrm{~W}\) F TC \(=0+-100\) \\
\hline A3A1R7 & 0757-0442 & & RESISTOR 10K \(1 \% .125 \mathrm{~W}\) F TC= \(=0+-100\) \\
\hline A3A1R8 & 0757.0399 & & RESISTOR \(82.51 \% .125 \mathrm{~W}\) F TC= \(=0+-100\) \\
\hline A3A1R9 & 0757.0399 & & RESISTOR \(82.51 \% .125 \mathrm{~W}\) F TC=0+-100 \\
\hline A3A1R10 & 0757.0399 & & RESISTOR \(82.51 \%\). 125 W F TC=0+-100 \\
\hline A3A1R11 & 0757.0399 & & RESISTOR \(82.51 \% .125 W\) F TC \(=0+-100\) \\
\hline A3A1R12 & 0757.0399 & & RESISTOR \(82.51 \% .125 \mathrm{~W}\) F TC=0+-100 \\
\hline A3A1R13 & 0757.0399 & & RESISTOR \(82.51 \% .125 \mathrm{~W}\) F TC=0+-100 \\
\hline A3A1R14 & 0757-0399 & & RESISTOR \(82.51 \% .125 \mathrm{~W}\) F TC=0+-100 \\
\hline A3A1R15 & 0757-0399 & & RESISTOR \(82.51 \%\). 125 W F TC= \(=0+-100\) \\
\hline A3A1R16 & 0757.0399 & & RESISTOR \(82.51 \%\). 125 W F TC=0+-100 \\
\hline A3A1U1 & 1820-0174 & & IC SN74 04 N INV \\
\hline A3A1U2 & 1820-0077 & & IC SN74 74 N FLIP.FLOP \\
\hline A3A1U3 & 1820.0069 & & IC SN74 20 N GATE \\
\hline A3A1U4 & 1820-0054 & & IC SN74 00 N GATE \\
\hline A3A1U5 & 1820.0328 & & IC SN74 02 N GATE \\
\hline A3A1U6 & 1820-0065 & & IC SN74 70 N FLIP.FLOP \\
\hline A3A1U7 & 1820.0207 & & IC MV \\
\hline A3A1U8 & 1820-0072 & & IC SN74 50 N GATE \\
\hline A3AIU9 & 1820-0072 & & IC SN74 50 N GATE \\
\hline A3A1U10 & 1820.0214 & & IC SN74 42 N DECODER \\
\hline A3A1U11 & 1820.0328 & & IC SN74 02 N GATE \\
\hline A3A1U12 & 1820-1056 & & IC SN74 132 N COUNTER \\
\hline & \(1251-2361\) & & A3A1 MISCELLANEOUS CONN.PC \\
\hline
\end{tabular}

\section*{MANUAL CHANGES}

\section*{CHANGE Q}

Page 6-5, Table 6-3:
Delete A1A1R25, 0698-7249, RESISTOR 3.48K \(2 \%\). 05 W F TC \(=0 \pm 100\).
Page 8-131, Figure 8-57 (Service Sheet 19):
Delete R25.

\section*{CHANGE R}

Page 6-13, Table 6-3:
Delete A1A14R1, R2, R3 and U1.
Change A1A14 to 08660-60114.

\section*{CHANGE S}

Table 6-3:
Change A5C12 to 0160-2218 CAPACITOR FXD \(1000 \mathrm{PF} \pm 5 \% 300 \mathrm{VDC}\).
Figure 8-107 (Service Sheet 41):
Change A5C12 to 001.

\section*{CHANGE T}

No change is necessary.

\section*{CHANGE U}

Table 6-3:
Change A1A3R11 to 0698-3159 RESISTOR 26.1 K 1 C .125 W F TC \(=0 \pm 100\).
Figure 8-69 (Service Sheet 24):
Change A1A3R11 to 26.1 K .

\section*{CHANGE V}

Instruments with serial prefix 1810A and below were manufactured with transistor part number 1853-0007, however, the manual reflects the recommended replacement. The parts involved are A8Q8 through A8Q11, A11Q7 through A11Q14, A11Q16 through A11Q20, A12Q8 through A12Q11, A13Q5 through A13Q8, A13Q13 through A13Q16, A17Q11 through A17Q14, A17Q16 through A17Q19, A18Q5 through A18Q13, A18Q16, A18Q17, and A18Q19 through A18Q24.

\section*{CHANGE W}

Table 6-3:
Change A20 to 08660-60316 Rectifier Assembly Change A20CR5 to 1901-0364 Diode - FW BRDG 200V 1A. Delete under CHASSIS PARTS L1.

\section*{CHANGE X}

Table 6-3:

\section*{Delete A1C2}

Change to the A3A1 Option 005 and A3A2 Option 005 replaceable parts list provided in Table 7-8 (Part of Change X).
Figure 8-100:
Change to Figure 7-15 provided as (Part of Change X).
Figure 8-101 (Service Sheet 39):
Change to Figure 7-16 provided as (Part of Change X).

Continued

Table 7-8. Replaceable Parts Backdating (Part of Change X)

See introduction to this section for ordering information

Table 7.8. Replaceable Parts Backdating (Part of Change X)

\section*{A3A1}

To
A3XA1

\section*{MANUAL CHANGES}

\section*{HANGE X (Cont'd)}
igure 8-102:
Change to Figure 7-17 provided as (Part of Change X). igure 8-103 (Service Sheet 40):
Change to Figure 7-18 provided as (Part of Change X). igure 8-109 (Service Sheet 42):
Delete A1C2 \(1 \mu \mathrm{~F}\) capacitor.

\section*{HANGE Y}
able 6-3 and Figure 8-77 (Service Sheet 28):
Delete A1A5C7
:HANGE Z
able 6-3 and Figure 8-29 (Service Sheet 6):
Delete A4A5FL2.
HANGE AA
Cable 6-3 and Service Sheets \(8,10,12,14,17\) :

\section*{NOTE}

The parts originally used in these instruments are as follows. However, the parts already listed in Table 6-3 are recommended if replacement is needed. Therefore, no manual change is recommended.
A8L5 9100-2815
A11L8 9100-2815
A13L5 9100-2815
A17L6 9100-2815
A19L6 9100-2815

\section*{CHANGE AB}

Delete Figure 3-5.
Page 6-17, Table 6-3:
Change A3A2 to 08660-60367 CD8 (same description).
Delete A3A2S1.
Page 8-171, Figure 8-100
Replace Figure 8-100 with Figure 7-19, A3A2 Component Locations, on next page.
Page 8-171, Figure 8-101 (Service Sheet 39)
Remove S1 Designator. Replace solid line switch connections with dashed line wire jumper connections. Add notation: WIRE JUMPER SELECT ADDRESS.

Figure 7-19. Option 005 A3A2 Component Locations Backdating
(Part of Change \(A B\))

\section*{NOTE}

The parts originally used in these instruments are listed below. However, changing all four parts to those listed in Table 6-3 may result in better capture range of the 100 MHz reference loop.

A4A2R42 100 to 316 Ohms

\section*{INSTRUMENT MODIFICATIONS}

\section*{7-7. INSTRUMENT IMPROVEMENT MODIFICATIONS}

7-8. Hewlett-Packard has developed certain recommended instrument modifications that can be used to improve the performance and reliability of earlier versions of the 8660 C . In some cases, replacing certain parts requires a modification to make these instruments compatible with parts now in use (if the original part is no longer available). These modifications are outlined in the following procedures and are keyed to instruments by serial number prefix.

7-9. Improvement in Filtering of Reference Signal From Crystal Oscillator is Added to the A22 Reference Switch Assembly (Serial Prefixes 1416)
\(7-10\). In instruments with serial prefix 1416 , a filter for the crystal reference oscillator must be added. Mechanical vibrations cause spurious signals at 600 to 800 Hz away from the carrier and are filtered with the addition of this change.

\section*{7-11. Addition of Shock Mounting for the A21 Reference Oscillator Assembly (Serial Prefixes 1504 and below)}
\(7-12\). In instruments with serial prefix 1504 or below a shock mounting pad is added to the Reference Oscillator Assembly. A foam pad is added to reduce mechanical fan vibration from reaching the Reference Oscillator Assembly.

\section*{7-13. Improvement in FM Distortion While in FM MODE with the Addition of A4A8 (Serial Prefixes 1508 and below)}

7-14. In instruments with serial prefix 1508 or below a reduction in spurious output from the 100 MHz VCO reference is necessary. In the FM mode this spurious causes FM distortion. A bandpass filter, A4A8, is added to the 100 MHz HF-VCO Reference output causing added attenuation to the 20 MHz sidebands out of the VCO.

\section*{7-15. Improvement in Reliability of Power Supply Assemblies Under all Environmental Conditions (Serial Prefixes 1520 and below)}

7-16. In instruments with serial prefix 1520 or below, modifications to the power supply assemblies
must be added. A redesign of the rectifier board A20 plus component modifications on the preregulator A6A1, regulator A5 and fan assemblies was made for optimum reliability. Use A20 Rectifier Assembly HP part number 08660-60335.

7-17. Improvement in the Adjustment of Reference Loop Bandwidth and Capture Range (Serial Prefixes 1538 and below)
\(7-18\). In instruments with serial prefix 1538 or be low, add a factory selected component (star value) A4A4C10. Capacitor is selected to compensate for parameter variations in A4A4Q3, the reference VCO transistor. The reference loop bandwidth and capture range can be brought into tolerance with the selection of this capacitor. A4A2C11 interacts with A4A4C10 and also affects the bandwidth and capture range.

7-19. Improvement in Tuning the 10 MHz Trap on the \(\emptyset\) Error Line and Changing Current Limit of the +5.25 V Power Supply (Serial Prefixes 1542 and below)
\(7-20\). In instruments with serial prefix 1542 or below, add changes to power supply regulator and fan relay assemblies. To tune the A4A6 10 MHz trap A4A6C6 is assigned as a starred factory selected value with a range of values from 16 to 24 pF .

7-21. Improvement in Reliability with Higher Wattage Resistor (Serial Prefixes 1548 and below)
7-22. In instruments with serial prefix 1548 or below, add a higher wattage resistor A4A2R11. The resistor dissipates .9 W and the new part is rated for \(2 W\).

\section*{7-23. Improvement in Reduction of Spur (Serial Prefixes 1615 and below)}

7-24. In instruments with serial prefix 1615 or below, change A1A11 C2 and C3 to \(.047 \mu \mathrm{~F}\). The larger capacitance will decrease a 2 MHz spur asso: ciated with the mainframe.

\section*{7-25. Improvement in Power Detect Circuitry (Serial Prefixes 1629 and below)}
\(7-26\). In Option 005 instruments with serial prefix 1629 or below, add new Front Interface Board As-
mbly. Due to variances in the circuit, the power etect often releases the power detect line before oltages are at an acceptable level to power the ingrated circuits on the DCU. The new assembly as power detect circuitry that is time dependent ither than voltage sensing.

\section*{27. Improvement in Power Detect Circuitry (Serial Prefixes 1633 and below)}
28. In instruments with serial prefix 1633 or bepw, add new Front Interface Board Assembly. The ew board replaces a voltage sensing circuit with a ming circuit allowing an additional second for ower to reach the necessary level before the ower detect line releases.
29. Elimination of Voltage Spikes (Serial Prefixes 1636 and below)
-30. In instruments with serial prefix 1636 or bepw add diode A20CR8 to prevent voltage spikes aused by relays A20K1 and K2.
-31. Elimination of Race Condition (Serial Prefixes 1638 and below)
-32. In instruments with serial prefix 1638 or pelow, add A 1 A 8 C 4 to eliminate a race condiion. There are a few nanoseconds when both 2100-H and U13 pin 12 are low, causing a pulse pn U10 pins 4 and 5 simultaneously. This ilegal condition propagates to pins 12 and 13 and similarly through U5 causing U3C/U3D flip-flop o set.
-33. Regulation of the +30 V Supply to the Refference Oscillator Oven (Serial Prefixes 1643 and below)
7-34. In instruments with serial prefix 1643 or beow, add a 30 V Regulator Board Assembly, A25. Service Kit 08660-60354 has required parts for charge. The unregulated 30 V output of the A20 Rectifier Board Assembly is used directly as the 30 volt supply for the oven of the A21 Reference Oscillator Assembly. When the 8660 is in standby, the voltage on this line can rise as high as 39 volts. The input voltage for the supply should not go above 33 volts and adding the regulator controls this voltage.

\section*{7-35. Improvement in Filtering of the -10 V Supply (Serial Prefixes 1702 and below)}
\(7-36\). In instruments with serial prefix 1702 or below, changing A4A5C16 and C22 (Service Sheet 6) will help filter the 1 and 2 MHz noise from the DCU clock signals on the -10 V power supply. This filtering reduces the 1 and 2 MHz spurs that are present at the \(350 / 450 \mathrm{VCO}\) output.

\section*{7-37. Elimination of a Race Condition on the A1A8 Sweep Control Assembly (Serial Prefixes 1707 and below)}
\(7-38\). In instruments with serial prefix 1707 or below, a race condition may exist in the sweep control. To eliminate this race condition a new A1A8 Sweep Control Board Assembly has been designed. The race condition exists when Q100-H is high; the count down and count up inputs of U10 are normally high. When Q100-H goes low there is a delay before U13F pin 12 goes high. This causes a momentary low on both the count up and count down inputs of U10. This simultaneous count down and count up pulse is an illegal input which causes the BOR and CAR outputs to go simultaneously low. This applies a simultaneous count up and down to U5 and its CAR output sets the U3C, U3D latch. The elimination of the race condition is accomplished by changing U2 to a multiplexer which is strobed only when CKA-H and CKB-H are high.

\section*{7-39. Improvement in Data Transfer on A3A1 Front Interface Board Assembly (Serial Prefixes 1709 and below)}
\(7-40\). In instruments with serial prefix 1709 or below a change in the time at which U6 is loaded. U6 is loaded on the leading edge of the CMND pulse. This does not allow the data sufficient time to get to the J and K inputs of U6. Changing the polarity of the clock pulse causes U6 to be loaded on the trailing edge of the CMND signal. U13 is also being added to this assembly to generate the RF FCTN signal. The new board assembly will be compatible with the 8660A Options H23- and H24 - eliminating the need for 08660-60028.

7-41. Improvement in Turn-on Status of A1A1 Switch Control Assembly (Serial Prefixes 1722 and below)
\(7-42\). In instruments with serial prefix 1722 or below, the state of U16A at power on is undefined. The addition of a pull-up resistor R25 at U16 pin 2 ensures that U16 initializes to the reset state. See Service Sheet 20.

\section*{SECTION VIII SERVICE}

\section*{3-1. INTRODUCTION}

3 -2. This section of the manual is designed to aid the technician in returning the instrument to proper operating condition in the shortest time possible should a malfunction occur in any of the pperating circuits.

\section*{3-3. PRINCIPLES OF OPERATION}

8-4. Operation of the various circuits within the 8660C mainframe are explained beginning with paragraph 8-87. Each of the phase locked loops, the interface circuits and the Digital Control Unit are briefly explained. These circuits are also graphically shown in the System Block Diagram and Service Sheet 1.

\section*{8-5. TROUBLESHOOTING}

8-6. In general, this section is designed to aid in isolating the assembly, circuit, or Plug-in Section which is causing faulty operation, by a series of tables identified in Table 8-1. The tables listed in Table 8-1 identify the source of trouble and also provide information relative to the schematic (Service Sheet, abbreviated SS) of the defective circuit. These Service Sheets provide the schematic, a pictorial display of component locations, and technical data about the circuits in the assembly.

8-7. Due to the digital design of the Model 8660C, two major troubleshooting aids in this manual are an ASM diagram (Algorithmic State Machine, sometimes called a flow chart) located near the end of this manual and a system of mnemonics (basically a system of abbreviated terms) which serve to reduce clutter in the ASM diagram and in the circuits of the Digital Control Unit (DCU) and interface units. The basic principles of ASM diagrams and an example of ASM diagram appears beginning in paragraph 8-36. Figure 8-5 illustrates a basic ASM diagram (actually a part of the Model 8660C ASM diagram) and describes the use of an ASM diagram in isolating the cause of a malfunction. Mnemonics are described beginning with paragraph 8-71 and listed in Table 8-4. An explanation of the use of mnemonics is included in the first part of Table 8-4.

Table 8-1. 8660C Troubleshooting Tables
\begin{tabular}{ll}
No. & \multicolumn{1}{c}{ Title } \\
8-6 & Power Supply Troubleshooting \\
8-7 & Troubleshooting DCU by Assembly Replacement \\
8-8 & DCU and Interface Troubleshooting Guide \\
8-9 & Incorrect Initial Readout \\
8-10 & Center Frequency Readout Faulty \\
8-11 & BCD Data to Mainframe Incorrect \\
8-12 & Readout is Partially Displayed or Incorrect \\
8-13 & Only 1 or 2 Half-Digits Displayed \\
8-14 & Center Frequency Readout Does Not Justify \\
& Correctly \\
8-15 & Readout Does Not Justify with only One Units Key \\
8-16 & Either STEP \(\uparrow\) or STEP \(\downarrow\) Operation Defective \\
8-17 & Both STEP \(\uparrow\) and STEP \(\downarrow\) Defective at the \\
RF Output \\
8-18 & Manual STEP Defective \\
8-19 & Manual Tune Mode Inoperative \\
8-20 & Manual Tune Defective on One Range, Fine, \\
Medium, or Coarse \\
8-21 & Either Up or Down Manual Tune Defective \\
8-22 & Auto Sweep Defective at all Sweep Rates \\
8-23 & Auto Sweep Defective at One Rate \\
8-24 & Single Sweep Defective \\
8-25 & Manual Sweep Defective \\
8-26 & Out-of-Range Indicator Inoperative \\
8-27 & KYBD Pushbutton Readout Defective \\
8-28 & STEP Pushbutton Readout Defective \\
8-29 & Sweep Width Pushbutton Readout Defective \\
8-30 & Remote Control Problems \\
8-31 & Harmonics Excessive Below 1.3 GHz \\
8-32 & Output Frequency is Half Indicated Frequency \\
Above 1.3 GHz \\
8-33 & Troubleshooting Option 005 Interface Problems \\
8-34 & Troubleshooting the Reference Section \\
8-35 & High Frequency Loop Troubleshooting \\
8-36 & Summing Loop 1 Troubleshooting \\
8-37 & Summing Loop 2 Troubleshooting \\
8-38 & N3 Loop Troubleshooting \\
8-39 & N2 Loop Troubleshooting \\
8-40 & N1 Loop Troubleshooting \\
8-41 & Low Frequency Loops Notes \\
& \\
\hline
\end{tabular}

Title
-6 Power Supply Troubleshooting
8-7 Troubleshooting DCU by Assembly Replacement
8-8 DCU and Interface Troubleshooting Guide
8-9 Incorrect Initial Readout
8-10 Center Frequency Readout Faulty
8-11 BCD Data to Mainframe Incorrect
8-12 Readout is Partially Displayed or Incorrect
8-13 Only 1 or 2 Half-Digits Displayed
8-14 Center Frequency Readout Does Not Justify Correctly
8-15 Readout Does Not Justify with only One Units Key
8-16 Either STEP \(\uparrow\) or STEP \(\downarrow\) Operation Defective
8-17 Both STEP \(\uparrow\) and STEP \(\downarrow\) Defective at the RF Output
8-18 Manual STEP Defective
8-19 Manual Tune Mode Inoperative
8-20 Manual Tune Defective on One Range, Fine, Medium, or Coarse
8-21 Either Up or Down Manual Tune Defective
8-22 Auto Sweep Defective at all Sweep Rates
8-23 Auto Sweep Defective at One Rate
8-24 Single Sweep Defective
8-25 Manual Sweep Defective
8-26 Out-of-Range Indicator Inoperative
8-27 KYBD Pushbutton Readout Defective
8-28 STEP Pushbutton Readout Defective
8-29 Sweep Width Pushbutton Readout Defective
-30 Remote Control Problems
8.31 Harmonics Excessive Below 1.3 GHz

8-33 Troubleshooting Option 005 Interface Problems
8-34 Troubleshooting the Reference Section
8-35 High Frequency Loop Troubleshooting
8-36 Summing Loop 1 Troubleshooting
8-37 Summing Loop 2 Troubleshooting
8-38 N3 Loop Troubleshooting
8-39 N2 Loop Troubleshooting
8-40 N1 Loop Troubleshooting
8-41 Low Frequency Loops Notes

\section*{8-8. RECOMMENDED TEST EQUIPMENT}

8 -9. Test equipment and accessories required to maintain the Model 8660C are listed in Table 1-2. If the equipment listed is not available, equipment that meets the minimum specifications shown may be substituted.

8-10. Also listed in Table 1-2 is Service Kit HP Model 11672A. This kit consists of extension cables, cable adapters and an alignment tool. The items within the kit are listed individually in Table \(1-2\). The entire kit, or any part within the kit may be ordered separately.

\section*{8-11. REPAIR \\ 8-12. Factory Selected Components}

8 -13. Some component values are selected at the time of final checkout at the factory (see Table \(5-1\)). Usually these values are not extremely critical, they are selected to provide optimum compatibility with associated components. These components are identified on individual schematics by an asterisk (*). The recommended procedure for replacing a factory-selected component is shown in Section V of this manual.

\section*{8-14. Board Repair.}

8-15. Etched Circuits. The etched circuit boards in the Synthesized Signal Generator are of the platedthrough type consisting of metallic conductors bonded to both sides of insulating material. The metallic conductors are extended through the component mounting holes by a plating process. Soldering can be done from either side of the board with equally good results. Table \(8-2\) lists recommendations and precautions pertinent to etched circuit repair work.
a. Avoid unnecessary component substitution; it can result in damage to the circuit board and/or adjacent components.
b. Do not use a high-power soldering iron on etched boards. Excessive heat may lift a conductor or damage the board.
c. Use a suction device (Table 8-2) or wooden toothpick to remove solder from component mounting holes. DO NOT USE A SHARP METAL OBJECT SUCH AS AN AWL OR TWIST

DRILL FOR THIS PURPOSE. SHARP OBJECTS MAY DAMAGE THE PLATED-THROUGH CONDUCTOR.
d. After soldering, remove excess flux from the soldered areas and apply a protective coating to prevent contamination and corrosion. (Avoid getting flux remover on the printed circuit board extractors.) See Table 8-2 for recommendations.

8-16. Etched Conductor Repair. A broken or burned section of conductor can be repaired by bridging the damaged section with a length of tinned copper wire. Allow adequate overlay and remove any varnish from etched conductor before soldering wire into place.

8-17. Component Replacement. Remove defective component from board.

\section*{NOTE}

\begin{abstract}
Although not recommended on boards with high-frequency signals or where both sides of a board are accessible, axial lead components, such as resistors and tubular capacitors, can be replaced without unsoldering. Clip leads neare body of defective component, remove component and straighten leads left in board. Wrap leads of replacement component one turn around original leads. Solder wrap connecthon and clip off excess lead.
\end{abstract}

8-18. If component was unsoldered, remove solder from mounting holes, and position component as original was positioned. DO NOT FORCE LEADS INTO MOUNTING HOLES: sharp lead ends may damage plated-through conductor.

8-19. Transistor Replacement. Transistors are packaged in many physical forms. This sometimes results in confusion as to which lead is the collector, which is the emitter, and which is the base. Figure 8-1 shows typical epoxy and metal case transistors and the means of identifying the leads.

8-20. To replace a transistor, proceed as follows:
a. Do not apply excessive heat; see Table 8-2 for recommended soldering tools.
b. If possible, use long-nose pliers betweer transistor and hot soldering tools.
c. When installing replacement transistors, nsure sufficient lead length to dissipate soldering leat by using about the same length of exposed ead as used for the original transistor.
d. Integrated circuit replacement instrucions are the same as for transistors.

3-21. Some transistors are mounted on heat sinks or good heat dissipation. This requires good hermal contact with mounting surfaces. To assure good thermal contact for a replacement transistor, ooat both sides with Dow Corning No. 5 silicone compound or equivalent before fastening the trankistor to the chassis. Dow Corning No. 5 compound s available in 8 oz . tubes from HP; order HP Part No. 9500-0059.

3-22. Diode Replacement. Solid state diodes have nany different physical forms. This sometimes eesults in confusion as to which lead is the anode positive), since all diodes are not marked with the standard symbols. Figure 8-1 shows examples of some diode marking methods. If doubt exists as to polarity, an ohmmeter may be used to determine the proper connection. It is necessary to know the polarity of the ohms lead for the ohmmeter used. (For the HP Model 410B Vacuum Tube Voltmeter, the ohms lead is negative with respect to the common; for the HP Model 412A DC Vacuum Tube Voltmeter, the ohms lead is positive with respect to the common.) When the ohmmeter indicates the least diode resistance, the cathode of the diode is connected to the ohmmeter lead which is negative with respect to the other lead.

\section*{NOTE}

Replacement instructions for diodes are the same as those listed for transistors.

8-23. Illustrated Parts Breakdown (IPB's). Figure 6-1 and Figure 6-2 show IPB's for the Cabinet Parts and the inside of the DCU front panel.

\section*{8-24. MODULE EXCHANGE}

8-25. Assemblies are no longer available on an exchange-for-credit basis.

\section*{8-26. SAFETY REQUIREMENTS}

8-27. Safety requirements are listed on page vii (directly preceding Section I). They are also called out where required in the Manual.

\section*{8-28. SERVICE AIDS}

8-29. Posidriv Scredrivers. Many of the screws in the instrument appear to be Phillips, but are not. To avoid damage to the screw slots, Pozidriv screwdrivers should be used.

8-30. Extender Boards. Extender boards are furnished (accessory part number 08660-60070). These boards and other furnished assemblies are listed in Section I of this Manual. The extender boards may be used to extend any plug-in board free of the chassis for maintenance. Figure 8-3 shows a typical use of the extender board for maintenance purposes.

8-31. Part Locator Aids. The locations of chassis mounted parts and assemblies are shown in Figure 8 -131. The locations of individual components mounted on printed circuit boards or other assemblies are shown on the appropriate schematic page or the page opposing it. The part reference designator is the assembly number followed by the schematic reference designator (for example, A6R9 is R9 on the A6 assembly). For specific component description and ordering information refer to the parts list in Section VI.

8-32. Assembly Adjustment Locations. Near the rear cover of this Manual is a series of Figures which locate the adjustments for all assemblies. These Figures are referred to in each of the adjusment procedures in Section V.

8-33. Servicing Aids on Printed Circuit Boards. The servicing aids include test points, transistor and integrated circuit designations, adjustment callouts and assembly stock numbers.

8-34. Table 8-3 (two sheets) Schematic Diagram Notes, provides information relative to symbols and values shown on the schematic diagrams.
\(8-35\). Figures \(8-3\) and \(8-4\) illustrate the method used to number the connectors used on the printed circuit boards.

\section*{8-36. ALGORITHMIC STATE MACHINES (ASM's)}
\(8-37\). ASM diagrams, sometimes called flow graphs, are the most practical approach to under-

Figure 8-1. Examples of Diode and Transistor Marking Methods

Table 8-2. Etched Circuit Soldering Equipment
\begin{tabular}{|c|c|c|c|c|}
\hline Item & Use & Specification & Item Recommended & HP Part No. \\
\hline Soldering Tool & Soldering, Heat Staking & \begin{tabular}{l}
Wattage: 35W \\
Tip Temp.: \(390^{\circ}-440^{\circ} \mathrm{C}\)
\[
\left(735^{\circ}-825^{\circ} \mathrm{F}\right)
\]
\end{tabular} & \begin{tabular}{l}
Ungar No. 135 \\
Ungar Division Eldon Ind. Corp. \\
Compton, CA 90220
\end{tabular} & 8690-0167 \\
\hline \begin{tabular}{l}
Soldering Tip \\
Soldering Tip
\end{tabular} & \begin{tabular}{l}
Soldering, Unsoldering \\
Heat Staking
\end{tabular} & \begin{tabular}{l}
*Shape: Chisel \\
Shape: Cupped
\end{tabular} & \begin{tabular}{l}
*Ungar PL113 \\
HP 5020-8160 or modified Ungar PL111
\end{tabular} & \[
\begin{aligned}
& 8690-0007 \\
& 5020-8160
\end{aligned}
\] \\
\hline \begin{tabular}{l}
DeSoldering \\
Aid
\end{tabular} & To remove molten solder from connection & Suction Device & Soldapullt by Edsyn Co., Van Nuys, CA 91406 & 8690-0060 \\
\hline \begin{tabular}{l}
Rosin (flux) \\
Solvent
\end{tabular} & To remove excess flux from soldered area before application of protective coating & Must not dissolve etched circuit base board & Freon & 8500-0232 \\
\hline Solder & Component replacement; Circuit Board repair wiring & Rosin (flux) core, high tin content (\(63 / 37\) tin/lead), 18 gauge (SWG) 0.048 in . diameter preferred. & & 8090-0607 \\
\hline Silver Solder & Mono-block replacement & Rosin (flux) core, silver saturated tin/lead alloy 0.031 in . diameter. & \begin{tabular}{l}
X25 Rosin Core DIVCO 233 \\
Division Lead Co. \\
Summit, IL 60501
\end{tabular} & 8090-0022 \\
\hline
\end{tabular}
*For working on circuit boards; for general purpose work, use No. 555 Handle (\(8690-0261\)) and No. 4037 Heating Unit 471/2-561/2 W (HP 8690.0006); tip temperature of \(850^{\circ}-900^{\circ}\) F; and Ungar No. PL113 \(1 / 8^{\prime \prime}\) chisel tip.

Figure 8-2. Model 8660C With Circuit Board Extended for Maintenance

\section*{SCHEMATIC DIAGRAM NOTES}

Inductance is in microhenries, Resistance is in ohms and Capacitance is in microfarads unless otherwise noted.

P/O part of

\section*{Screwdriver Adjustment \\ Encloses Front Panel designations}
\begin{tabular}{cl}
O & Panel Control \\
Encloses Rear Panel \\
designations
\end{tabular}

Circuit assembly borderline
Other assembly borderline
Wiper moves toward CW with clockwise rotation of control as viewed from shaft or knob.

Numbers in stars on circuit assemblies show locations of test points.

Encloses wire color code. Code used (MIL-STD-681) is the same as the resistor color code. First number identifies the base color, second number the wider stripe, and the third number the narrower stripe. Example: 947 denotes white base, yellow wide stripe, violet narrow stripe.

A 2 Indicates an output from a schematic that goes to an input identified as on Service Sheet 2.

6(k) Indicates an input to a schematic that comes from an output identified as . on Service Sheet 6.

\section*{NOTE}

When the above two symbols appear within the borderline of a schematic, they indicate a connection within the borderline of the referenced schematic.
\(\xlongequal{\perp} \quad\) Indicates circuit ground.
\(\dagger\) Backdating information in Section VII.

Table 8-3. Schematic Diagram Notes (2 of 2)

Test point symbols. Stars are numbered or lettered for easy correlation of schematic diagrams, procedures, and locator illustrations.

Arrow connecting star to meas-
urement point signifies no measuring aid provided.

Star shown electrically connected to circuit signifies measuring aid (metal post, circuit
pad, etc.) provided.

Assembly name

Interconnection information.
Circled letter indicates circurt path continues on another schematic diagram. Look for same circled letter on service sheet indicated by adjacent bold number (3 , in this example).
 commonly selected value.

Wire color code. Code used (MIL-STD-681) is the same as the resistor color code. First number identifies the base color, second number the wider stripe. and the third number the narrower stripe. Example, 947 denotes white base, yellow wide stripe.
violet narrow stripe.

Reference designators deleted by circuit changes are listed here
List of all the reference designations on the diagram.

Connector symbols within the borderlines of circuit assemblies signufy connections to the assembly which are separate from those made through the integral plug part of the assembly.
\(J 3\) not mounted on assembly A 2 on assembly A2 connectuon information. solder poine numbered.

REFERENCE DE SIGNATIONS
\begin{tabular}{|c|c|}
\hline UUPREFIX & A? ASSY \\
\hline\(A 2\) & \(C 1\) \\
33 & \(U 1\) \\
\(X A 2\) & \(R 1\) \\
\hline
\end{tabular}

Assembly reference designator(s).
Large numbers in lower right corners of schematic diagrams are service sheet numbers. They are provided for convenjence in tracing interconnections.

Figure 8-3. Printed Circuit Board Connector Identification, Component Side

Figure 8-4. Printed Circuit Board Connector Identification, Circuit Side
standing circuitry as complex as that in the Model 8660C DCU.

\section*{DEFINITIONS:}

Algorithm: A fixed step-by-step procedure for finding the solution to a problem.

State: A condition, or a set of conditions which exist at a given point in time.

8-38. ASM diagrams are particularly valuable in servicing the Model 8660 C because built-in test features permit the technician to set the DCU to any state. Seven LED's verify or deny that the DCU is in the state selected. The DCU may be held in the selected state, manually stepped to succeeding states or reset to any other state. This is accomplished by temporarily grounding selected Test Points or operating the MAN SW in the self-test facilities.

8-39. Figure \(8-5\) represents a portion of the overall DCU ASM which is shown in its entirety in Figure 8-112. The following description of the information shown in Figure 8-5 is equally applicable to the overall ASM diagram.

8-40. The mnemonics (Table 8-4) in the state (rectangular) boxes and the qualifier (diamond shaped) boxes are not truly representative of specific electrical points in the circuit; the function represented by the mnemonic may appear at many points in the DCU. Table 8-4, mnemonics information, will enable the technician to quickly locate the points in the DCU where the function appears. The \(-\mathrm{H}(>+2.8 \mathrm{~V})\) or the \(-\mathrm{L}(<+0.8 \mathrm{~V})\) following the mnemonics indicates that the function is High or Low in the assertive (active) state.
\(8-41\). The lines connecting the qualifiers and the states are not representative of electrical connections. Their purpose is to provide information as to what the next state will be. Usually the qualifier determines which of two states is next. In some cases however, the qualifier holds the present machine state for a predetermined period of time.

8-42. In the Model 8660 C there are about 112 machine states. Some of these states are used in many operations (see Table 8-4 and the overall ASM diagram). Seven "state" flip-flops determine present machine state by their logic conditions. The outputs of these flip-flops are designated as \(\mathrm{A}_{\varnothing}\) through \(\mathrm{A}_{6}\) and their binary weighting determines
the state number. Take, for instance, the state of \(5 / 11 ; A_{6}\) and \(A_{4}\), with weighting of 4 and 1 provides the binary number 5 , or BCD 101 for the first part of the number and \(A_{3} A_{1}\) and \(A_{0}\) with weighting of 8,2 and 1 provide the binary number of 11 or BCD 1011 for the second part of the number. Breaking the number into two parts is for convenience only - it is shown in both numerals and BCD format for each state in the box (in the example it would be 5-11-101 1011).
\(8-43\). Refer to Figure \(8-5\). The starting point for this ASM diagram is in the upper left hand corner.
\(8-44\). State \(7 / 15\) is an invalid state. It is representative of ROM addresses which are not normally addressable. There is a remote possibility that one of these addresses might be randomly selected at initial turn on, in which case state \(7 / 15\) would force the machine state to \(0 / 0\), the normal starting point.

8-45. Figure 8-5 illustrates the state path for an entry of a number or a decimal point. It also illustrates the start of the state path for justification (decimal point placement) when a decimal point is entered.

\section*{NOTE}

The seven "state" LED's, test points and the stepping microswitch (MAN SW) are shown in Figure 8-124. Refer to ASM flow charts while going through the state sequences.

8-46. Numeral Entry State Path (heavy line). When the first entry is made with the keyboard (JF10)-L (J input to flip-flop 10 goes low) is active. Qualifier F10 goes high and the next state is. \(4 / 10\). (JSW1)-L is a sweep function and has nc effect on entries other than sweep functions.

8-47. To follow the state path through the DCl for a numerical entry, remove the cabinet botton cover and temporarily ground the MAN. TP. All o the LED's should be extinguished, indicating stat \(0 / 0\) (if they are not, temporarily ground th STATE 0/0 TP).

8-48. Press and hold in a numeric keyboard \(\mathrm{k} \in\) until state \(4 / 10\) is reached. Note that pressing numeric key does not (by itself) cause a change state. The MAN. TP. must be pressed each time \(t^{\prime}\) state is changed for any operation.
49. In order to reach state \(4 / 0\) or any other cceeding state, it is necessary to press the MAN. 'P. microswitch. (It is suggested that the MAN. 'P. be pressed with the eraser end of a pencil. This witch is very sensitive and the least amount of jervousness may cause a progression through more Ian one state.)
50. Qualifier F7-H is active only in sweep funcons so pressing the MAN. TP. when the instruent is in state \(4 / 40\) should cause the next state to 5/0.
51. Qualifier DP-L is active only when a decimal oint has been entered, so pressing the MAN. TP. ne time when in state \(5 / 0\) should cause the next ate to be \(6 / 0\).
52. Qualifier NUM-H is active when a numeric atry is made. Pressing the MAN. TP. one time hen the state is at \(6 / 0\) should cause the next state be 6/1.
53. Qualifier F2-H is active for only the first key ntry of any new keyboard entry. In this case the rst entry is a numeral, so pressing the MAN. TP. ne time should cause the next machine state to be /5. State \(1 / 5\) includes instructions (RF2, JCT)-L.
-54. Qualifier NUM-H following state \(1 / 5\) is ctive, so pressing the MAN. TP. one time should ause the next state to be \(0 / 2\) which contains astruction ETKD-L. This instruction causes the umber BCD (format) to be stored in a 1 digit shift egister KD.
-55. Pressing the MAN. TP. one time now causes he next state to be \(0 / 3\) which contains instrucions KDTK-L and CK10. Qualifier CKB-H is low nd the state remains at \(0 / 3\) until the BCD data rom the KD register is clocked into the least ignificant digit of the keyboard shift register (10 lock pulses).

3-56. When CKB-H again goes high the path is pirectly through states \(6 / 14,1 / 1,4 / 1,1 / 9\) and \(4 / 9\) o state \(4 / 10\). (Once again, the MAN TP must be pressed one time for each state progression.)

3-57. Qualifier KDN-H is active only when a keypoard key is pressed. Since it takes only a few nicroseconds to reach state \(4 / 0, \mathrm{KDN}-\mathrm{H}\) is active and the high output holds the machine state in state \(4 / 10\) until the key is released and KDN-H goes low.
\(8-58\). When KDN-H goes low (and the MAN. TP. is pressed), the next state is \(5 / 10\). Since this is a local operation, RMT-H is low and the next state, when the MAN. TP. is pressed, is \(0 / 0\). The instrument is now ready for the next keyboard entry.

\section*{8-59. Decimal Entry State Path}
\(8-60\). Note that for a decimal entry in the manual step mode the decimal point key must remain pressed in and the MAN. TP. must be pressed one time for each state change.

8 -61. When a decimal point is entered on the keyboard, the path is the same as the numeral path until state \(5 / 0\) is reached. Since DP-L is now active, the next state is \(5 / 1\).
\(8-62\). If the decimal point is the first keyboard entry, qualifier F2-H following state \(5 / 1\) is active and the next state is \(1 / 5\).

8-63. State \(1 / 5\), which contains instructions RF2-L, RKB-L and RJCT-L is followed by NUM-H. Since the entry was not a number, the next state is \(3 / 5\) which contains instruction SJCT-L. The state path from this point back to state \(0 / 0\) is the same as it was for a numeric entry.

8-64. If the decimal point was not the first entry, qualifier F2-H following state \(5 / 1\) is low and state \(1 / 5\) is bypassed.

\section*{8-65. Units Entry State Path.}

8-66. As with a numeric or decimal entry, the keyboard key for the unit selected (\(\mathrm{Hz}, \mathrm{kHz}, \mathrm{MHz}\), or GHz) must remain pressed in and the MAN. TP. must be pressed one time for each state change.
\(8-67\). When a units key \((\mathrm{Hz}, \mathrm{kHz}, \mathrm{MHz}\), or GHz\()\) is pressed the state path is the same as it is for a numeral until state \(6 / 0\) is reached. When state \(6 / 0\) is reached, qualifier NUM-H is low and the next state is \(0 / 4\).

8-68. State \(0 / 4\) which contains instruction RKO-L is followed by qualifier QU1-H. Since a units entry has been made, QU1-H is active and the next state is \(1 / 5\).

8-69. State \(1 / 6\) which contains instructions JUS-L, JF2-L, KF3-L and a clock, CK10J, is followed by qualifier QJO-H. QJO-H is active until the keyboard entry is justified (decimal point is positioned properly for the units selected).

Figure 8-5. Part of the Algorithmic State Machine for Model 8660C DCU
70. When QJO-H goes low the remaining state ath is the same as it was for a numeric or decimal oint entry until state \(0 / 0\) is again reached.

\section*{71. MNEMONICS}
-72. Many of the terms used to describe funcions of the DCU, ASM and interface circuits vould take up entirely too much room if they vere spelled out each time they were used. Most of hese terms are abbreviated by the use of nnemonics and shown in Table 8-4. Also shown in he mnemonics table is a definition of such terms, ocations where the terms are used, the point of brigination of the terms, and information as to whether the mnemonics are high or low in the assertive (active) state (illustrated by an H or an L hat follows the mnemonics).

3-73. Note that the mnemonics do not follow hormal dictionary type identifications, but are dentified by function.

\subsection*{3.74. LOGIC SYMBOLS AND DESCRIPTIONS}

3-75. Table \(8-5\) shows some of the "basic building olocks" of logic symbols with the equivalent electronics circuits.

8-76. Figure 8-6 illustrates gates and inverters which are used throughout the instrument. These integrated circuits are shown to avoid repeating details on each schematic.

8-77. Other, more complex, integrated circuits are explained in the supporting text for the schematic on which they appear.

\section*{8-78. TROUBLESHOOTING}

8-79. Mnemonics. Before proceeding with troubleshooting this instrument the technician should become familiar with the use and meaning of mnemonic terms. These terms appear throughout the Algorithmic State Machine (flow graph) and the schematics. The terms are defined in Table 8-4.

8-80. Algorithmic State Machine (ASM). The ASM which appears on a foldout page (Figure 8-112) covers all of the functions of the DCU within the instrument. A partial ASM for the DCU appears in Figure 8-5. The following paragraphs provide information relative to the basic use of the ASM in troubleshooting the instrument.

8-81. Troubleshooting Procedures. Basically there are three troubleshooting methods defined in this manual. They are:
a. A logical procedure for replacement of circuit boards in the Digital Control Unit for those who have a spare set of assemblies on hand. This procedure is to be followed in the sequence shown when a malfunction has been traced to the DCU. Some of these assemblies are available on an exchange basis (see Section VI for more information regarding this procedure.
b. Repair to the assembly level. With this procedure, assemblies are ordered to replace the known defective assembly. This procedure eliminates the requirement to repair to the component level. Information is provided in tabular format to assist the technician in locating the cause of the malfunction.
c. Repair to the component level. In this procedure, the cause of a malfunction is localized to an assembly and reference is then made to the applicable Service Sheet to provide additional information required to repair to the component level.

8-82. The troubleshooting tables which follow serve a dual purpose. These tables identify the circuit board or assembly which is the cause of the malfunction; if it is not desired to make repairs to the component level, a replacement assembly may be ordered from the part numbers which appear in Section VI of this manual. If repairs are to be made to the component level, the tables also refer to the appropriate schematic diagram and additional technical data to aid the technician in making such repairs.

\section*{NOTE}

If symptoms of the cause of the malfunction indicate that the trouble is in a given assembly or circuit, the technician may proceed directly to the applicable table, and perform the specified tests without going through the preceding tests. Each table refers to the assembly and the Service Sheet for the assembly which is most likely to be causing the malfunction.
\(8-83\). The troubleshooting tables are arranged in the most likely cause of the malfunction order. This order is as follows:
a. Table 8-6, Power Supply Troubleshooting.
b. Table 8-7, DCU Repair by Replacement. (To be used only if DCU trouble is suspected and a spare set of compatible assemblies are on hand.
c. Table \(8-8\) is a guide designed to lead the technician to the defective assembly within the DCU.
d. Table 8-9 through Table 8-30, DCU and interface troubleshooting tables.
e. Table 8-31 through 8-40, Mainframe RF loops troubleshooting.

\section*{NOTE}

When a malfunction has been found and corrected in any circuit containing adjustable components, the adjustment procedures specified in Section \(V\) of this manual for the repaired circuit should be performed.

8-84. Each of the troubleshooting tables list the test equipment required to perform the tests in the

Table and refer the technician to the appropriate Service Sheet which contains additional information about the circuit.

8-85. In Table 8-8, , the steps referred to in the prior steps column must have been observed and found to be operating properly before proceeding to the next function of any step.

8-86. The following notes apply to all of the troubleshooting Tables:
a. Always check qualifiers or instructions in the machine state with which they are listed.
b. Refer to Table 8-4 for descriptions of mnemonics and "where used" information.
c. When an instruction or qualifier which should be high is found to be low, the source is listed as the faulty assembly. However, it is possible that the load may be shorted to a low level. Circuit trace and isolate before ordering a replacement assembly.

How to use this table:
When the mnemonic has been found and identified, the remaining three columns provide the following information:
The Assy No. column identifies the assembly where the mnemonics appear. The * indicates the assembly where the mnemonic originates.

The "Where Used SS No." column identifies the Service Sheet(s) on which the mnemonic appears.
The * identifies the Service Sheet on which the mnemonic originates.
Prefix all assembly numbers with A1 except those which are prefixed in the assembly number column as \(\mathrm{A} 3 \mathrm{~A}(\mathrm{x})\).

The ASM State column indicates the state(s) in which the mnemonics appear. When followed by a " \(Q\) " the mnemonic is a qualifier following the state shown.

The mnemonics are also used on all DCU Service Sheets(SS), the Interface Service Sheets and the ASM, Figure 8-112.
\begin{tabular}{|c|c|c|c|c|}
\hline Mnemonic & Description & Assy No. (A1) & \[
\begin{aligned}
& \text { Where Used } \\
& \text { SS. No. }
\end{aligned}
\] & ASM State \\
\hline \(+20 \mathrm{~V}\) & +20 V regulated & A8, A11, A2 & 33, 21 & \\
\hline \(+4 \mathrm{~V}\) & +4 V unregulated & A12 & 36 & \\
\hline \(+5 \mathrm{~V}\) & +5 V regulated & \begin{tabular}{l}
A1, A2, A3, A4 \\
A5, A6, A7, A8, \\
A9, A10, A12, \\
A3A1, A3A2, \\
A3A1-a,A3A2-a
\end{tabular} & \[
\begin{aligned}
& 19,20,22,24, \\
& 25,27,30,32, \\
& 33,34,35,36, \\
& 37,38,39,40
\end{aligned}
\] & \\
\hline \multirow[t]{2}{*}{-10V} & -10 V regulated & A8, A2, A11 & 21, 33 & \\
\hline & Note: All voltages generated in mainframe power supply. & & & \\
\hline 100KCK & 100 kHz Clock to keyboard & A1*, A2 & \(20 *, 21\) & \\
\hline 13GL-L & 1.3 GHz select for 86602 & A7*, A6 & 32*, 31 & \\
\hline 16LIM-L & 160 MHz limits (special only) & A7*, A6 & \(32^{*}, 31\) & \\
\hline AD & State flip-flop A0 output & A4*, A1, A5 & \(26^{*}, 19,25,28\) & \\
\hline A2 & State flip-flop A2 output & A4*, A1, A5 & \(26^{*}, 19,25,28\) & \\
\hline A2TR-H & A2 register to A bus & A5*, A9 & \(27^{*}, 34\) & \(3 / 1\) \\
\hline A3 & State flip-flop A3 output & A4*, A1, A5 & \(26^{*}, 19,25,28\) & \\
\hline A3TR-H & A3 register to A bus & A5*, A9 & 28*,34 & \[
\begin{aligned}
& 2 / 13,2 / 12, \\
& 3 / 0
\end{aligned}
\] \\
\hline
\end{tabular}

Table 8-4. Mnemonics Information (2 of 13)
\begin{tabular}{|c|c|c|c|c|}
\hline Mnemonic & Description & Assy No. & Where Used SS. No. & ASM State \\
\hline A4 & State flip-flop A4 output & A4*, A5 & \(26^{*}, 25,27\) & \\
\hline A5 & State flip-flop A5 output & A4*, A5 & 26*, 25, 27 & \\
\hline A6 & State flip-flop A6 output & A4*, A1, A5 & \(26^{*}, 19,25,28\) & \\
\hline ADD-H & Add command to ALU & A5*, A7 & 28*, 32 & \[
\begin{aligned}
& 2 / 12,3 / 0, \\
& 3 / 1,2 / 1,1 / 15 \\
& 3 / 4
\end{aligned}
\] \\
\hline ADD-L & Subtract command to ALU & A5*, A7 & 28*, 32 & \[
\begin{aligned}
& 2,0,2 / 13,1 / 14, \\
& 2 / 15
\end{aligned}
\] \\
\hline ADDCK-H & ALU clock control & A6*, A3, A7 & 29*,24,32 & \\
\hline ADOF.L & Add offset (special) & A3A1*, A5 & 37, 28 & \[
\begin{aligned}
& 3 / 2,2 / 6,1 / 10, \\
& 1 / 7
\end{aligned}
\] \\
\hline ALU1 & ALU1 Binary 1 & A7*, A6 & \(32 *, 29\) & \\
\hline ALU2 & ALU Binary 2 & A7*. A6 & \(32 *, 29\) & \\
\hline ALU4 & ALU Binary 4 & A7*, A6 & \(32^{*}, 29\) & \\
\hline ALU8 & ALU Binary 8 & A7*, A6 & \(32 *, 29\) & \\
\hline AREGCK-H & A register clock & A6*, 9 & 29*, 34 & \\
\hline ATR-H & A register to R bus & A5*, A9 & 28*,34 & \[
\begin{aligned}
& 3 / 2,2 / 15,2 / 6, \\
& 3 / 7,3 / 4,0 / 9
\end{aligned}
\] \\
\hline AT01 & A Register to output 1 & A9*, A10 & 34*,35 & \\
\hline AT02 & A Register to output 2 & A9*, A10 & 34*,35 & \\
\hline AT04 & A Register to output 4 & A9*, A10 & 34*,35 & \\
\hline AT08 & A Register to output 8 & A9*, A10 & \(34 * 35\) & \\
\hline B9-L & 9 clock gate signal & A5*, A3, A9 & 27*, 23, 34 & \\
\hline BR-L & Brightness control of readout & A3*, A12 & 24*,36 & \\
\hline CDN-L & [See (KIUP-CDN-L] & & & \\
\hline CF-H & Center Frequency & A2*, A4 & \(21^{*}, 25\) & \[
\begin{aligned}
& 6 / 8 Q, 4 / 3 Q \\
& 6 / 3 Q, 6 / 10 Q
\end{aligned}
\] \\
\hline CFR-H & Center Frequency Readout & A1*, A4 & 19*, 25 & 6/6Q, 6/15Q \\
\hline
\end{tabular}

Table 8-4. Mnemonics Information (3 of 13)
\begin{tabular}{|c|c|c|c|c|}
\hline Mnemonic & Description & Assy No. & Where Used SS. No. & ASM State \\
\hline CK & 1 MHz System Clock & \[
\begin{aligned}
& \mathrm{A} 1 *, \mathrm{~A} 2, \mathrm{~A} 3, \\
& \mathrm{~A} 4, \mathrm{~A} 5, \mathrm{~A} 6, \\
& \mathrm{~A} 7, \mathrm{~A} 8, \mathrm{~A} 9 \\
& \mathrm{~A} 10, \mathrm{~A} 3 \mathrm{~A} 1
\end{aligned}
\] & \[
\begin{aligned}
& 20^{*}, 22,24 \\
& 26,27,29,32, \\
& 33,34,35,37, \\
& 39
\end{aligned}
\] & \\
\hline CK10-L & Clock 10. Instruction for ten clock pulses. & A4*, A5, A6 & \(26^{*}, 27,29\) & \[
\begin{aligned}
& 2 / 13,3 / 2,2 / 12, \\
& 3 / 0,3 / 1,2 / 15 \\
& 2 / 9,2 / 1,1 / 15 \\
& 2 / 0,0 / 9,1 / 13, \\
& 1 / 14,2 / 7,1 / 12, \\
& 3 / 8,2 / 5,2 / 6 \\
& 0 / 3,1 / 11,3 / 7 \\
& 1 / 2,1 / 3,1 / 4 \\
& 3 / 4,1 / 8,0 / 1 \\
& 1 / 7,1 / 10
\end{aligned}
\] \\
\hline CK10CK-H & Gated control for chain of 10 clock pulses & A6*, A3 & \(29^{*}, 23\) & \\
\hline CK10J-L & Decimal point justification clock & \(\mathrm{A} 3^{*}, \mathrm{~A} 5, \mathrm{~A} 6\) & \(23^{*}, 27,29\) & 1/6 \\
\hline \begin{tabular}{l}
CK1213-L \\
(CK12-L) \\
(CK13-L)
\end{tabular} & Instruction for 12 or 13 clock pulse train & A5*, A6 & 27*, 29 & \[
\begin{aligned}
& 2 / 13,2 / 12,3 / 0 \\
& 3 / 1
\end{aligned}
\] \\
\hline CKA-H & Clock A ANDED with CKB, signifies completion of 12 or 13 clock pulses & \[
\begin{aligned}
& \mathrm{A} 5^{*}, \mathrm{~A} 4, \mathrm{~A} 6, \\
& \mathrm{~A} 8
\end{aligned}
\] & \[
\begin{aligned}
& 27 *, 25,29, \\
& 33
\end{aligned}
\] & \[
\begin{aligned}
& 2 / 13 \mathrm{Q}, 2 / 12 \mathrm{Q}, \\
& 3 / 0 \mathrm{Q}, 3 / 1 \mathrm{Q}
\end{aligned}
\] \\
\hline CK12-L & & & & \\
\hline CK13-L & & & & \\
\hline CKB-H & Clock B, signifies completion of 10 clock pulses & \[
\begin{aligned}
& \mathrm{A} 5 *, \mathrm{~A} 4, \mathrm{~A} 3 \\
& \mathrm{~A} 6, \mathrm{~A} 8
\end{aligned}
\] & \[
\begin{aligned}
& 27 *, 25,23, \\
& 29,33
\end{aligned}
\] & \[
\begin{aligned}
& 3 / 2 \mathrm{Q}, 2 / 13 \mathrm{Q}, \\
& 2 / 12 \mathrm{Q}, 3 / 0 \mathrm{Q}, \\
& 3 / 1 \mathrm{Q}, 2 / 15 \mathrm{Q}, \\
& 1 / 15 \mathrm{Q}, 2 / 1 \mathrm{Q}, \\
& 2 / 9 \mathrm{Q}, 2 / 0 \mathrm{Q}, \\
& 0 / 9 \mathrm{Q}, 1 / 13 \mathrm{Q}, \\
& 1 / 14 \mathrm{Q}, 2 / 7 \mathrm{Q}, \\
& 0 / 1 \mathrm{Q}, 1 / 4 \mathrm{Q}, \\
& 3 / 4 \mathrm{Q}, \\
& 1 / 12 \mathrm{Q}, 3 / 8 \mathrm{Q}, \\
& 2 / 5 \mathrm{Q}, 0 / 3 \mathrm{Q}, \\
& 1 / 11 \mathrm{Q}, 2 / 6 \mathrm{Q}, \\
& 3 / 7 \mathrm{Q}, 1 / 2 \mathrm{Q}, \\
& 1 / 3 \mathrm{Q}, 1 / 8 \mathrm{Q}, \\
& 1 / 10 \mathrm{Q}, 1 / 7 \mathrm{Q}
\end{aligned}
\] \\
\hline CMND P-L & Permanent command from external programming interface & A3A1*, 22 & \(37 *, 40 *, 21\) & \\
\hline
\end{tabular}

Table 8-4. Mnemonics Information (4 of 13)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Mnemonic} & \multirow[b]{2}{*}{Description} & \multicolumn{3}{|c|}{Where Used} \\
\hline & & Assy No. & SS. No. & ASM State \\
\hline CMND T-L & Temporary command from external programming interface & \(\mathrm{A} 3 \mathrm{~A} 1 *, \mathrm{~A} 2\) & 37*, 21 & \\
\hline CNT1 & Parallel dump count, binary 1 & A5*, A10 & 27*, 35 & \\
\hline CNT2 & Parallel dump count, binary 2 & A5*, A10 & 27*,35 & \\
\hline CNT4 & Parallel dump count, binary 4 & A5*, A10 & 27*, 35 & \\
\hline CNT8 & Parallel dump count, binary 8 & A5*, A10 & 27*, 35 & \\
\hline COAXCK & 2 MHz clock input from interface board & \[
\begin{aligned}
& \mathrm{A} 1, \mathrm{~A} 4 \mathrm{~A} 1^{*}, \\
& \mathrm{~A} 3 \mathrm{~A} 1
\end{aligned}
\] & 2*, 20, 37, 40 & \\
\hline CODE 1 CODE 2 & These are bias levels that are used to aid in leveling the output of the RF Section. See RF Section Manual. & A6*, A3A1 & \(31 *, 37\) & \\
\hline CTR-H & Center Frequency register to R bus & A5*, A6 & 28*.29 & \[
\begin{aligned}
& 2 / 1,2 / 0,1 / 7 \\
& 1 / 15,1 / 14
\end{aligned}
\] \\
\hline CTT-H & Center Frequency register to T bus & \(A 5 \cdot 16\) & 28*.29 & \[
\begin{aligned}
& 2 / 9,2 / 7,3 / 8, \\
& 1 / 8
\end{aligned}
\] \\
\hline CUP-H & Count up instruction to sweep & A5*, A8 & 28*,33 & 2/12, 3/0, 3/1 \\
\hline D1-1 & Digit 1 BCD 1 & A10 \({ }^{\text {* }}\) & 35 + 37 & \\
\hline D1-2 & Digit 1 BCD 2 & A10* & 35*, 37 & \\
\hline D1-4 & Digit 1 BCD 4 & A10* & 35*, 37 & \\
\hline D1-8 & Digit 1 BCD 8 & A10* & 35*.37 & \\
\hline & Note & & & \\
\hline & Repeat for digits 2 through 9. Note that digits proceed in numerical sequency from right to left. & & & \\
\hline D10-1 & Digit 10 BCD 1 & A10* & 35*, 37 & \\
\hline & Note & & & \\
\hline & Digit 10 BCD 2, 4 and 8 are not used. & & & \\
\hline DAOUT & Digital to Analog output (sweep ramp) & A8*, J1 & \(33^{*}\) & \\
\hline DBL-L & Double Frequency Output & \[
\begin{aligned}
& \mathrm{A} 6^{*}, \mathrm{~A} 3, \mathrm{~A} 9, \\
& \mathrm{~A} 3 \mathrm{~A} 1
\end{aligned}
\] & \[
\begin{aligned}
& 31^{*}, 24,34, \\
& 37,40
\end{aligned}
\] & \\
\hline DP-L & Decimal point qualifier & A2*, A4 & 21*, 25 & 5/0Q \\
\hline
\end{tabular}

Table 8-4. Mnemonics Information (5 of 13)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Mnemonic} & \multirow[b]{2}{*}{Description} & \multicolumn{3}{|c|}{Where Used} \\
\hline & & Assy No. & SS No. & ASM State \\
\hline \begin{tabular}{l}
DP1-L \\
thru \\
DP9-L
\end{tabular} & Readout decimal points. Numbered from right to left. & A3*, A12 & \(23^{*}, 36\) & \\
\hline ETK0-L & Encoder to K0 register & A1*, A2 & 19*, 22 & 0/2 \\
\hline F LIM-L & Frequency Limits. Out of range annunciator. & A1*, A3A1 & 19*, 37 & \\
\hline F1-H & Interrupt sweep for new entry, flip-flop. & A1*, A4 & 19*, 25 & \(3 / 12 \mathrm{Q}, 1 / 1 \mathrm{Q}\) \\
\hline F2-L & Keyboard initial entry, flip-flop. & A4*, A3 & 26*, 23 & 5/1Q, 6/1Q \\
\hline F3-L & Prevents entry of information before justification, flip-flop. & A2*, A4 & \(21 *, 25\) & 5/6Q, 6/9Q \\
\hline F7-H & Sweep function flip-flop (also functions as plug-in remote flip-flop). & A4* & \(26^{*}, 25\) & \[
\begin{aligned}
& 2 / 8 \mathrm{Q}, 2 / 4 \mathrm{Q} \\
& 2 / 3 \mathrm{Q}, 4 / 0 \mathrm{Q}
\end{aligned}
\] \\
\hline F8-H & Sweep ramp flip-flop & A4* & \(26^{*}, 25\) & 6/11Q, 4/11Q \\
\hline F10-H & Start flip-flop & A1*, A4 & 19*,25 & 0/0Q \\
\hline FM MODE-L & Lights FM MODE lamp in annunciator & A1* & 19* & \\
\hline FM-H & Frequency modulation instruction & MOD*A1, A3A1 & 19, 37 & \\
\hline FPB-L & Causes sweep width register data to be displayed on center frequency readout & \[
\begin{aligned}
& \mathrm{A} 1^{*}, \mathrm{~A} 3 \\
& \mathrm{~A} 4
\end{aligned}
\] & 19*, 23, 25 & \(6 / 4 \mathrm{Q}\) \\
\hline FTS-H & Sweep width register to S bus & A5*, A7 & \(28^{*}, 32\) & \[
\begin{aligned}
& 2 / 13,2 / 12,3 / 0 \\
& 3 / 1,2 / 15,1 / 3
\end{aligned}
\] \\
\hline G20 & Gate 2 to Code Øinstruction selector & A5*, A1 & \(27^{*}, 19\) & \\
\hline Hz-H & Hertz & A2*, A3 & 21*, 23 & \\
\hline IDN-H & Inhibit down & A4* & 26*, 25 & 4/12Q \\
\hline INC-H & Incremental step & A2*, A4 & \(21^{*}, 25\) & 5/9Q \\
\hline IPB-L & Causes STEP register data to be displayed on center frequency readout & A1*, A3, A4 & \(19^{*}, 23,25\) & 5/4Q \\
\hline ITS-H & Increment (step) register to S bus & A5*, A7 & \(28^{*}, 32\) & 1/15, 1/14, 1/2 \\
\hline
\end{tabular}

Table 8-4. Mnemonics Information (6 of 13)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{Mnemonic} & \multirow{2}{*}{Description} & \multicolumn{3}{|c|}{Where Used} \\
\hline & & Assy No. & SS No. & ASM State \\
\hline IUP-H & Inhibit up & A4* & \(26^{*}, 25\) & 6/12Q \\
\hline JCFR-L & See KPBR-JOFR-L & & & \\
\hline JF1-H & J input to FF1 & A1* & 19* & 0/10 \\
\hline JF2-H & J input to flip-flop 2 & A1*, A4 & 19*,26 & 0/7, 1/6 \\
\hline JF3-L & J input to flip-flop 3 & A5*, A2 & 28*, 21 & \[
\begin{aligned}
& 1 / 0,1 / 11,1 / 10 \\
& 1 / 13
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { (JF7A, } \\
& \text { ILD)-L }
\end{aligned}
\] & J input to flip-flop 7, and Input Load (presets swp counter) & A1*, A4, A8 & 19*, 26, 33 & 0/13 \\
\hline JF7B-L & J input to flip-flop 7 & A2*, A4 & 21*, 26 & \\
\hline \[
\begin{aligned}
& \text { (JF8, } \\
& \text { IRS)-L }
\end{aligned}
\] & Jinput to flip-flop 8, and input reset to sweep increment counter & \[
\begin{aligned}
& \text { A5*, A8, } \\
& \text { A4 }
\end{aligned}
\] & \(28^{*}, 33,26\) & \[
\begin{aligned}
& 0 / 13,2 / 15,2 / 9 \\
& 0 / 0
\end{aligned}
\] \\
\hline JF9-H & J input to flip-flop 9, speed FF & A1* & 19*, 20 & 0/14,0/15 \\
\hline JF10-L & I input to flip-flop 10, start FF & A1* & 19*, 20 & 0/0 \\
\hline JIDN-L & J input inhibit down flip-flop & A5*, A4 & 28*, 26 & 2/11 \\
\hline JIUP-L & J input inhibit up flip-flop & A5*, A4 & 28*,26 & 2/10 \\
\hline \[
\begin{aligned}
& \text { (JUS, KF3, } \\
& \text { (JF2)-L }
\end{aligned}
\] & Justification (DP justify), K input to flip-flop 3, J input to flip-flop 2 & \[
\begin{aligned}
& \mathbf{A} 5 *, \mathrm{~A} 1, \mathrm{~A} 1 \\
& \mathrm{~A} 2, \mathrm{~A} 3
\end{aligned}
\] & \[
\begin{aligned}
& 28 *, 19,21, \\
& 23
\end{aligned}
\] & 1/6 \\
\hline JSW1-L & J input to SW1 flip-flop & & 19*, 20 & 0/0, 0/8 \\
\hline K0-K9 & Keyboard key pairs & A1*, A15*, A2 & 21* & \\
\hline Kø TK-L & K0 to Keyboard Register & A1*, A2, A3 & 19, 22, 23 & \(0 / 3\) \\
\hline KA & Keyboard register output A BCD 1 & A2*, A6 & \(22^{*}, 29\) & \\
\hline KB & Keyboard register output B BCD 2 & A2*, A6 & \(22^{*}, 29\) & \\
\hline KC & Keyboard register output C BCD 4 & A2*, A6 & 22*, 29 & \\
\hline KD & Keyboard register output D BCD 8 & A2*, A6 & \(22 *, 29\) & \\
\hline KCFR-L & K input to Center Frequency Readout flip-flop & A5*, A1 & 28*,19 & 1/8 \\
\hline KCK-L & Keyboard register clock & A3*, A2 & \(23^{*}, 22\) & \\
\hline
\end{tabular}

Table 8-4. Mnemonics Information (7 of 13)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{Mnemonic} & \multirow{2}{*}{Description} & \multicolumn{3}{|c|}{Where Used} \\
\hline & & Assy No. & SS No. & ASM State \\
\hline KD2-L & Keydown 2 & A2*, A1 & \(21^{*}, 19\) & \\
\hline KDN-H & Keydown & A2*, A4 & \(21^{*}, 25\) & 4/10Q \\
\hline KF1-H & K input to flip-flop 1 & A1* & 19* & 0/5 \\
\hline KF3-L & See (JUS, KF3, JF2)-L & & & 1/6 \\
\hline KF7-H & K input to flip-flop 7 & A5*, A4 & 28*, 26 & 2/9, 1/0 \\
\hline KF8-H & See (RQ55, KF8, RSW1)-H & & & 2/9 \\
\hline KF9-H & & & & 0/0 \\
\hline KF10-H & See (RKD2, KF10)-H & & & 1/1, 1/0, 3/6 \\
\hline KHZ-H & Kilohertz & A2*, A3 & \(21^{*}, 23\) & \\
\hline KIDN-H & K input to inhibit down flip-flop & A5*, A4 & 28*, 26 & 2/12 \\
\hline \begin{tabular}{l}
(KIUP, \\
CDN)-L
\end{tabular} & K input of increment up flip-flop Count down instruction to sweep & A5*, A4, A8 & 28*, 26,33 & 2/13 \\
\hline KPB-L & Causes keyboard register data to be displayed on center frequency readout & A1*, A3, A4 & 19*, 23,25 & 6/14Q \\
\hline \[
\begin{aligned}
& \text { (KPBR, } \\
& \text { JCFR)-L }
\end{aligned}
\] & K input to pushbutton readout flip-flop, J input to center frequency readout flip-flop & A5*, A1 & 28*, 19 & 3/6 \\
\hline KSW1-H & & & & 0/10 \\
\hline (KTR, OTS)-H & & A5*, A6, A7 & 28*, 29, 32 & 1/10 \\
\hline KTT-H & Keyboard register to T bus & A5*, A6 & 28*, 29 & \[
\begin{aligned}
& 1 / 12,2 / 5, \\
& 1 / 11,1 / 4,1 / 13
\end{aligned}
\] \\
\hline \begin{tabular}{l}
KYBCK1 \\
KYBCK2
\end{tabular} & These are separate keyboard strobe lines which join at a common point in the A2 assy. & A2* & 21* & \\
\hline LCL-H & Local/remote input & \[
\begin{aligned}
& \mathrm{A} 3 \mathrm{~A} 1^{*}, \mathrm{~A} 1, \\
& \mathrm{~A} 2, \mathrm{~A} 3
\end{aligned}
\] & \[
\begin{aligned}
& 39 *, 37,20, \\
& 21,23
\end{aligned}
\] & \\
\hline LD-L & Load resets the A2 and A3 registers on the A9 assy. & A8*, A9 & 33*, 34 & \\
\hline
\end{tabular}

Table 8-4. Mnemonics Information (8 of 13)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{Mnemonic} & \multirow{2}{*}{Description} & \multicolumn{3}{|c|}{Where Used} \\
\hline & & Assy No. & SS No. & ASM State \\
\hline MHZ-H & Megahertz & A2*, A3 & \(21 * .23\) & \\
\hline MNE-H & Manual entry & \(\mathrm{Al}^{4}\), 44 & \(20^{*} .25\) & \[
\begin{aligned}
& 3 / 13 Q, 6 / 13 Q \\
& 1 / 9 Q, 5 / 14 Q
\end{aligned}
\] \\
\hline NTS-L & Manual tune increment n to S bus & A5 , A7 & 28*. 21 & 2/1,2/0 \\
\hline NUM-H & Numeral & A2, A4 & 21 F. 25 & \(6 / 0 \mathrm{Q}, 1 / 5 \mathrm{Q}\) \\
\hline OFS-L & Offset frequency (special) & A 1 & 25,37 & \[
\begin{aligned}
& 4 / 2 \mathrm{Q}, 5 / 5 \mathrm{Q} \\
& 5 / 7 \mathrm{Q}, 3 / 3 \mathrm{Q}
\end{aligned}
\] \\
\hline OPII)1 & Output plug-in digit 1 BCD 1 & \[
\begin{aligned}
& \mathrm{J} 6 \text { pin } 33^{*}, \\
& \mathrm{~A} 6, \mathrm{~A} 7
\end{aligned}
\] & 37*, 32 & \\
\hline OPII)2 & Output plug-in digit 2 BCD 2 & J6 pin 34*, A7 & 37*, 32 & \\
\hline OPID 4 & Output plug-in digit 4 BCD 4 & J6 pin 35*, A7 & 37*, 32 & \\
\hline OPR-L & \begin{tabular}{l}
Option reset. \\
Option \(004-100 \mathrm{~Hz}\) resolution.
\end{tabular} & A5*, A3 & 27*, 24 & \\
\hline OPRO-L & \begin{tabular}{l}
Option readout. \\
Option \(004-100 \mathrm{~Hz}\) resolution
\end{tabular} & A1*, A3 & 19*, 24 & \\
\hline OTS-L & Offset frequency to S bus & A5*, A7 & 28*, 32 & 2/6, 1/7, 3/2 \\
\hline OVEN-L & Oven signal (oven not at temperature when lamp is lit). (Annunciator) & A21*, A3A2 & \(2^{*}, 19,38,39\) & \\
\hline OVRNG-L & & & & \\
\hline PBCOM-L & Pushbutton common & A1*, A12 & 19, *20, 36 & \\
\hline PBF-L & Sweep width readout pushbutton & A1* & 19* & \\
\hline PBI-L & Increment (step) readout pushbutton & A1* & 19* & \\
\hline PBK-L & Keyboard readout pushbutton & A1* & \(19^{\text { }}\) & \\
\hline PD-H & Parallel dump & A5*, A10 & 28*,35 & \\
\hline PDN-L & & & & 37.29 \\
\hline PDS-L & Parallel dump sweep & \(\mathrm{A} 1 *, \mathrm{~A} 5, \mathrm{~A} 9\) & 19*, 27, 34 & 09 \\
\hline PI1 & Data to plug-in section, binary 1 & A6*, A3A1 & 29*, 37,40 & \\
\hline
\end{tabular}

Table 8-4. Mnemonics Information (9 of 13)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{Mnemonic} & \multirow{2}{*}{Description} & \multicolumn{3}{|c|}{Where Used} \\
\hline & & Assy No. & SS No. & ASM State \\
\hline PI2 & Data to plug-in sections, binary 2 & A6*, A3A1 & \(29^{*}, 37,40\) & \\
\hline PI4 & Data to plug-in sections, binary 4 & A6*, A3A1 & 29*,37, 40 & \\
\hline PI8 & Data to plug-in sections, binary 8 & A6*, A3A1 & \(29 *, 37,40\) & \\
\hline PICK-L & Plug-in clock for remote data transfer & A6*, A3A1 & 29*,40 & 0/1 \\
\hline PILIM-L & 110 MHz limit select for 86601 A & A7*, A6, A1 & \(32 *, 31,20\) & \\
\hline PLS-H & Plus (manual tune sense) & A1*, A4 & \(20 *, 25\) & 0/12Q, 5/15Q \\
\hline PRDT-L & Power detect (DCU) & \[
\begin{aligned}
& \mathrm{A} 2 *, \mathrm{~A} 1, \mathrm{~A} 4, \\
& \mathrm{~A} 6
\end{aligned}
\] & \[
\begin{aligned}
& 22 *, 20 \\
& 26,29
\end{aligned}
\] & \\
\hline PWRDT-L & Power detect from mainframe & \[
\begin{aligned}
& \mathrm{A} 3 \mathrm{~A} 1^{*}, \mathrm{~A} 3 \mathrm{~A} 2, \\
& \mathrm{~A} 2
\end{aligned}
\] & 40*,39,37,22 & \\
\hline Q100-H & Qualifier 100 (100 step sweep) & A1*, A4, A8 & \(20 *, 25,33\) & 5/12Q \\
\hline QA-H & Qualifier A. Frequency above limits. & A6*, A4 & 31*, 25 & 2/2Q \\
\hline QAD-H & Qualifier add & A2*, A4 & \(21^{*}, 25\) & 5/13Q \\
\hline QB-H & Qualifier B. Frequency below limits. & A7*, A4 & \(32 *, 25\) & \[
\begin{aligned}
& 4 / 13 \mathrm{Q}, 6 / 7 \mathrm{Q}, \\
& 4 / 15 \mathrm{Q}, 5 / 2 \mathrm{Q},
\end{aligned}
\] \\
\hline QCTM-H & Qualifier count maximum. Sweep Count. & A8*, A4 & \(33 *, 25\) & 4/14Q, 5/11Q \\
\hline QCTZ-H & Qualifier count zero. Sweep count. & A8*, A4 & \(33^{*}, 25\) & 4/7Q \\
\hline QEI-H & Qualifier enter 1 (any entry key) & A2*, A4 & \(21 *, 25\) & 4/9Q, 4/4Q \\
\hline QJЮ -H & Justification operation & \(\mathrm{A} 3^{*}, \mathrm{~A} 4\) & \(23^{*}, 25\) & 1/6Q \\
\hline QMSW-H & Qualifier, manual sweep & A1*, A4 & \(20 *, 25\) & \[
\begin{aligned}
& 0 / 15 \mathrm{Q}, 5 / 8 \mathrm{Q} \\
& 0 / 11 \mathrm{Q}, 0 / 14 \mathrm{Q}
\end{aligned}
\] \\
\hline QSP-H & Qualifier sweep pulse & A1*, A4 & \(20 *, 25\) & 0/10Q \\
\hline QSS-H & Qualifier single sweep & A1*, A4 & \(20 *, 25\) & 3/15Q \\
\hline QU1-H & Qualifier units 1 (any units key) & A2*, A4 & \(21^{*}, 25\) & \(0 / 4 \mathrm{Q}\) \\
\hline RBUS A1 & A register to R bus BCD 1 & A9*, A7 & \(34^{*}, 32\) & \\
\hline
\end{tabular}

Table 8-4. Mnemonics Information (10 of 13)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{Mnemonic} & \multirow{2}{*}{Description} & \multicolumn{3}{|c|}{Where Used} \\
\hline & & Assy No. & SS No. & ASM State \\
\hline RBUS A2 & A register to R bus BCD 2 & A9*, A7 & \(34^{*}, 32\) & \\
\hline RBUS A4 & A register to R bus BCD 4 & A9*, A7 & \(34^{*} .32\) & \\
\hline RBUS A8 & A register to R bus BCD 8 & A9*, A7 & 34*, 32 & \\
\hline RBUS C1 & CF register to R bus BCD 1 & A6*, A7 & 29*. 32 & \\
\hline RBUS C2 & CF register to R bus BCD 2 & \(A 6^{*}, ~ A 7 ~\) & 29*.32 & \\
\hline RBUS C4 & CF register to R bus BCD 4 & \(A 6^{*} \cdot A 7\) & 29*. 32 & \\
\hline RBUS C8 & CF register to R bus BCD 8 & \(A 6^{*} \cdot 17\) & 29 *.32 & \\
\hline RBUS K1 & M register to R bus BCD 1 & \(A 6^{*}, ~ A 7\) & 29*. 32 & \\
\hline RBUS K2 & M register to R bus BCD 2 & \(A 6: A 7\) & 29*, 32 & \\
\hline RBUS K4 & M register to R bus BCD 4 & A6*, A7 & \(29^{*} \cdot 32\) & \\
\hline RBUS K8 & M register to R bus BCD 8 & A6*. \({ }^{\text {a }}\) & \(29^{*} \cdot 32\) & \\
\hline RENC-H & Reset encode counter & A5*, A7 & 28*, 32 & \[
\begin{aligned}
& 2 / 8,3 / 4,2 / 4, \\
& 2 / 3,1 / 9,3 / 3
\end{aligned}
\] \\
\hline RERR-L & & & & 0/4 \\
\hline RF1-L & & & & 0/8 \\
\hline \[
\begin{aligned}
& \text { (RF2, } \\
& \text { RJCT)-L }
\end{aligned}
\] & Reset flip-flop 2 and reset justification counter. & \[
\begin{aligned}
& \text { A2*, A3, } \\
& \text { A1 }
\end{aligned}
\] & \[
\begin{aligned}
& 22^{*}, 23 \\
& 26
\end{aligned}
\] & 1/5 \\
\hline RF9-L & & & & 0/9 \\
\hline RKB-L & Reset keyboard register & A5*, A2 & 28*, 22 & \(1 / 5,1 / 0\) \\
\hline \[
\begin{aligned}
& \text { (RKD2, } \\
& \text { KF10)-H }
\end{aligned}
\] & Reset keydown flip-flop 2, and K input to flip-flop 10. & A5*, A2, A1 & 28*, 21, 19 & \(3 / 6,1 / 1,1 / 0\) \\
\hline RKO-L & Reset K0 register & A3*, A2 & 23*, 22 & 0/4 \\
\hline RMT STEP \(\downarrow\) DN-L & Remote step down (increment) & A3A1*, A2 & 37*, 21 & \\
\hline RMT STEP \(\uparrow\)
UP-L & Remote step up (increment) & A3A1*, A2 & 37*, 21 & \\
\hline RMT-H & Remote Qualifier & A3*, A4 & \(23^{*}, 25\) & 5/10Q \\
\hline
\end{tabular}

Table 8-4. Mnemonics Information (11 of 13)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{Mnemonic} & \multirow{2}{*}{Description} & \multicolumn{3}{|c|}{Where Used} \\
\hline & & Assy No. & SS No. & ASM State \\
\hline RMT1-L & Remote data input binary 1 & A3A1*, A2 & 40*, 37, 22 & \\
\hline RMT2-L & Remote data input binary 2 & A3A1*, A2 & 40*, 37, 22 & \\
\hline RMT4-L & Remote data input binary 4 & A3A1*, A2 & 40*, 37, 22 & \\
\hline RMT8-L & Remote data input binary 8 & A3A1*, A2 & 40*, 37, 22 & \\
\hline RMTCF-L & Remote center frequency command & A3A1*, A2 & 37*, 40*, 21 & \\
\hline RMTL-L & Readout remote lamp (annunciator) & A1*, lamp & \(20^{*}\) & \\
\hline ROCK & Readout clock (10 kHz) & A1*, A12 & \(20 *, 36\) & \\
\hline ROGHZ-L & Readout GHz & A3*, A12 & \(23^{*}, 36\) & \\
\hline ROMHZ-L & Readout MHz & A3*, A12 & \(23 *, 36\) & \\
\hline ROKHZ-L & Readout kHz & A3*, A12 & \(23^{*}, 36\) & \\
\hline ROHZ-L & Readout Hertz & A3*, A12 & \(23^{*}, 36\) & \\
\hline ROI-L & Readout inhibit (option 004) & A1*, A3 & 19*, 24 & \\
\hline \begin{tabular}{l}
ROM A1 \\
ROM A2 \\
ROM A4 \\
ROM A8
\end{tabular} & To read-only-memory A on A1A12. Controls readout digits 7, 8 and 9. & A3*, A12 & \(24^{*}, 36\) & \\
\hline \begin{tabular}{l}
ROM B1 \\
ROM B2 \\
ROM B4 \\
ROM B8
\end{tabular} & To read-only-memory B on A1A12. Controls readout digits 1 thru 6. Digit 1 is least significant digit. & A3*, A12 & \(24 *, 36\) & \\
\hline RQB-L & Reset qualifier B flip-flop in ALU & A5*, A7 & 28*, 32 & 2/8,2/2 \\
\hline RQSP-L & & & & 0/11, 0/9 \\
\hline (RQSS, KF8, RSW1)-H & Reset QSS flip-flop, K input to flip-flop 8, reset SW1 flip-flop. & A5*, A4, A1 & \(28^{*}, 26,20\) & 0/7 \\
\hline RSCAN-H & Reset readout scanner circuit & A3*, A12 & \(24^{*}, 36\) & \\
\hline RSWON-L & & & & 0/8 \\
\hline RZER-L & Reset zero flip-flop & A5*, A7 & 28*, 32 & 2/2,2/12 \\
\hline S1, S2 & Sense lines from keyboard & A15*, A2 & 21* & \\
\hline
\end{tabular}

Table 8-4. Mnemonics Information (12 of 13)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{Mnemonic} & \multirow{2}{*}{Description} & \multicolumn{3}{|c|}{Where Used} \\
\hline & & Assy No. & SS No. & ASM State \\
\hline SBUS F1 & Sweep register to S bus BCD 1 & A6*. 17 & \(30 * 32\) & \\
\hline SBUS F2 & Sweep register to S bus BCD 2 & A6* A7 & \(30 * 32\) & \\
\hline SBUS F4 & Sweep register to S bus BCD 4 & A6*. \({ }^{\text {a }} 7\) & 30*, 32 & \\
\hline SBUS F8 & Sweep register to S bus BCD 8 & A6, A7 & 30*, 32 & \\
\hline SBUS I1 & Step register to S bus BCD 1 & A6*, A7 & \(30 * 32\) & \\
\hline SBUS I2 & Step register to S bus BCD 2 & A6: A7 & \(30^{*} \cdot 32\) & \\
\hline SBUS I4 & Step register to S bus BCD 4 & \(16 \cdot 17\) & \(30 \cdot 5\) & \\
\hline SBUS 18 & Step register to S bus BCD 8 & \(16 \cdot 17\) & \(30 \div 32\) & \\
\hline SCAN CK & 5 kHz clock to readout control & A1. A3 & \(20 \cdot 24\) & \\
\hline SCDP-L & Set center frequency decimal point (Stores DP) & A5 A \({ }^{\text {a }}\) & 28*, 23 & 2/5 \\
\hline \[
\begin{aligned}
& \text { (SFDP, } \\
& \text { TTF)-L }
\end{aligned}
\] & Set sweep width decimal point (stores DP), T bus to sweep width register & A5*, A3, A6 & 28*,23, 30 & 1/11 \\
\hline \[
\begin{aligned}
& \text { (SIDP, } \\
& \text { TTI)-L }
\end{aligned}
\] & Set step decimal point (stores DP) T bus to step register & A5*, A 3, A6 & 28*, 23, 30 & 1/13 \\
\hline SIND1-L & Set error lamp driver & A5*, A1 & 28*, 19 & 2/8,2/3 \\
\hline SIND2-L & & A6*, A1 & 31*. 19 & \\
\hline SJCT-L & Set justification counter & A5: A3 & 28.23 & \(3 \cdot 5\) \\
\hline SQB-H & Set qualifier B flip-flop & A5 \({ }^{6}\) A7 & 28*.32 & \[
\begin{aligned}
& 2 / 13,3 / 2,2: 15, \\
& 2 / 0,1 / 7,1 / 10 \\
& 1 / 14,2 / 6
\end{aligned}
\] \\
\hline ST01-L & Machine state 0/1 & A1 A 46 & 19*.29 & \\
\hline ST0.4-L & Machine state 0/4 & A1*, A3 & 19*.23 & \\
\hline STEP-L & Manual tune switch to A1A4 & A1*, A4 & \(20^{*}, 25\) & 5/3Q, 4/8Q \\
\hline SW1-H & Sweep 1 qualifier flip-flop & A1*, A4 & \(20^{*}, 25\) & \[
\begin{aligned}
& 3 / 14 Q, 4 / 1 Q, \\
& 0 / 6 Q
\end{aligned}
\] \\
\hline SWL-L & Sweep lamp (annunciator) & A1*, A13 & \(20^{*}\) & \\
\hline
\end{tabular}

Table 8-4. Mnemonics Information (13 of 13)

Table 8-5. Logic Symbology

OR

NAND

NOR

INVERTER

Figure 8-6. Common Gates and Inverters Used in the Model 8660 C

Table 8-6. Power Supply Troubleshooting (1 of 3)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Test Equipment Required: \\
Voltmeter \\
AC Microvoltmeter \\
Variable Voltage Transformer
\end{tabular}} \\
\hline Step & Symptom and Procedure & Take the following action or proceed to step shown \\
\hline 1
1 a & \begin{tabular}{l}
Fan does not come on. \\
Unplug the instrument and check the main fuse (A7F1)
\end{tabular} & Replace the fuse if defective. If fuse is good, proceed to next step. \\
\hline 1b & With the instrument unplugged, remove the mainframe bottom cover and check the dc resistance from tie point SW/9 (located close to the front of the A20 assembly). & Proceed to Step 1c. \\
\hline 1 c & With the instrument unplugged, check the dc resistance with the LINE switch ON. & The ohmmeter should read 0 ohms. If it does not, A1S1 or an associated component is probably defective. Refer to Service Sheet 41 and make necessary tests. Proceed to Step 1d. \\
\hline 1 d & With the instrument unplugged, check the dc resistance with the LINE switch in the STBY position. & The ohmmeter should read a charging capacitor with an ultimate value of about 10 K ohms. If it does not, refer to Service Sheet 41 and make necessary repairs. \\
\hline 1 e & Check the voltage applied to the fan motor (should be 115 Vac). & If the voltage is present, but fan does not work, check the fan. \\
\hline 1 f & If the voltage is not present at the fan: & Check A20K1, then refer to Service Sheet 41 and repair as required. \\
\hline 2 & OVEN light does not illuminate when instrument is first turned on. & Refer to step 2a. \\
\hline 2a & Turn off and unplug the instrument for 10 minutes. & Proceed to step 2b. \\
\hline 2b & Remove the mainframe top cover, raise the A4 assembly and disconnect the wire from tie point 6 on A21. & Measure the resistance from A21 tie point 6 to ground The resistance should be 0 ohms. If it is, proceed to step 2d, if not, proceed to step 2c. \\
\hline 2 c & If the dc resistance from A21 is about 50 ohms. & The lamp is good and A21, the interface board, interconnecting wiring may be defective. Refer to Service sheet 41 and locate the cause of trouble. \\
\hline 2d & Reconnect wire to A21. Plug in and turn on instrument. OVEN lamp should extinguish after 10-15 minutes. & If lamp does not extinguish as it should, refer to Service Sheet 41 and repair as required. \\
\hline & Note: If conditions are not as shown, refer to Service Sheet 41. & \\
\hline
\end{tabular}

Table 8-6. Power Supply Troubleshooting (2 of 3)
\begin{tabular}{|c|c|}
\hline Symptom & Take the following action or proceed to step shown \\
\hline All supplies defective, fan does not come on. & Check line module, power cord, T1,CR1 and line fuse. \\
\hline The instrument is inoperative, but fan operates. & Check A20K2 \\
\hline Instrument appears inoperative, fan does not work but oven supply is OK. & Check A20K1, A20K2, A1S1 and associated wiring. \\
\hline All regulated supplies are inoperative, but unregulated supplies are OK. & Check A20K2. \\
\hline Regulated supplies are OK but unregulated supplies are inoperative and fan does not work. & Check A20K1 \\
\hline +20 V power inoperative. & Check A5Q5, A5U3, A6A1Q7, A6A1Q8, A20K1, A20 CR1 and T1. \\
\hline +5.25 V power inoperative. & Check A20F1*, A6A1Q10*, A20K2, A5Q6, A5U4, and A20C2 (\(*\) common failure mode). \\
\hline +5.25 V supply low but not inoperative. & \begin{tabular}{l}
A5R24 defective or incorrectly adjusted (do not readjust until it is clear that something else is not pulling the supply down). \\
Output load resistance is too low - should be 6 ohms or greater. Check line module and T1. Check A6A1Q10 for collector to emitter short.
\end{tabular} \\
\hline +5.25 V supply is noisy but not inoperative. & Check line module for dirty or intermittent contacts, check A20C2, A5U4, and A6A1Q10. \\
\hline +20 V supply low, noisy, or unregulated. & Check line module for dirty or intermittent contacts. Check A20C1, A6CR1, A5U3, A6A1C1, A6Q5, A6A1R1, A6A1Q9, and A6A1Q8. \\
\hline -10 V supply inoperative. & Check A20CR3, A6A1Q5, A6A1Q4, A10C3, T1, A20K2. Load should be nominally 60 ohms. \\
\hline -10 V supply low, noisy or unregulated. & Check line module, A5U2, A6A1Q6, A6A1Q4, A5Q3, A6A1Q5 and A6A4. \\
\hline -40V supply inoperative. & Check A20CR5 (nominally 570 ohms), A6A1Q1, A6A1Q2, A20C11, A6C15, and A20K2. \\
\hline -40 V supply low, noisy, or unregulated. & Check A6A1CR3, line module, A5 U1, A5Q1, A5Q2, A6A1R3, and A20C6. \\
\hline
\end{tabular}

Table 8-6. Power Supply Troubleshooting (3 of 3)
\begin{tabular}{|c|l}
\hline \multicolumn{1}{c|}{ Symptom } & Take the following action or proceed to step shown \\
\hline \begin{tabular}{l}
+21 and -21 V supplies inoperative. \\
+21 V supply inoperative but -21 V \\
supply OK. \\
-21 V supply inoperative but +21 V \\
supply OK.
\end{tabular} & \begin{tabular}{l}
Check A20CR4, A20F4 and A20F3, T1, \\
A20C4 and A20C5.
\end{tabular} \\
Check A20C4 and A20F4.
\end{tabular}

Table 8-7. DCU Troubleshooting by Replacement (1 of 3)
Note: Where the procedure column lists several assemblies, replace them in the order shown.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Test } & \multicolumn{1}{c|}{ Result } \\
\hline 1. \begin{tabular}{l}
Perform operator's checks 1 \\
through 1-c.
\end{tabular} & \begin{tabular}{l}
Readout does not display 1.000000 \\
\(M H z\).
\end{tabular} \\
1-a. \begin{tabular}{l}
Ground the connector pin \\
labeled PWR DET on the \\
mother board.
\end{tabular} & \begin{tabular}{l}
Readout displays 1.000000 MHz \\
Readout display is not correct.
\end{tabular} \\
\begin{tabular}{l}
Enter a center frequency \\
(within the limits of the RF \\
Section in use) in Hz. With \\
the 86603 A RF Section set \\
to 1300 MHz the DCU out- \\
put data is \(1 / 2\) the RO. \\
DBL-L on A1A6 pin 1 c is
\end{tabular} & \begin{tabular}{l}
Readout correct. (It has been deter- \\
mined that the data out of the DCU \\
is incorrect
\end{tabular} \\
\begin{tabular}{l}
Readout incorrect, but RF output \\
is correct.)
\end{tabular}
\end{tabular} also activated.
3. Enter center frequencies in \(\mathrm{GH}, \mathrm{MHz}, \mathrm{kHz}\) (stay within limits of the RF Section in use).
4. Perform operator's checks 2-a and 2-b.
5. Perform operator's check 2-c.
6. Perform operator's checks 2-d and 2-e.
7. Perform operator's check 3-a with 86601 A ; 4 -a with 86602A; 5-a with the 86603A.

Table 8-7. DCU Troubleshooting by Replacement (2 of 3)
\begin{tabular}{|c|c|c|c|}
\hline & Test & Result & Procedure \\
\hline 7-a. & Check STEP \(\downarrow\) operation. & STEP \(\downarrow\) operation does not function properly. & Same as step 7. \\
\hline & Perform operator's check 3-b with 86601A; 4-b with 86602A; 5-b with the 86603A. & STEP readout incorrect. & A1, A4, A5, A7, check STEP pushbutton switch and wiring. \\
\hline \multirow[t]{4}{*}{9.} & \multirow[t]{4}{*}{Perform operator's checks 3 -c and 3 -d with the 86601A, and 4 -d with the 86602 A ; \(5-\mathrm{d}\) with 86603 A .} & \multirow[t]{4}{*}{OUT OF RNG light does not flash.} & A6, A1, light bulb, A4, A5, A7. Check OPID lines as follows: Extend the A1A7 assembly and check the following lines on connector -1 . \\
\hline & & & RF Sec. 866018660286603 \\
\hline & & & \begin{tabular}{llll}
Pin 3 & H & L & H \\
Pin C & H & H & L \\
Pin B & H & H & H \\
Pin 2 not used (open) & line on & A1A7.
\end{tabular} \\
\hline & & & \begin{tabular}{l}
NOTE \\
If proper levels are present, trouble is in the A1A7 assembly or associated wiring. If proper levels are not present, trouble is in the cabling to the plug-in unit.
\end{tabular} \\
\hline 10. & Perform operator's check 3-e with the 86601 A ; 4-e with the 86602A; \(5-e\) with the 86603 A . & Readout does not decrease in 111111 Hz steps. & A1, A4, A5, A6, A7. Check MANUAL switch and wiring. Check TUNING control and wiring. Extend the A1A1 assy on two extender boards and use an oscilloscope to check for pulses at A1A1U12 pins 4 and 5 . If pulses are present, the A1A1 assembly is probably defective. If the pulses are not present the TUNING control, A1A17, is probably defective. \\
\hline 11. & \begin{tabular}{l}
Perform operator's check \\
3-f with 86601 A ; 4 -f with 5 -f with the 86603 A .
\end{tabular} & OUT OF RNG light doesn't stay on below lower frequency limit. & A6, A1 lightbulb, A4, A5, A7. Check OPID lines on the A1A7 assembly as shown in step 9. Results are the same. \\
\hline 12 & Perform operator's checks 6-a through 6-d. & Manual tune mode not operating properly & A1, A4, A5, A6, A7. Check MANUAL switch A1A17 TUNING CONTROL. Extend the A1A1 assembly on two extender boards and check as in step 10. Results are the same. \\
\hline & Perform operator's checks 7-a through 7-c for 86601A. 8-a thru 8-c with the 86602A or 86603 A . & Does not perform as specified in Table 3-5. & \begin{tabular}{l}
A4, A5, A6, A7, A8, A1, A9, A10, A12. \\
Check lightbulbs, sweep switches and wiring.
\end{tabular} \\
\hline
\end{tabular}

Table 8-7. DCU Troubleshooting by Replacement (3 of 3)
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Test } & \multicolumn{1}{c|}{ Result } & \multicolumn{1}{c|}{ Procedure } \\
\hline \begin{tabular}{l}
14. \begin{tabular}{l}
Perform operator's check \\
9-a.
\end{tabular} \\
Readout and/or output is incorrect.
\end{tabular} & \begin{tabular}{l}
A1, A4, A5, A6, A7, A8, A9, A10, A12. \\
Check sweep switches and TUNING con- \\
trol. Extend the A1A1 Assembly on \\
two extender boards and check as in \\
step 10. Results are the same.
\end{tabular} \\
15. \begin{tabular}{l}
Perform operator's check \\
9b through 9f.
\end{tabular} & Incorrect output. & \begin{tabular}{l}
A4, A5, A6, A7, A8, A1, A9, A10, A12. \\
Check SINGLE switch and wiring.
\end{tabular} \\
\hline
\end{tabular}

Table 8-8. DCU and Interface Troubleshooting Guide (1 of 3)

\section*{NOTES}
1. The steps referred to in the Prior Steps Required column must have been observed and found to be operating properly before proceeding to the table referred to in any step.
2. The following notes apply to all of the troubleshooting tables:
a. Always check qualifiers or instructions in the machine state with which they are listed.
b. Refer to Table 8-4 for descriptions of mnemonics and "where used" information.
c. When an instruction or qualifier which should be high is found to be low, the source is listed as a faulty assembly. However, it is possible that the load may be shorted to a low level. Circuit trace and isolate before ordering a replacement assembly.

Table 8-8. DCU and Interface Troubleshooting Guide (2 of 3)
\begin{tabular}{|c|c|c|}
\hline Steps & Instruction or Fault & Prior Steps Required \\
\hline 4 & Enter a CENTER FREQUENCY in Hz. The CENTER FREQUENCY readout should display the selected frequency; if it does proceed to step 5 . If it does not, refer to Table 8-10. At frequencies above 1.3 GHz the least significant digit is always even. & 1 \\
\hline 5 & If the CENTER FREQUENCY readout displays only one or two half-digits (other digits are blank) refer to Table 8-12. Otherwise, proceed to step 6. & 1 \\
\hline 6 & If CENTER FREQUENCY readout is not properly positioned when units (decimal point not properly placed) of \(\mathrm{GHz}, \mathrm{MHz}, \mathrm{kHz}\) or Hz are entered, and/or associated annunciator lamp does not light, refer to Table 7-14. If only one entry is not properly positioned, proceed to step 7. & 1-5 \\
\hline 7 & If CENTER FREQUENCY readout does not position properly for only one units entry (\(\mathrm{GHz}, \mathrm{MHz}, \mathrm{kHz}\), or Hz), refer to Table 8-15. Otherwise, proceed to step 8. & 1-5 \\
\hline 8 & If STEP \(\uparrow\) or STEP \(\downarrow\) do not function properly, refer to Table 8-16. If both STEP \(\uparrow\) and STEP \(\downarrow\) do not function properly, proceed to step 9 . If both are functioning properly, proceed to step 10 . At frequencies above 1.3 GHz , the STEP is also divided by two. & 1-7 \\
\hline 9 & STEP \(\uparrow\) and STEP \(\downarrow\) are both defective, refer to Table 8-17. If both function properly, proceed to step 10. & \(1-7\) \\
\hline 10 & Manual step does not function properly. If true, refer to Table 8-18. If manual step functions properly proceed to step 11 . At frequencies above 1.3 GHz the manual step is divided by two. & 1-9, 11, 12 \\
\hline 11 & If all manual tune ranges do not function properly refer to Table 8-19. If only one range COARSE, MED or FINE does not function properly, proceed to step 12. & 1-9 \\
\hline 12 & If only one RESOLUTION range (COARSE, MED, or FINE) is defective in the MANUAL MODE refer to Table 8-20. If the frequency can be set only in one direction (up or down) proceed to step 13. & 1.9 \\
\hline 13 & Set the MANUAL MODE switch to COARSE, MED, FINE or STEP. Rotating the TUNING control clockwise should cause an increase in frequency; counterclockwise rotation should cause a decrease in frequency. If the frequency does now change in one direction refer to Table 8-21. If operation is normal proceed to step 14. & 1-9 \\
\hline 14 & Set the SWEEP MODE switch to AUTO. If all rates (SLO, MED and FAST) are defective refer to Table 8-22. If only one rate is defective proceed to step 15. & 1-7 \\
\hline 15 & If only one sweep rate in the auto sweep mode is defective proceed to Table \(8-23\). If all sweep rates function properly, proceed to step 16. & 1-7 \\
\hline
\end{tabular}

Table 8-8. DCU and Interface Troubleshooting Guide (3 of 3)
\begin{tabular}{|c|c|c|}
\hline Step & Instruction or Fault & Prior Steps Required \\
\hline 16 & If only single sweep is defective in the sweep mode refer to Table 8-24. If single sweep is not defective proceed to step 17. & 1-7, 14, 15 \\
\hline 17 & If only the manual sweep mode is defective refer to Table 8-25. At frequencies above 1.3 GHz manual sweep is divided by two. If manual sweep functions normally proceed to step 18. & \(1.7,11,12\) \\
\hline 18 & D/A sweep ramp output is defective. Repair or replace the A1A8 assembly. For repair information see Service Sheet 33 . & 1-7, 14, 15 \\
\hline 19 & If the out of range lamp does not function correctly refer to Table 8-26. If lamp does not function at all proceed to step 20. & 1.7 \\
\hline 20 & If code 1 or Code 2 information to the RF section is not correct repair or replace the A1A6 assembly. For repair information see Service Sheet 31. & \(1-7\) \\
\hline 21 & Press the KYBD pushbutton. The CENTER FREQUENCY readout should display the information stored in the keyboard register. If the display is correct, proceed to step 22. If the display is not correct refer to Table 8-27. Leading zeros should not be blanked. & 1.7 \\
\hline 22 & Press the STEP pushbutton. The CENTER FREQUENCY readout should display the information stored in the step register. If the display is correct, proceed to step 23. If the display is not correct refer to Table 8-28. Check the DBL-L line on SS31 when using the 86603 RF Section. & \(1 \cdot 10\) \\
\hline 23 & Press the SWP WIDTH pushbutton. The CENTER FREQUENCY readout display should display the information stored in the sweep register. If the display is correct proceed to step 24. If the display is not correct refer to Table 8-29. & \(1 \cdot 7,14,15\) \\
\hline 24 & CENTER FREQUENCY readout visible but dim. Check the mainframe +4 V supply. & \\
\hline 25 & Some CENTER FREQUENCY readout digits not complete or a random display appears. Repair or replace A1A12 assembly. For repair information see Service Sheet 36. & \\
\hline 26 & Remote operation is defective. All local functions are correct. Refer to Table 8-30. & 1.25 \\
\hline 27 & Harmonics excessive below 1.3 GHz or output frequency is twice that programmed. If true, refer to Table 8-31. & 1 \\
\hline 28 & Output frequency is half that programmed when operating above 1.3 GHz . If true, refer to Table 8-32. & 1 \\
\hline
\end{tabular}
Table 8-9. Incorrect Initial Readout (1 of 2)

Table 8-9. Incorrect Initial Readout (2 of 2)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[t]{2}{*}{Symptom or Instruction} & \multirow[t]{2}{*}{\begin{tabular}{l}
State \\
Succession
\end{tabular}} & \multirow[t]{2}{*}{Check Instruction} & \multirow[t]{2}{*}{If Next State Wrong - Check} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Test Point Location}} & \multirow[t]{2}{*}{Logic Level} & \multicolumn{2}{|l|}{Repair or Replace} \\
\hline Step & & & & & & & & If OK & If Wrong \\
\hline 8 & If the state indicators went to \(0 / 0\) in step 7 , clear and then enter 123 kHz on the keyboard. The CENTER FREQUENCY readout indicates 123 kHz . Pulse or momentarily ground pin 30 of A1A11XA11-2 marked PWR DET. & & PRDT & & A1A1XA1-2 & F & Pulses
\[
H-L
\] & A1A1 & A1 A2 \\
\hline 9 & If state indicators do not go to \(0 / 0\) afer step 8 & & F10 & & A1A4XA4-2 & M & L & A1A4 & cont. \\
\hline 10 & \begin{tabular}{l}
Extend the A1A1 assembly on an extender board and set the instrument to manual test mode. \\
Set to state \\
Set to state \\
Set to state
\end{tabular} & \[
\begin{aligned}
& 1 / 1 \\
& 00 \\
& 0 / 6
\end{aligned}
\] & KF10 RMNE & & A1A1XA1-2
A1A1XA1-2 & H
10 & \begin{tabular}{l}
H \\
L
\end{tabular} & cont.
A1A1 & \begin{tabular}{l}
A1A5 \\
A1A1
\end{tabular} \\
\hline
\end{tabular}
Table 8-10. Center Frequency Readout Faulty (1 of 5)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Step} & \multirow[t]{2}{*}{Symptom or Instruction} & \multirow[t]{2}{*}{State Succession} & \multirow[t]{2}{*}{Check Instruction} & \multirow[t]{2}{*}{If Next state wrong check} & \multirow[t]{2}{*}{Test Point Location} & \multirow[t]{2}{*}{Logic Level} & \multicolumn{2}{|l|}{Repair or Replace} \\
\hline & & & & & & & If OK & If Wrong \\
\hline 1 & Key in a valid center frequency. Check the RF Section output with a frequency counter. If the frequency is correct, but the readout is not, proceed to Table 8-12. & & & & & & & \\
\hline 2 & If the output frequency and the readout are both faulty, hold in the KYBD key while entering a few frequency. If the readout is correct, but the decimal point is not properly justified, proceed to Table 8-14. & & & & & & & \\
\hline
\end{tabular}

Table 8-10. Center Frequency Readout Faulty (3 of 5)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & ¢ & & & & \[
\begin{gathered}
4 \\
4 \\
4 \\
4 \\
4
\end{gathered}
\] & & \[
\underset{4}{4}
\] & それ & E \\
\hline & \[
\underset{\sim}{\text { O}}
\] & & 尤 & & \[
\stackrel{H}{\ddot{O}}
\] & 菏 & 若 & & \[
\underset{\mathbb{K}}{\mathbb{K}}
\] & 道 & ¢゙ँ \\
\hline \multirow{7}{*}{} & & & 士 & صコ & \(\neg\) ー & 士 & い宁 & & \(\checkmark\) & ーコ & \％ \\
\hline & 蓸旨 & & & & & \[
\begin{aligned}
& \infty \\
& \underset{N}{N} \\
& \underset{N}{X} \\
& \underset{X}{X} \\
& \mathbb{U}
\end{aligned}
\] & & & \[
\begin{aligned}
& \bullet \\
& \underset{\sim}{X} \\
& \underset{X}{X} \\
& \underset{X}{X}
\end{aligned}
\] & & \[
\begin{aligned}
& \Sigma \\
& \underset{N}{N} \\
& \underset{X}{U} \\
& \underset{X}{X} \\
& \mathbb{U}
\end{aligned}
\] \\
\hline & & & \(\sum_{z}^{5}\) & N & \({ }_{2}^{5}\) & & 登 & & E & & 올 \\
\hline & 高亮 & & & \％ & N & & 을 & & & & \\
\hline & 気莯 & & \(\bigcirc\) & \(\stackrel{-10}{6}\) & & \(\cdots\) & \(\stackrel{\infty}{0}\) & \(\frac{\mathrm{H}}{-1}\) & \[
\circ \frac{9}{0} \frac{1}{10} \frac{0}{0}
\] & Nom & \(\bigcirc\) \\
\hline & & & & & & & & & & & \\
\hline & \％ & 畕に & 寝 & & & \(\sim\) & & & \(\infty\) & ＋ & \[
\stackrel{N}{\text { N }}
\] \\
\hline
\end{tabular}
Table 8-10. Center Frequency Readout Faulty (5 of 5)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[t]{2}{*}{Symptom or Instruction} & \multirow[t]{2}{*}{State Succession} & \multirow[t]{2}{*}{Check Instruction} & \multirow[t]{2}{*}{If Next state wrong check} & \multirow[t]{2}{*}{Test Point Location} & \multirow[t]{2}{*}{Logic Level} & \multicolumn{2}{|l|}{Repair or Replace} \\
\hline Step & & & & & & & If OK & If Wrong \\
\hline 1 & \begin{tabular}{l}
(Cont'd) \\
Hold in any numbered key.
\end{tabular} & & & & & & & \\
\hline & Manually clock & \(4^{\prime} 0\) & & & & & A1A4 & A1 A4 \\
\hline & Manually clock & 510 & & DP & A1A4XA4-1 2 & H & A1 A4 & A1 A2 \\
\hline & Manually clock & 6:0 & & & A1A4XA4-1 C & H & A1 A4 & A1 A2 \\
\hline & Manually clock & 6/1 & & & & & & \\
\hline 2 & Extend A1 A1 on an extender board. Set to manual test mode by momentarily grounding the MAN TP Set to state & \(0^{\prime} 0\) & KD 2 & & A1A1XA1-1 12 & L & A1A1 & A1A2 \\
\hline & NOTE & & & & & & & \\
\hline & Hold in a numbered key while checking KD2. & & & & & & & \\
\hline
\end{tabular}
Table 8-11. BCD Data to Mainframe Incorrect (1 of 2)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Step} & \multirow[t]{2}{*}{Symptom or Instruction} & \multirow[t]{2}{*}{\begin{tabular}{l}
State \\
Succession
\end{tabular}} & \multirow[t]{2}{*}{Check Instruction} & \multirow[t]{2}{*}{If Next state wrong check} & \multirow[t]{2}{*}{Test Point Location} & \multirow[t]{2}{*}{\begin{tabular}{l}
Logic \\
Level
\end{tabular}} & \multicolumn{2}{|l|}{Repair or Replace} \\
\hline & & & & & & & If OK & If Wrong \\
\hline & \begin{tabular}{l}
Center frequency DCU output data to mainframe loops is incorrect. Center frequency readout is correct. \\
NOTE: BCD data to the mainframe should be \(1 / 2\) of the \(C F\) readout.
\end{tabular} & & & & & & & \\
\hline 1 & Press STEP \(\uparrow\) key repeatedly and observe PD. & & PD & & A1A5XA5-1 4 & \begin{tabular}{l}
Flash \\
L to H
\end{tabular} & con't & A1 A5 \\
\hline 2 & Enter CLEAR KYBD, \(\mathrm{Hz}, \&\) CF (CF readout is blank). & & & & & & & \\
\hline 3 & Enter 11.111111 MHz STEP \(\uparrow\); & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{Table 8-11. BCD Data to Mainframe Incorrect (2 of 2)} \\
\hline & \multirow[t]{2}{*}{Symptom or Instruction} & \multirow[t]{2}{*}{State Succession} & \multirow[t]{2}{*}{Check Instruction} & \multirow[t]{2}{*}{If Next state wrong - check} & \multirow[t]{2}{*}{Test Point Location} & \multirow[t]{2}{*}{Logic Level} & \multicolumn{2}{|l|}{Repair or Replace} \\
\hline Step & & & & & & & If OK & If Wrong \\
\hline 4 & Check mainframe output frequency with counter. If frequency is not the same as entered frequency, switch Sweep Mode from OFF to AUTO and back to OFF. Check output frequency again. & & & & & & A1 A9 & A1A10* \\
\hline & *Possibly one or two digits only are faulty. Continue with Step 5 to detect faulty digit. IC corresponding to faulty digit on A10 may be replaced. & & & & & & & \\
\hline 5 & Enter STEP \(\uparrow\). Check for counter reading 22.222222 MHz . Repeat STEP \(\uparrow\) and check with counter. Faulty digit will give incorrect reading. & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Step} & \multirow[t]{2}{*}{Symptom or Instruction} & \multirow[t]{2}{*}{State Succession} & \multirow[t]{2}{*}{Check Instruction} & \multirow[t]{2}{*}{If Next state wrong - check} & \multirow[t]{2}{*}{Test Point Location} & \multirow[t]{2}{*}{Logic Level} & \multicolumn{2}{|l|}{Repair or Replace} \\
\hline & & & & & & & If OK & If Wrong \\
\hline 1 & \begin{tabular}{l}
Check readout with the following entries: \\
\(11111111 \mathrm{~Hz} \quad 44444444 \mathrm{~Hz}\) \\
\(22222222 \mathrm{~Hz} \quad 88888888 \mathrm{~Hz}\) \\
If ALL digits show any other number, or an odd character, repair or replace A1A3.
\end{tabular} & & & & & & & \\
\hline 2 & If the readout if incorrect but not as defined in step 1 , connect a frequency counter to the RF Section output. Enter If the counter reading is not the same as the frequency entered, refer to Table 8-10. & & & & & & & \\
\hline
\end{tabular}
Table 8-12 . Readout is Partially Displayed or Incorrect (2 of 2)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[t]{2}{*}{Symptom or Instruction} & \multirow[t]{2}{*}{\begin{tabular}{l}
State \\
Succession
\end{tabular}} & \multirow[t]{2}{*}{Check Instruction} & \multirow[t]{2}{*}{If Next State Wrong Check} & \multirow[t]{2}{*}{Test Point Location} & \multirow[t]{2}{*}{Logic Level} & \multicolumn{2}{|l|}{Repair or Replace} \\
\hline Step & & & & & & & If OK & If Wrong \\
\hline 3 & \begin{tabular}{l}
When the counter reading in step 2 is the same as the keyboard entry: \\
a. If the readout right hand six digits is defective replace A1A12U2. \\
b. If the readout of the remaining digits is defective replace A1A12U1. \\
c. If both sides of the readout are faulty refer to Table 8-13.
\end{tabular} & & & & & & & \\
\hline
\end{tabular}

Table 8-13. Only 1 or 2 Half-Digits Displayed
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[t]{2}{*}{Symptom or Instruction} & \multirow[t]{2}{*}{State Succession} & \multirow[t]{2}{*}{Check Instruction} & \multirow[t]{2}{*}{If Next State Wrong - Check} & \multirow[t]{2}{*}{Test Point Location} & \multirow[t]{2}{*}{Logic Level} & \multicolumn{2}{|l|}{Repair or Replace} \\
\hline Step & & & & & & & If OK & If Wrong \\
\hline 1 & Use extender boards to extend A1A3 & & RSCAN & & A1A3XA3-2 5 & \begin{tabular}{l}
Square wave \\
1.2 ms
\end{tabular} & Step 2 & Step 4 \\
\hline 2 & Use extender boards to extend A1A1 & & ROCK & & A1A1XA1-2 E & \begin{tabular}{l}
10 kHz \\
Clock
\end{tabular} & A1A12 & A1 A1 \\
\hline 3 & Check cabling to A1A12 & & & & & & & \\
\hline 4 & & & SCANCK & & A1A1XA1-2 5 & \begin{tabular}{l}
5 kHz \\
Clock
\end{tabular} & A1A3 & A1A1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{Table 8-14. Center Frequency Readout Does Not Justify Correctly} \\
\hline & \multirow[t]{2}{*}{Symptom or Instruction} & \multirow[t]{2}{*}{State Succession} & \multirow[t]{2}{*}{Check Instruction} & \multirow[t]{2}{*}{If Next State Wrong - Check} & \multirow[t]{2}{*}{Test Point Location} & \multirow[t]{2}{*}{Logic Level} & \multicolumn{2}{|l|}{Repair or Replace} \\
\hline Step & & & & & & & If OK & If Wrong \\
\hline 1 & Hold KYBD pushbutton and enter 10 MHz , then 10 kHz , then 10 Hz . If the readout justifies correctly refer to Table 8-14. & & & & & & & \\
\hline 2 & If justification was incorrect in step 1 Hold in the Hz key & & QU1 & & A1A4XA4-2 10 & H & cont. & A1 A2 \\
\hline 3 & Press Hz key several times & & JUS & & A1A5XA5-2 H & \(\mathrm{H} \rightarrow \mathrm{L}\) & A1A3 & cont. \\
\hline 4 & \begin{tabular}{l}
Set to manual mode by momentarily grounding the MAN TP and hold the Hz key down. \\
Set to state Manually clock
\end{tabular} & \[
\begin{aligned}
& 0 / 4 \\
& 1 / 6
\end{aligned}
\] & & & & & A1 A5 & A1A4 \\
\hline
\end{tabular}
Table 8-15. Readout Does Not Justify with Only One Units Key (1 of 2)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Step} & \multirow[t]{2}{*}{Symptom or Instruction} & \multirow[t]{2}{*}{State Succession} & \multirow[t]{2}{*}{Check Instruction} & \multirow[t]{2}{*}{If Next State Wrong - Check} & \multirow[t]{2}{*}{Test Point Location} & \multirow[t]{2}{*}{Logic Level} & \multicolumn{2}{|l|}{Repair or Replace} \\
\hline & & & & & & & If OK & If Wrong \\
\hline 1 & Use extender boards to extend A1A2 and press the units key that does not respond & & \begin{tabular}{l}
GHz \\
MHz \\
kHz \\
Hz
\end{tabular} & & \begin{tabular}{l}
A1A2U21 pin 8 \\
A1A2XA2-1 L \\
A1A2XA2-1 K \\
A1A2XA2-1 13
\end{tabular} & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H} \\
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \text { A1 A3 } \\
& \text { A1A3 } \\
& \text { A1A3 } \\
& \text { A1A3 }
\end{aligned}
\] & cont. cont. cont. cont. \\
\hline 2 & Use a Logic Probe (or an oscilloscope) to check for a clock while pressing the units key which does not respond & & \begin{tabular}{l}
GHz \\
MHz \\
kHz \\
Hz
\end{tabular} & & A1A2U26 pin 11 A1A2U26 pin 7 A1A2U26 pin 5 A1A2U26 pin 4 & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{~L} \\
& \mathrm{~L}
\end{aligned}
\] & \begin{tabular}{l}
A1A2 \\
A1A2 \\
A1A2 \\
A1A2
\end{tabular} & cont. cont. cont. cont. \\
\hline
\end{tabular}
Table 8-15. Readout Does Not Justify with Only One Units Key (2 of 2)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Step} & \multirow[t]{2}{*}{Symptom or Instruction} & \multirow[t]{2}{*}{State Succession} & \multirow[t]{2}{*}{Check Instruction} & \multirow[t]{2}{*}{If Next State Wrong - Check} & \multirow[t]{2}{*}{Test Point Location} & \multirow[t]{2}{*}{Logic Level} & \multicolumn{2}{|l|}{Repair or Replace} \\
\hline & & & & & & & If OK & If Wrong \\
\hline \multirow[t]{4}{*}{3} & Verify presence of dc voltages \(\quad-10 \mathrm{~V}\) & & & & A1A2XA2.2 L & -10V & cont. & Power Supply \\
\hline & \[
+20 \mathrm{~V}
\] & & & & A1A2XA2-2 11 & \(+20 \mathrm{~V}\) & cont. & \begin{tabular}{l}
Power \\
Supply
\end{tabular} \\
\hline & & & 100 KCK & & A1A2XA2-19 & & A1 A2 & A1 A1 \\
\hline & \begin{tabular}{l}
NOTE \\
Check the interconnections between the keyboard and A1 A11.
\end{tabular} & & & & & & & \\
\hline
\end{tabular}
Table 8-16. Either STEP \(\uparrow\) or STEP \(\downarrow\) Operation Defective (1 of 2)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[t]{2}{*}{Symptom or Instruction} & \multirow[t]{2}{*}{State Succession} & \multirow[t]{2}{*}{Check Instruction} & \multirow[t]{2}{*}{If Next State Wrong Check} & \multirow[t]{2}{*}{Test Point Location} & \multirow[t]{2}{*}{Logic Level} & \multicolumn{2}{|l|}{Repair or Replace} \\
\hline Step & & & & & & & If OK & If Wrong \\
\hline \multirow[t]{6}{*}{1} & \multicolumn{4}{|l|}{\multirow[t]{6}{*}{}} & & \multirow[t]{6}{*}{} & & \multirow[t]{6}{*}{\[
\begin{aligned}
& \mathrm{A} 1 \mathrm{~A} 2 \\
& \mathrm{~A} 1 \mathrm{~A} 5 \\
& \mathrm{~A} 1 \mathrm{~A} 5
\end{aligned}
\]} \\
\hline & Set to manual test mode by momentarily grounding the MAN TP. Set to state & & & & & & & \\
\hline & & & & & & & \[
\mathrm{A} 1 \mathrm{~A} 4
\] & \\
\hline & & & & & & & \[
\mathrm{A} 1 \mathrm{~A} 4
\] & \\
\hline & & & & & & & \[
\begin{aligned}
& \text { A1A5 } \\
& \text { NOTE }
\end{aligned}
\] & \\
\hline & & & & & & & & \\
\hline
\end{tabular}
Table 8-16. Either STEP \(\uparrow\) or STEP \(\downarrow\) Operation Defective (2 of 2)

Table 8-1 7. Both STEP \(\uparrow\) and STEP \(\downarrow\) Defective at the RF Output (1 of 2)

Table 8-17. Both STEP \(\uparrow\) and STEP \(\downarrow\) Defective at the RF Output (2 of 2)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[t]{2}{*}{Symptom or Instruction} & \multirow[t]{2}{*}{State Succession} & \multirow[t]{2}{*}{Check Instruction} & \multirow[t]{2}{*}{If Next State Wrong Check} & \multirow[t]{2}{*}{Test Point Location} & \multirow[t]{2}{*}{Logic Level} & \multicolumn{2}{|l|}{Repair or Replace} \\
\hline Step & & & & & & & If OK & If Wrong \\
\hline \[
\begin{gathered}
2 \\
\text { (cont) }
\end{gathered}
\] & Manually clock & 1/15 & \begin{tabular}{l}
CTR \\
ITS
\end{tabular} & (KB & A1A5XA5-1 K A1 A5 XA5-1 D A1 A5 XA5-1 P & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & cont. cont. A1A4 & \[
\begin{aligned}
& \mathrm{A} 1 \mathrm{~A} 5 \\
& \mathrm{~A} 1 \mathrm{~A} 5 \\
& \mathrm{~A} 1 \mathrm{~A} 5
\end{aligned}
\] \\
\hline & Manually clock & 3/3 & & & & & & \\
\hline & Set to state & \((1)\) & & & & & & \\
\hline & Set to state & 4/3 & & CF & A1A4XA4-1 D & L & A 1 A 4 & A1A2 \\
\hline & Manually clock & \(2 / 7\) & CTT & & A1 A5XA5-1 10 & H & cont. & A1 A5 \\
\hline & & & TTA & & A1A4XA4-1 14 & L & cont. & A145 \\
\hline & & & ('K10) & & A1A4XA4.2 17 & L & cont. & A1 A5 \\
\hline & & & & CKB & A1A5XA5-1 P & H & A1A4 & A1 A5 \\
\hline & Manually clock & 55 & & & & & A1 A6 & \\
\hline
\end{tabular}
Table 8-18. Mamual STEP Defectwe
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Step} & \multirow[t]{2}{*}{Symptom or Instruction} & \multirow[t]{2}{*}{State Succession} & \multirow[t]{2}{*}{Check Instruction} & \multirow[t]{2}{*}{If Next State Wrong Check} & \multirow[t]{2}{*}{Test Point Location} & \multirow[t]{2}{*}{Logic Level} & \multicolumn{2}{|l|}{Repair or Replace} \\
\hline & & & & & & & If OK & If Wrong \\
\hline \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{\begin{tabular}{l}
Select manual step \\
NOTE \\
Check continuity between A1A1, mother board, cabling and the switch.
\end{tabular}} & & \[
\begin{aligned}
& \text { STEP } \\
& \text { STEP }
\end{aligned}
\] & & A1A4XA4-2 D A1A1XA1-1 R & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L}
\end{aligned}
\] & \begin{tabular}{l}
A1A4 \\
SEE \\
NOTE
\end{tabular} & cont. \\
\hline & & & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Step} & \multirow[t]{2}{*}{Symptom or Instruction} & \multirow[t]{2}{*}{State Succession} & \multirow[t]{2}{*}{Check Instruction} & \multirow[t]{2}{*}{If Next State Wrong Check} & \multirow[t]{2}{*}{Test Point Location} & \multirow[t]{2}{*}{Logic Level} & \multicolumn{2}{|l|}{Repair or Replace} \\
\hline & & & & & & & If OK & If Wrong \\
\hline \multirow[t]{2}{*}{1} & \begin{tabular}{l}
Extend A1A7 on extender board check the defective range as shown \\
COARSE \\
MEDIUM \\
FINE
\end{tabular} & & \begin{tabular}{l}
TR1 \\
TR2 \\
TR3
\end{tabular} & & A1A7XA7-1 6 A1A7XA7. 17 A1A7XA7-1 H & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A} 1 \mathrm{~A} 7 \\
& \mathrm{~A} 1 \mathrm{~A} 7 \\
& \text { A1 A } 7
\end{aligned}
\] & cont. cont. cont. \\
\hline & Re-install A1A7 & & & & & & & \\
\hline \multirow[t]{3}{*}{2} & Extend A1 A1 on extender boards and check as shown & & \begin{tabular}{l}
TR1 \\
TR2 \\
TR3
\end{tabular} & & \begin{tabular}{l}
A1A1J1 pin 7 \\
A1A1J1 pin 6 \\
A1A1J1 pin 5
\end{tabular} & \(\left.\begin{array}{l}L \\ L \\ L\end{array}\right\}\) & \[
\begin{aligned}
& \text { SEE } \\
& \text { NOTE }
\end{aligned}
\] & \\
\hline & NOTE & & & & & & & \\
\hline & Check continuity of A1A11 (mother board), A1 A1, cabling and switch. & & & & & & & \\
\hline
\end{tabular}
Table 8-21. Either Up or Down Manual Tune Defective (1 of 2)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[t]{2}{*}{Symptom or Instruction} & \multirow[t]{2}{*}{State Succession} & \multirow[t]{2}{*}{Check Instruction} & \multirow[t]{2}{*}{If Next State Wrong - Check} & \multirow[t]{2}{*}{Test Point Location} & \multirow[t]{2}{*}{\begin{tabular}{l}
Logic \\
Level
\end{tabular}} & \multicolumn{2}{|l|}{Repair or Replace} \\
\hline Step & & & & & & & If OK & If Wrong \\
\hline \multirow[t]{3}{*}{1} & \multirow[t]{2}{*}{\begin{tabular}{l}
Select fine manual tune and turn the manual tune knob \\
Extend A1A1 on the extender boards and rotate the manual tune knob
\end{tabular}} & & PLS & & A1A4XA4-1 K & Flash & \begin{tabular}{l}
Step \\
2 or 3
\end{tabular} & cont. \\
\hline & & & \begin{tabular}{l}
COW \\
CW
\end{tabular} & & \begin{tabular}{l}
A1A1J1 pin 10 \\
A1A1J1 pin 11
\end{tabular} & Flash Flash & \[
\begin{aligned}
& \mathrm{A} 1 \mathrm{~A} 1 \\
& \mathrm{~A} 1 \mathrm{~A} 1
\end{aligned}
\] & \[
\begin{aligned}
& \text { A1 A17 } \\
& \text { A1 A17 }
\end{aligned}
\] \\
\hline & \begin{tabular}{l}
If up tune is defective proceed to step 2 \\
If down tune is defective proceed to step 3
\end{tabular} & & & & & & & \\
\hline
\end{tabular}

Table 8-22. Auto Sweep Defective at All Sweep Rates (1 of 2)

Table 8-23. Auto Sweep Defective at One Sweep Rate (1 of 2)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Step} & \multirow[t]{2}{*}{Symptom or Instruction} & \multirow[t]{2}{*}{State Succession} & \multirow[t]{2}{*}{Check Instruction} & \multirow[t]{2}{*}{If Next State Wrong Check} & \multirow[t]{2}{*}{Test Point Check} & \multirow[t]{2}{*}{Logic Level} & \multicolumn{2}{|l|}{Repair or Replace} \\
\hline & & & & & & & If OK & If Wrong \\
\hline 1 & \begin{tabular}{l}
Enter 10 MHz CF and 5 MHz SWP WIDTH. Switch to single sweep and any sweep rate. Set to manual test mode by momentarily grounding the MAN TP. Press single sweep pushbutton once. ing A1A1. \\
NOTE \\
Set to state \\
Manually clock \\
Check cabling to switches before replac-
\end{tabular} & \[
\begin{aligned}
& 3 / 15 \\
& 2 / 9
\end{aligned}
\] & RQSS & QSS & \[
\begin{aligned}
& \text { A1A4XA4-2 B } \\
& \text { A1A5XA5-2 F }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A} 1 \mathrm{~A} 4 \\
& \mathrm{~A} 1 \mathrm{~A} 1
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A} 1 \mathrm{~A} 1 \\
& \mathrm{~A} 1 \mathrm{~A} 5
\end{aligned}
\] \\
\hline
\end{tabular}
Table 8-25. Manual Sweep Defective (1 of 4)

Table 8-25. Manual Sweep Defective (3 of 4)

Table 8－26．Out of Range Indicator Inoperative（1 of 2）
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{} & ご & & 릉 \\
\hline & \(\frac{\pi}{4}\) & & \\
\hline .응 & \[
\begin{aligned}
& \text { エ } \\
& \frac{5}{5} \\
& \text { 荮 }
\end{aligned}
\] & へコエエコエ & エヘエヘエエ \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline 笠 & － & 0 & \\
\hline
\end{tabular}

Table 8-27. KYBD Pushbutton Readout Defective
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Step} & \multirow[t]{2}{*}{Symptom or Instruction} & \multirow[t]{2}{*}{State Succession} & \multirow[t]{2}{*}{Check Instruction} & \multirow[t]{2}{*}{If Next State Wrong Check} & \multirow[t]{2}{*}{Test Point Location} & \multirow[t]{2}{*}{Logic Level} & \multicolumn{2}{|l|}{Repair or Replace} \\
\hline & & & & & & & If OK & If Wrong \\
\hline \multirow[t]{9}{*}{1} & \multirow[t]{7}{*}{\begin{tabular}{l}
Set to manual test mode Set to state \\
Press KYBD pushbutton \\
Manually clock \\
Manually clock
\end{tabular}} & (6) 14 & \multirow[t]{9}{*}{KTTT 'TTRO CK10} & \multirow[t]{6}{*}{KPB
CKB} & \multirow[t]{9}{*}{\begin{tabular}{l}
A1A4XA4-1 8 \\
A1A5XA5-2 P \\
A1A4XA4-2 15 \\
A1A4XA4-2 17 \\
A1 A5XA5-1 P
\end{tabular}} & \multirow[t]{9}{*}{\[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H} \\
& \mathrm{~L} \\
& \mathrm{~L} \\
& \mathrm{H}
\end{aligned}
\]} & & \\
\hline & & \multirow[t]{4}{*}{\(1 / 4\)} & & & & & A1A4 & A1A1 \\
\hline & & & & & & & cont. & A1A5 \\
\hline & & & & & & & cont. & AlAt \\
\hline & & & & & & & cont. & AlA 4 \\
\hline & & \multirow[t]{4}{*}{\(3 / 6\)} & & & & & A1A 4 & A1A5 \\
\hline & & & & & & & A 1 A7 & \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
NOTE \\
If KPB is wrong, check A1 A11 and cabling.
\end{tabular}} & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Table 8-28. STEP Pushbutton Readout Defective
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Step} & \multirow[t]{2}{*}{Symptom or Instruction} & \multirow[t]{2}{*}{State Succession} & \multirow[t]{2}{*}{Check Instruction} & \multirow[t]{2}{*}{If Next State Wrong Check} & \multirow[t]{2}{*}{Test Point Location} & \multirow[t]{2}{*}{Logic Level} & \multicolumn{2}{|l|}{Repair or Replace} \\
\hline & & & & & & & If OK & If Wrong \\
\hline \multirow[t]{8}{*}{1} & Set to manual test mode by momentarily grounding the MAN TP. Set to state & 5/4 & \multirow[t]{2}{*}{ITS} & \multirow[t]{2}{*}{IPB} & & & & \\
\hline & \begin{tabular}{l}
Hold in STEP pushbutton \\
Manually clock
\end{tabular} & \multirow[t]{2}{*}{\(1 / 2\)} & & & A1A5XA5-1 D & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A} 1 \mathrm{~A} 4 \\
& \text { cont. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { NOTE } \\
& \text { A1 A5 }
\end{aligned}
\] \\
\hline & \multirow[t]{4}{*}{If wrong, check A1A1 and interconnections.} & & \multirow[t]{6}{*}{\begin{tabular}{l}
XOR \\
UTT \\
TTRO \\
CK10
\end{tabular}} & \multirow[t]{6}{*}{CKB} & \multirow[t]{2}{*}{\begin{tabular}{l}
A1A4XA4-2 R \\
A1A4XA4-2 16
\end{tabular}} & \multirow[t]{2}{*}{H
H} & \multirow[t]{2}{*}{cont. cont.} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{A} 1 \mathrm{~A} 5 \\
& \mathrm{~A} 1 \mathrm{~A} 4
\end{aligned}
\]} \\
\hline & & \multirow[t]{5}{*}{3/6} & & & & & & \\
\hline & & & & & A1A4XA4-2 15 & L & cont. & A1 A4 \\
\hline & & & & & A1A4XA4.2 17 & L & cont. & A1A4 \\
\hline & \multirow[t]{2}{*}{Manually clock} & & & & A1A5XA5-1 P & H & A1 A4 & A1 A5 \\
\hline & & & & & & & A1 A7 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Step} & \multirow[t]{2}{*}{Symptom or Instruction} & \multirow[t]{2}{*}{State Succession} & \multirow[t]{2}{*}{Check Instruction} & \multirow[t]{2}{*}{If Next State Wrong - Check} & \multirow[t]{2}{*}{Test Point Location} & \multirow[t]{2}{*}{Logic Level} & \multicolumn{2}{|l|}{Repair or Replace} \\
\hline & & & & & & & If OK & If Wrong \\
\hline \multirow[t]{9}{*}{1} & Set to manual test mode by momentarily grounding the MAN TP. Set to state & 6/4 & \multirow[t]{3}{*}{FTS} & \multirow[t]{7}{*}{FPB} & & & & \\
\hline & \multirow[t]{6}{*}{\begin{tabular}{l}
Hold in the SWP WIDTH pushbutton \\
NOTE Manually clock \\
If FPB is wrong, check A1A1 and wiring
\end{tabular}} & \multirow[t]{2}{*}{1/3} & & & \begin{tabular}{l}
A1A4XA4-1 4 \\
A1A5XA5-1 5
\end{tabular} & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H}
\end{aligned}
\] & A1 A4 cont. & \[
\begin{aligned}
& \text { NOTE } \\
& \text { A1A5 }
\end{aligned}
\] \\
\hline & & & & & & & & \\
\hline & & & XOR & & A1A5XA5-2 R & H & cont. & A1A5 \\
\hline & & & UTT & & A1A4XA4-2 16 & H & cont. & A1A4 \\
\hline & & & TTRO & & A1A4XA4-2 15 & L & cont. & A1A4 \\
\hline & & & CK10 & & A1A4XA4-2 17 & L & cont. & A1A4 \\
\hline & Manually clock & 3/6 & & CKB & A1A5XA5-1 P & H & A1A4
A1A7 & A1A5 \\
\hline & Manuany clock & & & & & & A1A7 & \\
\hline
\end{tabular}

Table 8-30. Remote Control Problems (1 of 7)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Step} & \multirow[t]{2}{*}{Symptom or Instruction} & \multirow[t]{2}{*}{State Succession} & \multirow[t]{2}{*}{Check Instruction} & \multirow[t]{2}{*}{If Next State Wrong - Check} & \multirow[t]{2}{*}{Test Point Location} & \multirow[t]{2}{*}{\begin{tabular}{l}
Logic \\
Level
\end{tabular}} & \multicolumn{2}{|l|}{Repair or Replace} \\
\hline & & & & & & & If OK & If Wrong \\
\hline 1 & Verify that the mainframe and the plug-ins operate properly in the local operating mode. & & & & & & & \\
\hline & Refer to Section III of this manual and verify that programming procedures are correct. & & & & & & & \\
\hline & If the flag signal is faulty in remote operation proceed to step 2, otherwise proceed to step 3. & & & & & & & \\
\hline 2 & Measure voltage & & FLAG & & A3A1U3 pin 10 & \(\geqslant 3.0 \mathrm{~V}\) & cont. & cont. \\
\hline
\end{tabular}
Table 8-30. Remote Control Problems (2 of 7)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Step} & \multirow[t]{2}{*}{Symptom or Instruction} & \multirow[t]{2}{*}{State Succession} & \multirow[t]{2}{*}{Check Instruction} & \multirow[t]{2}{*}{If Next State Wrong Check} & \multirow[t]{2}{*}{Test Point Location} & \multirow[t]{2}{*}{Logic Level} & \multicolumn{2}{|l|}{Repair or Replace} \\
\hline & & & & & & & If OK & If Wrong \\
\hline \multirow[t]{5}{*}{2} & \begin{tabular}{l}
Cont'd \\
Use a logic probe or an oscilloscope to monitor
\end{tabular} & & FLAG & & A3A1U3 pin 10 & H & cont. & cont. \\
\hline & Use a pulser probe to pulse & & COMMAND & & A3A1U3 pin 1 & \begin{tabular}{l}
\[
\mathrm{H} \rightarrow \mathrm{~L}
\] \\
Flash
\end{tabular} & cont. & A3A1 \\
\hline & Use a pulser probe to pulse & & COMM AND & & J3 pin 9 & \begin{tabular}{l}
\(\mathrm{H} \rightarrow \mathrm{L}\) \\
Flash
\end{tabular} & NOTE 1 & Check Cable \\
\hline & NOTE 1 & & & & & & & \\
\hline & Tests indicate that external command source is defective. & & & & & & & \\
\hline \multirow[t]{2}{*}{3} & If remote control is completely inoperative proceed to step 4 ; if partially operative continue. & & & & & & & \\
\hline & Is remote control of CTR FREQ or STEP inoperative? If yes, proceed to step 3-a, if no, proceed to step 3-B. & & & & & & & \\
\hline \multirow[t]{10}{*}{3-a} & NOTE 2 & & & & & & & \\
\hline & Checks that follow include various cables that should be checked for continuity before exchanging the indicated assembly & & & & & & & \\
\hline & Use a pulser probe (or momentarily ground) J3 pin 9 to pulse the command line. & & & & & & & \\
\hline & Check & & D2-8 & & A3A2U4 pin 1 & L & cont. & A3A2 \\
\hline & & & D2-4 & & A3A2U4 pin 14 & L & cont. & A3A2 \\
\hline & & & D2-2 & & A3A2U4 pin 11 & L & cont. & A3A2 \\
\hline & & & D2-1 & & A3A2U4 pin 8 & L & cont. & A3A2 \\
\hline & & & CF & & A1A11XA11-2 33 & L & cont. & A3A1 \\
\hline & & & STEP \(\uparrow\) & & A1A11XA11-2 34 & H & cont. & A3A1 \\
\hline & & & STEP \(\downarrow\) & & A1A11XA11-2 36 & H & cont. & A3A1 \\
\hline
\end{tabular}

Table 8-30. Remote Control Problems (4 of 7)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[t]{2}{*}{Symptom or Instruction} & \multirow[t]{2}{*}{State Succession} & \multirow[t]{2}{*}{Check Instruction} & \multirow[t]{2}{*}{If Next State Wrong Check} & \multirow[t]{2}{*}{Test Point Location} & \multirow[t]{2}{*}{Logic Level} & \multicolumn{2}{|l|}{Repair or Replace} \\
\hline Step & & & & & & & If OK & If Wrong \\
\hline \multirow[t]{22}{*}{3-b} & \begin{tabular}{rr}
Cont'd & Pulse command \\
& J3 Pin 9
\end{tabular} & & Atten & & J6 pin 24 & \[
\begin{aligned}
& \text { Pulses } \\
& \mathrm{L} \rightarrow \mathrm{H}
\end{aligned}
\] & cont. & A3A1 \\
\hline & AM-FM FCTN & & & & & & & \\
\hline & \begin{tabular}{l}
Ground J3 pin 29 and pulse (or momentarily ground) J3 pin 9 . \\
Check
\end{tabular} & & D2-8 & & A3A2U4 pin 1 & L & cont. & A3A2 \\
\hline & & & D2-4 & & A3A2U4 pin 14 & H & cont. & A3A2 \\
\hline & & & D2-2 & & A3A2U4 pin 11 & L & cont. & A3A2 \\
\hline & & & D2-1 & & A3A2U4 pin 8 & & cont. & A3A2 \\
\hline & Pulse command & & \[
\mathrm{AM} \cdot \mathrm{FM}
\] & & \[
\mathrm{J} 5 \text { pin } \mathrm{V}
\] & \[
\begin{aligned}
& \text { Pulses } \\
& L \rightarrow H
\end{aligned}
\] & cont. & \\
\hline & AM-FM \% & & & & & & & \\
\hline & \begin{tabular}{l}
Ground J3 pins 29 and 31 and pulse (or momentarily ground) J3 pin 9 . \\
Check
\end{tabular} & & D2.8 & & A3A2U4 pin 1 & L & cont. & A3A2 \\
\hline & & & D2-4 & & A3A2U4 pin 14 & H & cont. & A3A2 \\
\hline & & & D2-2 & & A3A2U4 pin 11 & L & cont. & A3A2 \\
\hline & & & D2-1 & & A3A2U4 pin 8 & H & cont. & A3A2 \\
\hline & Pulse command & & AM.FM \% & & J5 pin U & \begin{tabular}{l}
Pulses \\
\(\mathrm{L} \rightarrow \mathrm{H}\)
\end{tabular} & cont. & A3A2 \\
\hline & FM CAL & & & & & & & \\
\hline & Ground J3 pins 29 and 30 and pulse (or momentarily ground) J3 pin 9 . Check & & D2.8 & & A3A2U4 pin 1 & L & cont. & A3A2 \\
\hline & & & D2-4 & & A3A2U4 pin 14 & H & cont. & A 3 A2 \\
\hline & & & D2-2 & & A3A2U4 pin 11 & H & cont. & A3A2 \\
\hline & & & D2-1 & & A3A2U4 pin 8 & L & cont. & A3A2 \\
\hline & Pulse command & & FM CAL & & \(\mathrm{J}_{5} \mathrm{pin} \mathrm{Z}\) & Pulses
\[
\mathrm{L} \rightarrow \mathrm{H}
\] & cont. & A3A1 \\
\hline & RF FCTN & & & & & & & \\
\hline & \begin{tabular}{l}
Ground J3 pins 29, 30 and 31 and pulse (or momentarily ground) J3 pin 9 . \\
Check
\end{tabular} & & D2-8 & & A3A2U4 pin 1 & L & cont. & A 3 A 2 \\
\hline & & & D2-4 & & A3A2U4 pin 14 & H & cont. & A3A2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{} & \multicolumn{4}{|l|}{} & \[
\underset{~}{<}
\] & \[
\underset{~}{4}
\] & \[
\begin{aligned}
& e \\
& \vdots \\
& <
\end{aligned}
\] & \[
\underset{<}{<}
\] & \multicolumn{2}{|r|}{} \\
\hline & & & & & － & \(\underset{\sim}{\text { ¢ }}\) & \[
\underset{~-~-~}{\text { - }}
\] & \[
\underset{\substack{-1 \\ 4}}{\substack{2 \\ \hline}}
\] & & \\
\hline . 릉 & & & & & & & & & & ヘぃ汇 \\
\hline & \multicolumn{3}{|l|}{} & \multicolumn{2}{|r|}{} & & & & \multicolumn{2}{|r|}{} \\
\hline & & & & & & & & & & \\
\hline 高 & & & & & \[
\stackrel{\rightharpoonup}{a}
\] & \[
\underset{\sim}{\underset{\sim}{*}}
\] & \[
\underset{\Delta}{ \pm}
\] & \[
\stackrel{\infty}{\sim}
\] & & 式式㗹 \\
\hline & & & & & & & & & & \\
\hline E & \begin{tabular}{l}
Cont＇d \\
Pulse command
\end{tabular} & & & & & & & & Remote control system is completely
inoperative． & เ๐会 \\
\hline 气ī゙ㄹ & ¢ & & ๗゙ & & & & & & ＋ & \\
\hline
\end{tabular}
Table 8-30. Remote Control Problems (6 of 7)

Table 8-31. Harmonics Excessive Below 1300 MHz
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Step} & \multirow[t]{2}{*}{Symptom or Instruction} & \multirow[t]{2}{*}{State Succession} & \multirow[t]{2}{*}{Check Instruction} & \multirow[t]{2}{*}{If Next State Wrong - Check} & \multirow[t]{2}{*}{Test Point Location} & \multirow[t]{2}{*}{Logic Level} & \multicolumn{2}{|l|}{Repair or Replace} \\
\hline & & & & & & & If OK & If Wrong \\
\hline & Check Doubler line & & & & A1A11XA11-1 26 & H & A1 A6* & 86603A \\
\hline & *Check continuity of line to plug-in. & & & & & & & \\
\hline
\end{tabular}

Table 8-32. Output Frequency is Half Indicated Frequency Above 1300 MHz
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[t]{2}{*}{Symptom or Instruction} & \multirow[t]{2}{*}{State Succession} & \multirow[t]{2}{*}{Check Instruction} & \multirow[t]{2}{*}{If Next State Wrong Check} & \multirow[t]{2}{*}{Test Point Location} & \multirow[t]{2}{*}{\begin{tabular}{l}
Logic \\
Level
\end{tabular}} & \multicolumn{2}{|l|}{Repair or Replace} \\
\hline Step & & & & & & & If OK & If Wrong \\
\hline & Check DBL & & & & A1A11 XA11-1 26 & L & A1A6 & cont. \\
\hline & Put A1A7 on Extender Board & & PILIM & & A1 A7XA7-1 D & L & A1 A6 & cont. \\
\hline & & & 13 CL & & A1A7XA7-1 4 & H & A1A6 & cont. \\
\hline & & & 16LIM & & A1A7XA7-2 P & L & A1 A6 & cont. \\
\hline & & & OPID-1 & & A1A7XA7-1 3 & H & * & A1A7 \\
\hline & & & OPID-2 & & A1A7XA7-1 C & L & * & A1A7 \\
\hline & & & OPID-4 & & A1A7XA7-1 B & H & * & A1A7 \\
\hline & *Plug-in or wiring from DCU to Plug-in. & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Table 8-33. Troubleshooting Option 005 Interface Circuits (1 of 2)
\begin{tabular}{|c|c|c|}
\hline Step & Procedure & Take the following action or proceed to step shown \\
\hline 1 & Check the instrument in the LOCAL mode as shown in Section III. & If the instrument does not operate properly proceed to Step 2. If the instrument operates properly proceed to Step 4. \\
\hline 2 & Check LCL/RMT line on A3A2U9 pin 9. & If the level is high refer to the RF Section Troubleshooting. If level is low proceed to Step 3. \\
\hline 3 & Check REN-H at A3XA5 pin 5. & If the level is high A3A2 is defective. If the level is low check the external controller or cabling. \\
\hline 4 & Check +5 V at A3XA4 pin L. & If the voltage is not correct, refer to Table 8-6. If the voltage is correct proceed to Step 5. \\
\hline 5 & Check the 2 MHz input clock on A3A1. & If the 2 MHz clock is not present refer to the reference section troubleshooting tables. If the clock is present proceed to Step 6. \\
\hline 6 & Check Center Frequency programming for both the mainframe and Plug-in. & If just Plug-in programming is defective, proceed to Step 7. If all programming modes are defective, proceed to Step 8. \\
\hline 7 & Check to see if only Plug-in programming is defective. & If just Plug-in programming is bad proceed to Step 7-a. Otherwise proceed to Step 7-b, then Step 7-c. \\
\hline 7-a & Check PICK-L on A3A1U5 pin 8 for a burst of clock pulses when the Plug-in is addressed. & If the clock pulses are present proceed to Step 7-d. If the clock pulses are not present, trouble is in the DCU. \\
\hline 7-b & If only CF is defective, program a CF and check RMT CF-L at A3A1U4 pin 10. & If RMT CF-L steps low, trouble is in the DCU. If RMT CF-L does not step low, A3A1 is defective. \\
\hline 7-c & \begin{tabular}{l}
If only CF is defective program a CF Step \(\uparrow\) and check level at A3A1U4 pin 3. \\
Program a CF Step \(\downarrow\) and check level at A3A1U4 pin 2.
\end{tabular} & \begin{tabular}{l}
If Step \(\uparrow\) goes low, continue with test. If Step 7-c does not go low, A3A1 is defective. \\
If Step \(\downarrow\) goes low, trouble is in the DCU. If Step 7-c does not go low, trouble is in A3A1 assembly.
\end{tabular} \\
\hline 7-d & Check the output clocks to the plug-ins. A burst of clock pulses should appear on A3A1U5 pins as listed below:
\[
\begin{aligned}
& \text { U5 pin } 10-\text { FM CAL } \\
& \text { U5 pin } 13-\text { AM/FM\% } \\
& \text { U5 pin } 4-\text { AM/FM Function } \\
& \text { U5 pin } 1-\text { RF Attenuator }
\end{aligned}
\] & \begin{tabular}{l}
If any of the clocks do not appear verify that programming is correct. \\
If the burst of address pulses does not appear for any function, A3A1 is defective.
\end{tabular} \\
\hline 8 & If all programming modes are defective, remove the A3A2 assy and check the jumper pins for the following configuration: & \begin{tabular}{l}
If jumper pins are not as shown repair and replace the A3A2 Assy. \\
If the jumper pins are correctly placed proceed to Step 9.
\end{tabular} \\
\hline
\end{tabular}

Table 8-33. Troubleshooting Option 005 Interface Circuits (2 of 2)

Table 8-34. Troubleshooting the Reference Section (1 of 2)

\section*{Test Equipment Required:}

\section*{PROCEDURE:}
1. Internal Reference Accuracy Adjustment (see Figure 5-3), (allow adequate warmup time).
2. Use the Digital Voltmeter to verify the presence of dc operating voltages at all assemblies before beginning tests. Proceed to next step.
3. Disconnect the REF INPUT cable from A4A2. Use the Spectrum Analyzer and the counter to verify the presence of the reference signal at the cable output \((10 \mathrm{MHz}\), at least \(+5 \mathrm{dBm})\).
4. Set the rear panel REFERENCE switch to EXT and apply a 1 Vrms 10 MHz signal to the reference INPUT. Recheck the signal at the end of the cable to the A4A2 assembly.
5. Signal is present - A22 assembly is defective. Order replacement or refer to Service Sheet and repair as necessary.
6. Set the rear panel REFERENCE switch to INT and check the output of the A21 reference oscillator signal is present (check cable to A21) - signal is not present - A21 is defective. Order a replacement unit.
7. Use the Spectrum Analyzer and the Counter to verify the presence of the 100 MHz signal at the A4Q4 100 MHz output. Should be exactly 100 MHz , at least +10 dBm . Amplitude not as specified, A4A4 Assembly is defective. Order replacement assembly or refer to Service Sheet 3 and repair as required.

7-a. Frequency is not as specified. Remove the covers from A4A3 and A4A2. Use an oscilloscope and a Counter to verify the presence of the 20 MHz input to A 4 A 3 . Should be \(20 \mathrm{MHz} \pm 1 \mathrm{MHz}\) and at least 300 mV p-p. A4A4 assembly is defective. Order replacement assembly or refer to Service Sheet 3 and repair as required.

7-b. Use an oscilloscope and a counter to verify the presence of the 20 MHz output from the A4A3 assembly. Should be \(20 \mathrm{MHz} \pm 1 \mathrm{MHz}\) and at least 2 V p-p - frequency or level is not as specified. A4A3 assembly is defective. Order a replacement assembly or refer to Service Sheet 3 and repair as required.

7-c. Connect the oscilloscope to A4TP1. The oscilloscope should display a 20 nanosecond pulse at least 2V p-p. Pulse is present as specified.

7-d. Use the DVM to check the de level at the A4A2 "VCO" lead. Voltage should be about +12 to +14 volts. Voltage is as specified.

7-e. Connect the counter to the 20 MHz OUTPUT from the A4A4 assembly. Verify that A 4 A 4 C 2 can be adjusted to \(20 \mathrm{MHz} \pm 5 \mathrm{kHz}\).

\section*{NOTE}

If the outputs from the A4A2 assemblies as specified in 7-c, 7-d and 7-e are not as specified, order replacement assemblies or refer to Service Sheet 3 and repair as required.

7-f. Adjustment called for in step 7 -e cannot be made as per specifications called for in test 7 -e-A4A4 assembly is defective. Order replacement assembly or refer to Service Sheet 3 and repair as required.

Table 8-34. Troubleshooting the Reference Section (2 of 2)
8-a. If the amplitude and frequency are as specified in test 7 use the Spectrum Analyzer and the Counter to check the 500 MHz output from the A4A4 assembly. Should be exactly 500 MHz and at least +3 dBm . - Frequency or level is not as specified. A4A4 assembly is defective. Order an A4A4 assembly or refer to Service Sheet 3 and repair as required.

8-b. If the signal is as specified in step 8-a, use the Spectrum Analyzer and the Counter to check the 20 MHz output from the A4A4 assembly. Should be exactly 20 MHz and at a level between -3 and -6 dBm .

8-c. Frequency or level is not as specified. A4A4 assembly is defective. Order a replacement assembly or refer to Service Sheet 3 and repair as required.

8-d. If the signal is as specified use the Oscilloscope to check the 10 MHz output from the A 4 A 4 assembly. Level should be greater than 1.5 V p-p. Use the counter to check the frequency. Frequency should be exactly 10 MHz . If frequency or level is not as specified, A 4 A 3 assembly is defective. Order a replacement assembly or refer to Service Sheet 3 and repair as required.

8-e. If the signal is as specified in 8-d, use the oscilloscope and counter to check the reference outputs from the A4 A1 assembly. The \(2 \mathrm{MHz}, 400 \mathrm{kHz}\), and both 100 kHz signals should be greater than 2 V p-p.

8-f. Frequency or level is not as specified. Use an oscilloscope to check 10 MHz input to the A4A1 assembly from the A 4 A 3 assembly. Level should be greater than 1.5 V p-p. Signal is not as specified - A4A3 assembly is defective. Order replacement assembly or refer to Service Sheet 4 and repair as required. Signal is defective order replacement assembly or refer to Service Sheet 2 and repair as required.

8-g. All signals from A4A1 assembly are correct. Reference loop is functioning properly.

\section*{NOTE}

If a malfunction is found and corrected in the Reference Section, perform all of the alignment instructions for the Reference Section which appear in Section V.

Table 8-35. High Frequency Loop Troubleshooting (1 of 3)

\section*{Test Equipment Required:}

Frequency Counter
Digital Voltmeter
Pulse Generator
Spectrum Analyzer
Signal Generator/Sweeper
Oscilloscope (with 10:1 divider probes)
Logic Analyzer

\section*{NOTE}

The HP Analyzer may not be readily available. If it is not, other instruments may be substituted from Table 1-2 at the expense of additional funds and "out-of-service" time.

\section*{PROCEDURE:}
1. Check that keyboard digit information is reaching the remote input and the HF Loop input. The MAN TP. should be grounded to enable using a single clock pulse until KDN-H is released. This enables the KDN-H to be held until adequate time has elapsed to complete the specified test.

Use the Spectrum Analyzer and a Counter to verify that the output at the rear (remote) connector of the A4A5 assembly is about +13 to +15 dBm at the frequencies shown.
\begin{tabular}{cccc}
\begin{tabular}{c}
Center Frequency \\
Setting in MHz
\end{tabular} & \begin{tabular}{c}
Center Output \\
MHz
\end{tabular} & \begin{tabular}{c}
Input Logic Level \\
EDCBA pins
\end{tabular} \\
0 & 0 & 0 & 450.000000 \\
0 & 1 & 0 & 440.000000 \\
0 & 2 & 0 & 430.000000 \\
0 & 3 & 0 & 420.000000 \\
0 & 4 & 0 & 410.000000 \\
0 & 5 & 0 & 400.000000 \\
0 & 6 & 0 & 390.000000 \\
0 & 7 & 0 & 380.000000 \\
0 & 8 & 0 & 370.000000 \\
0 & 9 & 0 & 360.000000 \\
1 & 0 & 0 & *350.000000
\end{tabular}

If the frequencies are not correct use the DVM to check the logic levels at the A4A6 "A", "B", "C", "D" and " \(E\) " inputs. For frequencies shown in this Table logic levels should be as shown in the level column. \(1=\) high, about +3 V .
2. All frequencies and levels are as specified. HF Loop is functioning properly.
3. Output is low or there is no output. A4A5 is defective. Order replacement assembly or refer to Service Sheet 3 and repair as required.
4. Input logic levels are not as specified. Check interconnections to the interface circuit. If connections are good, trouble is in the interface circuits of the DCU. Refer to Table 8-8.
5. Levels are as specified in test 1 but frequencies are not. Use the Oscilloscope and Counter to check the 10 MHz input to the A4A7 assembly. Should be greater than \(1-5 \mathrm{~V}\) p-p. If all frequencies and levels are as specified in Test 1 the HP Loop circuits are functioning properly. Proceed to Table 8-35.
6. If frequencies or levels are not as specified, trouble is in the Reference Section or cable A4W2. Check the cable, then return to the beginning of this test. If the cable is good, recheck the Reference Section.
7. If frequency and level is as specified, open the HF phase lock loop by removing the cable from the A4A5 \(350-450 \mathrm{MHz}\) VCO OUTPUT. Use the Oscilloscope or the DVM to check the dc level on the lead marked 0 between the A 4 A 6 and A 4 A 7 assemblies, the level should be \(0 \mathrm{~V} \pm 0.1 \mathrm{~V}\). If the dc level is not as specified, the A4A7 assembly is defective. Order a replacement assembly or refer to Service Sheet 5 and repair as required.
8. If dc level is as specified, refer to the first step in the HF Loop procedure and repeat the frequency portion of the test. Frequencies shown should be within \(\pm 500 \mathrm{kHz}\). If the frequencies are not as specified, use the DVM to check the dc on the lead marked "freq" between the A4A5 and A4A6 assemblies. With

Table 8-35. High Frequency Loop Troubleshooting (3 of 3)
center frequencies at 0 MHz reading should be -34 Vdc . At 100 MHz it should be approximately -7 Vdc . If levels are not as specified, refer to Section V and perform the adjustment procedure.

8-a. If the adjustment procedure does not correct the problem, use the DVM to measure the lead "comp" in the A4A6 assembly. Should be about -37 V to -38 V .

8-b. If the levels are correct from test 8 or the voltage is not as specified in 8 -a, the A4A5 assembly is defective. Order a replacement assembly or refer to Service Sheet 6 and repair as required.

8-c. If the voltage is as specified in 8 -a the A4A6 assembly is defective. Order a replacement assembly or refer to Service Sheet 4 and repair as required.
9. Frequencies are as specified in test 8. Close the HF Loop by reconnecting the cable between the A4A6 and A4A7 assemblies. Use the Oscilloscope to check 2 to 3 V p-p beat note at the lead labeled \(\emptyset\) on the A4A7 assembly.

\section*{NOTE}

The beat frequency depends on how far the high frequency is out of lock.

9-a. The beat note is present. The A4A6 assembly is defective. Order a replacement assembly or refer to Service Sheet 5 and repair as required.

9-b. The beat note is present. The A4A7 assembly is defective. Order a replacement assembly or refer to Service Sheet 5 and repair as required.

\section*{NOTE}

If repairs are required in any portion of the HF Loop perform the adjustment procedures outlined in Section \(V\) of this manual.

\section*{NOTES}
1. The following five troubleshooting tables are arranged in the sequence of the output to the RF Section back to the inputs from the Reference Section. These Loops are commonly referred to as the LF (Low Frequency) Loops; all are physically mounted on the A2 Mother Board Assembly.
2. Since some of these notes are used in several places, they appear in Table 8-39 to avoid repetition.
3. Locations of the assemblies within these loops are shown in Figure 8-114.

Reference: Service Sheets 15, 16 and 17.

Test Equipment Required (from Table 1-2):
Digital Voltmeter
Oscilloscope (with 10:1 probes)
Frequency Counter
\begin{tabular}{|c|c|c|}
\hline Step & Procedure & Take the following action or proceed to step shown \\
\hline 1 & Use the Oscilloscope and the Frequency Counter to check the N1 output at A2XA17-1 pin 2. Level should be greater than 0.4 V p-p. For formula to calculate frequency see Note 5 of Table 8-39. & If the frequency is not as specified see Note 2 of Table 8-39 and proceed to Step 2. If the frequency and level are as specified, proceed to Step 3. \\
\hline 2 & Proceed to Table 8-38 N1 Loop Troubleshooting. & Perform tests shown in Table 8-38. \\
\hline 3 & Use the plug provided to ground A2TP14. Use the Frequency Counter to check the SL1 output at A2TP22. & See Note 6 of Table \(8-41\) to calculate frequency output. Frequency should be as calculated, \(\pm 150 \mathrm{kHz}\). If frequency is not as calculated, proceed to Step 4 (also see Note 2 of Table 8-39). If frequency is as calculated, proceed to Step 5. \\
\hline 4 & Use the DVM to check the de levels at A2XA18-2 pin R. The level is controlled by digits 5,6 and 7 . With the digits set to 000 , the level should be -25.5 V (typical). With the digits set to 999 , the level should be about -5.4 V . Intermediate steps should be about .02 V . & If the level is not as specified the A18 assembly is defective. Order a replacement assembly or refer to Service Sheet 16 and repair as required. If the levels are as specified the A19 assembly is defective. Order a replacement or refer to Service Sheet 16 and repair as required. \\
\hline 5 & Use the Frequency Counter to check the frequency at A2XA19-1 pin 2. The frequency should be as calculated for Step 3. & If frequency is not as calculated the A19 assembly is defective. Order a replacement or refer to Service Sheet 17 and repair as required. If the frequency is correct, proceed to Step 6. \\
\hline 6 & Use the Frequency Counter to check the frequency at A2TP19. The frequency should be the difference frequency between the N1 and SL1 outputs. If the frequency is as specified, trouble is in the Frequency Extension Module or the RF Section. & If the frequency is not as specified the A18 assembly is defective. Order a replacement or refer to Service Sheet 16 and repair as required. If the frequency is as specified, the A15 assembly is defective. Order a replacement or refer to Service Sheet 15 and repair as required. \\
\hline
\end{tabular}

Table 8-37. Summing Loop 2 Troubleshooting
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{\begin{tabular}{l}
Reference: Service Sheets 13 and 14 \\
Test Equipment Required (from Table 1-2): \\
Oscilloscope (with \(10: 1\) probes) \\
Frequency Counter
\end{tabular}} \\
\hline Step & Procedure & Take the following action or proceed to step shown \\
\hline 1 & Use the Oscilloscope and the Frequency Counter to check the SL2 output at A2TP6. Level should be greater than 1 V p-p. For the formula to calculate frequency see Note 1 of Table 8-39. & If the frequency and level are as specified, recheck Summing Loop 1 (Table 8-34). If the frequency and level are correct proceed to Step 2. \\
\hline 2 & Use the Oscilloscope and the Frequency Counter to check the N2 output at A2XA13-1 pin 4. Level should be greater than 275 mV p-p. Refer to Note 3 of Table 8 - 39 for formula to calculate frequency. & If the frequency and level are not as specified, proceed to the N2 Loop Troubleshooting, Table 8-37. If the frequency and level are as specified, proceed to Step 3. \\
\hline 3 & Use the Oscilloscope and the Frequency Counter to check the N3 output at A2XA8-1 pin 4. Level should be greater than 2 V p-p. Refer to note 4 of Table 8-39 for formula to calculate frequency. & If the frequency and level are not as specified, proceed to the N3 Loop Troubleshooting, Table 8-38. If the frequency and level are as specified proceed to Step 4. \\
\hline 4 & Use the plug provided to ground A2TP8. Use the Frequency Counter to check the SL2 output at A2XA11-1 pin 2. Refer to Note 1 of Table \(8-39\) for formula to calculate frequency. Should be \(\pm 150 \mathrm{kHz}\). & If the frequency is as specified the A12 assembly is defective. Order a replacement assembly or refer to Service Sheet 13 and repair as required. If the frequency is not correct proceed to Step 5. \\
\hline 5 & Use the Frequency Counter to check the output at A2TP6. & \begin{tabular}{l}
If the frequency is as specified in Step 4 the A11 assem bly is defective. \\
If the frequency is not as specified in Step 4 proceed to Step 6.
\end{tabular} \\
\hline 6 & Remove the A12 assembly and repeat the test. The frequency should be the same as that calculated for Step 4. & If the frequency is as specified the A12 assembly is defective. Order a replacement assembly or refer to Service Sheet 13 and repair as required. If the frequency is not as specified the A11 assembly is defective. Order a replacement assembly or refer to Service Sheet 14 and repair as required. \\
\hline
\end{tabular}

Reference: Service Sheets 11 and 12.
Test Equipment Required (from Table 1-2):
Oscilloscope (with \(10: 1\) probes)
Frequency Counter
\begin{tabular}{|l|c|l|}
\hline Step & Procedure & Take the following action or proceed to step shown \\
\hline 1 & Use the Oscilloscope and the Frequency & If the frequency and level are as specified, the A8 assem- \\
\hline
\end{tabular}

Counter to check the N3 output at A2XA8-1 pin 6 . The level should be greater than 0.5 V p-p. Frequency should be the same as that in Table 8-35 X 10.

2 Use the plug provided to ground A2TP4. Use Frequency Counter to check the frequency at A2XA8-1 pin 6. The frequency should be the same as Step \(1 \pm 250 \mathrm{kHz}\). Remove the ground plug.

3 Use the Oscilloscope and the Frequency Counter to check the 100 kHz input at A2XA10-1 pin 2. The signal should be exactly 100 kHz at about 2.5 V p-p.

If the frequency and level are as specified, the A8 assembly is defective. Order a new assembly or refer to Service Sheet 12 and repair as required. If the frequency is not as specified, proceed to step 2.

If the frequency is not as specified the A8 assembly is defective. Order a replacement or refer to Service Sheet 12 and repair as required. If the frequency is as specified proceed to Step 3.

If the frequency is not as specified check the interconnection to the reference section. If the frequency is as specified the A10 assembly is defective. Order a replacement assembly or refer to Service Sheet 11 and repair as required.

Table 8-39. N2 Loop Troubleshooting (1 of 2)
Reference: Service Sheets 9 and 10.
Test Equipment Required (from Table 1-2):
Oscilloscope (with \(10: 1\) probes)
Frequency Counter
\begin{tabular}{|l|l|l|}
\hline Step & \multicolumn{1}{|c|}{ Procedure } & Take the following action or proceed to step shown \\
\hline 1 & \begin{tabular}{l}
If the frequency was not as specified in Step 2 \\
of Table 8-35 use the plug provided to ground \\
A2TP12 and use the Frequency Counter to \\
check the N2 output at A2XA13-1 pin 4. \\
The frequency should be as specified in the \\
step shown above \(\pm 250 \mathrm{kHz}\).
\end{tabular} & \begin{tabular}{l}
If the frequency is not as specified the A13 assembly is \\
defective. Order a replacement assembly or refer to \\
Service Sheet 10 and repair as required. If the frequency \\
is as specified proceed to Step 2.
\end{tabular} \\
2 & \begin{tabular}{l}
Use the Oscilloscope and the Frequency Counter \\
to check the frequency and level at A2XA13-1 \\
pin 6. The frequency should be as shown for \\
step 1. The level should be about 0.4V p-p.
\end{tabular} & \begin{tabular}{l}
If the frequency is not as specified the A13 assembly is \\
defective. Order a replacement assembly or refer to \\
Service Sheet 10 and repair as required. If the frequency \\
is as specified proceed to Step 3.
\end{tabular} \\
\hline
\end{tabular}

Table 8-39. N2 Loop Troubleshooting (2 of 2)
\begin{tabular}{|c|c|l|}
\hline Step & \multicolumn{1}{|c|}{ Procedure } & Take the following action or proceed to step shown \\
\hline 3 & \begin{tabular}{l}
Use the Oscilloscope and the Frequency \\
Counter to check the frequency and level \\
at A2XA14-1 pin 2. The frequency \\
should be exactly 100 kHz and the level \\
should be about 2V p-p.
\end{tabular} & \begin{tabular}{l}
If the frequency is not as specified check the inter- \\
connection wiring to the reference section. If the \\
frequency and level are as specified the A14 assembly \\
is defective. Order a new assembly or refer to Service \\
Sheet 9 and repair as required.
\end{tabular} \\
\hline
\end{tabular}

Table 8-40. N1 Loop Troubleshooting
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{\begin{tabular}{l}
Reference: Service Sheets 7 and 8 . \\
Test Equipment Required (from Table 1-2): \\
Oscilloscope (with 10:1 probes) \\
Frequency Counter
\end{tabular}} \\
\hline Step & Procedure & Take the following action or proceed to step shown \\
\hline 1 & If the frequency was not as calculated in Step 1 of Table 8-34 use the Frequency Counter to check the output at A2XA17-1 pin 2. Frequency should be as calculated in Step 1 of Table \(8-34 \pm 250 \mathrm{kHz}\). & If the frequency is not as specified the A17 assembly is defective. Order a replacement assembly or refer to Service Sheet 8 and repair as required. If the frequency is correct proceed to Step 2. \\
\hline 2 & Use the Frequency Counter to check the frequency at A2XA17-1 pin D. Should be the same as calculated for Step 1. & If frequency is not as specified the A17 assembly is defective. Order a replacement assembly or refer to Service Sheet 8 and repair as required. If the frequency is as specified proceed to Step 3. \\
\hline 3 & Use the Oscilloscope and the Frequency Counter to check the input at A2XA16-1 pin 2. The input should be exactly 400 kHz at about 2.5 V p-p. & If the frequency is not as specified check the interconnection wiring to the reference section. If the signal is as specified the A16 assembly is defective. Order a replacement assembly or refer to Service Sheet 7 and repair as required. \\
\hline
\end{tabular}

Table 8-41. Low Frequency Loops Notes (1 of 2)
1. The output frequency of the SL2 loop may be determined by adding the N2 output frequency to the divider-by-ten output of the N3 loop assembly. EXAMPLE: Programmed frequency is \(107.654321 \mathrm{MHz} .24 .36+\) \(0.2079=24.5679\). Output frequency is 24.5679 MHz .
2. If there is no RF output, or if the RF level is low, the trouble is in the circuit board containing the voltage controlled oscillator and output circuits.
3. The output frequency of the N 2 loop is equal to 29.79 MHz less the setting of center frequency digits 5,4 , and 3. EXAMPLE: center frequency set to \(107.654321 \mathrm{MHz}, 29.79-5.43=24.36\). Output frequency is 24.36 MHz .

\section*{Table 8-41. Low Frequency Loops Notes (2 of 2)}
4. The output frequency of the N 3 loop is equal to 2.100 MHz less the setting of center frequency digits 2 and 1. EXAMPLE: center frequency set to \(107.654321 \mathrm{MHz}(2.100-.021=2.079)\). Output frequency is 2.079 MHz .
5. The output frequency of the N1 loop is equal to 29.7 MHz less the setting of center frequency digits 7 and 6. EXAMPLE: center frequency set to \(107.654321 \mathrm{MHz}, 29.7-7.6=22.1\). Output frequency is 22.1 MHz .
6. The output frequency of the SL1 loop is equal to 30 MHz less the last seven digits of the programmed frequency. \((30.000000-7.654321=22.345679\). Output frequency is 22.345679 MHz .)

Table 8-42. Index to Assembly Illustrations (1 of 2)
\begin{tabular}{|c|c|c|c|}
\hline Assy No. & Description & SS No. & (Photo) Fig. 8- \\
\hline A1 & Digital Control Unit & 18 thru 36 & 54,93 \\
\hline A1A1 & P/O Switch Control Assy (1 of 2) & 19 & 56 \\
\hline A1A1 & P/O Switch Control \({ }^{\text {- Assy (}}\) (of 2) & 20 & 58 \\
\hline A1A2 & P/O Key Control Assy (1 of 2) & 21 & 62 \\
\hline A1A2 & P/O Key Control Assy (2 of 2) & 22 & 64 \\
\hline A1A3 & P/O Readout Control Assy (1 of 2) & 23 & 66 \\
\hline A1 A3 & P/O Readout Control Assy (2 of 2) & 24 & 68 \\
\hline A1A4 & P/O ROM Input Assy (1 of 2) & 25 & 70 \\
\hline A1A4 & P/O ROM Input Assy (2 of 2) & 26 & 72 \\
\hline A1 A5 & P/O ROM Output Assỳ (1 of 2) & 27 & 74 \\
\hline A1 A5 & P/O ROM Output Assy (2 of 2) & 28 & 76 \\
\hline A1A6 & P/O Register Assy (1 of 3) & 29 & 78 \\
\hline A1A6 & P/0 Register Assy (2 of 3) & 30 & 80 \\
\hline A1A6 & P/O Register Assy (3 of 3) & 31 & 82 \\
\hline A1A7 & Arithmetic Logic Unit & 32 & 84 \\
\hline A1 A8 & Sweep Count Assy & 33 & 86 \\
\hline A1A9 & A Register Assy & 34 & 88 \\
\hline A1 A10 & Output Register Assy & 35 & 90 \\
\hline A1 A11 & DCU Mother Board & & 129 \\
\hline A1 A12 & Numeric Readout Assy & 36 & 93 \\
\hline A1A13 & Board Assy Annunciator Block & Various & 108 \\
\hline A1A14 & Switch Assy Sweep & Various & \\
\hline A1A15 & Switch Assy Keyboard & 21 & 60, 61 \\
\hline A1 A16 & Switch Assy Manual Mode & 20 & \\
\hline A1 A17 & Tuner Assy Manual Mode & 20 & \\
\hline A2 & Board Assy Interconnection & - & 127 \\
\hline
\end{tabular}

Table 8-42. Index to Assembly Illustrations (2 of 2)
\begin{tabular}{|c|c|c|c|}
\hline Assy No. & Description & SS No. & (Photo) Fig. 8. \\
\hline A3A 1 & Front Output Interface Assembly & 37, 40 & 96, 102 \\
\hline A3A2 & Rear Input Interface Assembly & 38,39 & 98,100 \\
\hline A. 1 & Loop Assembly RF & 2, 3, 4, 5, 6 & \\
\hline A4A1 & Reference Divider Assembly & 2 & 17 \\
\hline A4A2 & Reference Phase Detector & 2 & 16 \\
\hline A4A3 & Reference Divide-by-Two & 3 & 20 \\
\hline A4A4 & Reference VCO Assembly & 3 & 19 \\
\hline A4 45 & VCO and Amplifiers & 6 & 26 \\
\hline A4A6 & Pretuning Assembly & 4 & 22 \\
\hline A4 \(\mathrm{A}_{7}\) & Phase Detector Assembly & 5 & 24 \\
\hline A4 48 & 100 MHz Bandpass Filter & 3 & \\
\hline A5 & Board Assembly Rectifier & 41 & 105 \\
\hline A6 & Fan Assembly, 400 Hz (Opt. 003) & 41 & 107 \\
\hline A6 & Fan Assembly, 60 Hz STD & 41 & 107 \\
\hline A6A1 & Pre-Regulator Assembly & 41 & 104 \\
\hline A6. 3 & Fan Relay Assembly & 41 & 107 \\
\hline A7 & Power Line Module/Filter & 41 & 107 \\
\hline A8 & N3 Oscillator Assembly (except Opt 004) & 12 & 42 \\
\hline A9 & Cable Assembly Loop Box & & 128 \\
\hline A10 & N3 Phase Detector & 11 & 40 \\
\hline A 11 & SL2 Oscillator Assembly & 14 & 46 \\
\hline A12 & SL2 Detector & 13 & 44 \\
\hline A13 & N2 Oscillator & 10 & 38 \\
\hline A14 & N2 Phase Detector & 9.9a & 34, 36 \\
\hline A15 & SL1 Detector & 15 & 48 \\
\hline A16 & N1 Phase Detector & 7 & 30 \\
\hline A17 & N1 Oscillator & 8 & 32 \\
\hline A18 & SL1 Mixer & 16 & 50 \\
\hline A19 & SL1 Oscillator & 17 & 52 \\
\hline A 20 & Rectifier Assembly & 41 & 106 \\
\hline A 21 & Crystal Oscillator & 2 & 14 \\
\hline A 22 & Switch Assembly Reference & 2 & 18 \\
\hline A23 & Wiring Harness & Various & 107 \\
\hline A 25 & +30V Regulator & 41 & \\
\hline
\end{tabular}
817. PRINCIPLES OF OPERATION
888. The following discussion illustrates the basic p nciples of operation of the Model 8660 System. Dre detailed information about principles of deration for the phase lock loops and the Digital cintrol Unit appears on Service Sheets 1 and 18 rpectively. In addition, detailed information to te circuit level is provided on individual Service s eets.
£89. General. The Model 8660 was designed to fovide precise digitally controlled output freclencies utilizing indirect synthesizer techniques. Thlike conventional signal generators, the output fequency is not \(\pm\) some percentage factor: the atput frequency of the Model 8660 is exactly 1 at selected (the only factor which must be onsidered here is the accuracy and stability of the ference source). The output frequency range is ptermined by the RF Section plug-in being used.
90. All of the phase lock loops are phase locked, rectly or indirectly, to a very stable temperature ontrolled internal 10 MHz source or to an sternal reference source. (The term "indirect nthesis" as used in paragraph \(8-89\) refers to a nthesizer that derives all frequencies from a ngle source, as opposed to a "direct synthesizer" hich uses different crystal oscillators for each equency generated.)
91. Reference Section. A 100 MHz voltage ontrolled oscillator which is phase locked to an iternal reference, or to an external reference purce, serves as a master oscillator. The internal ference is a 10 MHz standard temperature conrolled crystal oscillator. The external reference ource may be 4 or 10 MHz at 0.2 to 2 V rms . All \(f\) the outputs from the reference section are erived from the 100 MHz master oscillator.
-92. The reference section provides the following utputs:
a. \(\quad 500 \mathrm{MHz}\) to the RF Output Section.
b. 100 MHz to the RF Output Section. This 100 MHz is coupled out of the RF Section for use \(n\) other circuits.
c. 20 MHz to the Modulator Section. This 20 MHz is coupled out of the Modulator Section for use in the RF Section and the Frequency Extension Module.
d. 10 MHz to the High Frequency Loop phase detector for use as a reference signal.
e. 2 MHz to the Digital Control Unit to be used as a clock.
f. 400 kHz to the N 1 loop for a reference signal.
g. Separate 100 kHz signals to the N 2 and N3 loops for reference signals.

\section*{NOTE}

In the following discussion the terms digit 1 , digit 2, through digit 10 are used to refer to the 10 digits of frequency selection. Digit 1 refers to the least significant digit (1 Hz increments). Digit numbers progress from right to left until digit 10 refers to the most significant digit (1 GHz increments).

8-93. High Frequency Loop. The HF loop contains a voltage controlled oscillator which provides eleven discrete outputs between 350 and 450 MHz in 10 MHz increments when the Model 86601A RF Section is used. When other RF Sections are used the output of the HF loop will still step in 10 MHz increments, but there will be more than, or less than, eleven steps.

8-94. Pretuning tunes the voltage controlled oscillator to a point within the capture range of the phase lock loop and the phase detector then causes the loop to be phase locked to the 10 MHz reference signal at the exact frequency selected.

8 -95. When a 0.01 to 110 MHz RF Section such as the HP Model 86601A is used, the output of the HF loop is applied to the RF Section. When a higher frequency RF Section is used, the output of the HF loop is applied to the Frequency Extension Module.

8-96. N1 Phase Lock Loop. The N1 loop provides an output to Summing Loop 1 (SL1) that is between 19.8 and 29.7 MHz in 100 kHz steps. The N1 voltage controlled oscillator is roughly pretuned by a digital to analog converter which is controlled by digits 6 and 7 .
\(8-97\). The N1 sampling phase detector is driven by pulses derived from the N1 voltage controlled oscillator through a programmable divider and a pulse shaper. The programmable divider is con-
trolled by digits 6 and 7. When the loop is phase locked the 400 kHz reference input is sampled at a 100 kHz rate. The error voltage from the phase detector is summed with the digital to analog converter output to precisely control the voltage controlled oscillator frequency.

\section*{NOTE}

In Option 004 instruments the N2A programmable divider is used. The N2 loop output is then between 20.01 and 30.00 MHz .

8-98. N2 Phase Lock Loop. The N2 loop provides an output to Summing Loop 2 (SL2) that is between 19.80 and 29.79 MHz in 10 kHz steps. The N2 voltage controlled oscillator is roughly pretuned by a digital to analog converter which is controlled by digits 4 and 5 .

8-99. The N2 sampling phase detector is driven by pulses derived from the N2 voltage controlled oscillator through a programmable divider and a pulse shaper. The programmable divider is controlled by digits 3,4 , and 5 . When the loop is phase locked the 100 kHz reference signal input is sampled at a 10 kHz rate. The error voltage from the phase detector is summed with the digital to analog converter output to precisely control the voltage controlled oscillator.

8-100. N3 Phase Lock Loop. The N3 loop provides an output to Summing Loop 2 (SL2) that is between 2.001 and 2.100 MHz in 1 kHz steps. The N3 voltage controlled oscillator is roughly pretuned by a digital to analog converter which is controlled by digit 2 .

8 -101. The N3 sampling phase detector is driven by pulses derived from the N3 voltage controlled oscillator through a programmable divider and a pulse shaper. The programmable divider is controlled by digits 1 and 2 . When the loop is phase locked the 100 kHz reference signal is sampled at a 10 kHz rate. The error voltage from the phase detector is summed with the digital to analog converter output to precisely control the voltage controlled oscillator frequency.

\section*{NOTE}

In Option 004 instruments Summing Loop 2 (SL2) is not used.

8-102. Summing Loop 2. SL2 provides an output to SL1 that is between 20.0001 and 30.0000 MHz
in 100 Hz steps. The SL2 voltage controlled oscillator is roughly pretuned by a digital-to-analog converter which is controlled by digits 3,4 , and 5 .

8 -103. The output from the SL2 voltage controlled oscillator is also applied to a mixer where it is mixed with the output of the N2 loop. The output of this mixer is applied to one input of a digital phase detector through a pulse shaper. The other input to the digital phase detector is the divided by ten output of the N3 loop assembly in pulse form. When SL2 is phase locked the frequency ratio of the two inputs to the phase detector is always \(1: 1\); the mixer output frequency must exactly match the divided by ten output of the N2 loop assembly (the pulses are received alternately).

\section*{NOTE}

In Option 004 instruments the Summing Loop 1 output is from 20.0001 to 30 MHz .

8-104. Summing Loop 1. SL1 provides an output to the RF Section that is between 20.000001 and 30 MHz in 1 Hz steps. The SL1 voltage controlled oscillator is roughly pretuned by a digital to analog converter which is controlled by digits 5,6 , and 7 .

8-105. The output from the SL1 voltage controlled oscillator is also applied to a mixer where it is mixed with the output of the N1 loop. The output of this mixer is applied to one input of a digital phase detector through a pulse shaper. The other input to the digital phase detector is the divided-by-one hundred output of the SL2 voltage controlled oscillator in pulse form. When SL2 is phase locked the frequency ratio of the two inpute to the phase detector is \(1: 1\); the mixer output frequency must exactly match the divided by one hundred output of the SL2 voltage controlled oscillator (the pulses are received altemately).

8-106. Digital Control Unit (DCU). In the loce mode all functions of the Model 8660 are con trolled by the DCU. These functions are itemizec and described in Section III of this manual.

\section*{8-107. Digital Control Unit Troubleshooting}

8-108. The Digital Control Unit (DCU) portion o the 8660 C must be considered by itself. Under standing and troubleshooting the DCU involve
chcepts and techniques which are not used in oher parts of the instrument. The best way to tiubleshoot is to understand the functional operatin of the DCU included here and then use the tpubleshooting flow charts in DCU section.
8109. The DCU can be thought of as having two prts, a controller part and a data handling part. It inecessary to understand both parts and how they i eeract in order to understand and troubleshoot te DCU. The controller is really the heart of the ICU and will be described first.
\{110. Refer to Figure 8-55, Service Sheet 18, ICU Block Diagram. The controller consists of the 44 and A5 assemblies. This controller uses a form (sequential state logic and is called an Algorithnic State Machine (ASM). The ASM operates by 1 oving through a series of states, where each state is a unique state number and a unique set of outjat instructions. These output instructions cause dtions to take place in the data handling part of le DCU. The series of states which the ASM asmes is determined by qualifier signals. Qualifiers , e signals from the data handling part of the DCU the controller. They define the state of some ocess or condition. When the ASM is in a partiHlar state, it can go to one of two possible next ates. For every state a particular qualifier is exnined and the state of this qualifier and the curent state number determine the next state.
-111. Figure \(8-7\) is a block diagram of the ASM. he output of the state flip-flops is a 7 bit binary umber representing the present state of the ASM. or convenience this binary number can be deoded as two decimal numbers by grouping toether the right 4 bits and left 3 bits (1011011 ould be \(5 / 11\)). Assume the present state is \(0 / 0\) hich is the condition at power turn-on. The outut of the state flip-flops would be \(0 / 0\) and this umber is input to the decoder block. If there are ny instructions required to be active during this tate, the decoder would make these active. The ROM has 8 address bits and 7 of these are the outputs of the state flip-flops. The state flip-flops also ddress the multiplexer. For every state number he multiplexer selects one of the 34 qualifiers to ppear at its output. The output of the multiplexer upplies one address bit to the ROM. Thus the output of the ROM is determined by the present state 7 bits) and a qualifier (1 bit). There are 12 output pits from the ROM, 5 are output instructions and Pare the next state that the ASM will assume. The tate flip-flops are clocked at a 1 MHz rate, and when they are clocked, the next state inputs be-
come the present state. Thus part of the ROM outputs are latched into the state flip-flops and become the new ROM inputs.

8-112. The operation of the ASM can best be described by the use of a flow chart. An example is shown in Figure 8-8. Each state is represented by a rectangular box. The state number is on the upper left hand corner of the box. The mnemonics of instructions which are active during that state are listed inside the box. All menmonics in the DCU end in -H or -L which signifies whether the active state of the signal is high or low. In Figure 8-8 during state \(0 / 4\) the instrucitons MNE1-H is active which for this signal is high. All other signals are inactive. The diamond shaped symbol is a decision block and the mnemonic inside is a qualifier. The state of the qualifier determines which branch from the decision block will be taken. If the qualifier is high, state \(1 / 6\) is the next state but if the qualifier is low, state \(4 / 4\) is the next state. In state 4/4 there are two instructions which are active, one signal is high when active and the other is low. In state 1 / 6 there are no active instructions.

8-113. It should be possible now to see the relationship between the flow chart and block diagram. In state \(0 / 4\) the state flip-flops are outputting this code. When the multiplexer receives the \(0 / 4\) state number, qualifier QUAL which is one of the 34 inputs is switched to the output of the multiplexer and goes to one address input of the ROM. When QUAL is low, this bit combined with the 7 bits of the present state code form a unique address to the ROM. With this address the next state outputs of the ROM are \(4 / 4\) which go to the input of the state flip-flops. The output of the flip-flops will not change until the next clock signal. MNE1-H is the only signal active during state \(4 / 4\). This signal will be generated by the ROM or decoder circuitry. If QUAL had been high, the ROM address would be different by one bit and the next state outputs would be \(1 / 6\). In state \(4 / 4\) there are two instructions which are active. In state \(1 / 6\) no instructions are active.

8-114. Refer again to the block diagram, Figure 8 -55, Service Sheet 18. All keyboard entries are detected on the A2 assembly. The keyboard itself has no switch contacts. Pushing a key lowers a metal disk over a transformer made of printed circuit board traces. The metal disk increases the coupling between the primary and secondary of the transformer. Figure 8-9 shows the concept used in the keyboard. There are 10 pairs of keys like those showin in the figure. All the primaries are

Figure 8-7. ASM Block Diagram

Figure 8-8. Sample Flow Chart

Figure 8-9. 8660C Keyboard Simplified Diagram
,iven by 100 kHz pulses, however, a ground re1 m is provided for only one pair of the primaries
a time so current flows in only one pair at a 1me. A decade counter drives a decoder which ovides the ground return. A signal is coupled to le secondary only when a key is pressed. One of le keys in the pair produces a positive signal and pe other key a negative signal. Comparators detect hen a key is pressed and which key of the pair as pressed. The count in the decade counter when pe key which is pressed is detected, is the BCD ode for the key. One key in each pair is a numeric ey and the other key is a units key or entry key. hen a numeric key is pressed, it is detected on he A2 board and latched into the K0 register (see igure \(8-55\)). It is then shifted into the Keyboard hift Register (KSR). This register is clocked 10 mes which shifts the digit from the K0 register to he right end of the KSR. Any data which was aleady in the KSR is shifted out the end and back to the input through MPX1 and K0. The result s that any digits already in the shift register are goved one place to the left. This is done so the last ligit entered is always in the right end of the KSR.
-115. If a units key is pressed, the key is decoded on A2 but the information then is latched on the A3 board. If an entry key is pressed, the key is
decoded on A2 and this information goes to the A4 board where it becomes an ASM qualifier. The Readout control pushbuttons, the manual tune control and range select, and the sweep select and range switches are all input to the A1 board. These switch settings are decoded on A1 and qualifier signals are generated which go to A4. A1 also contains circuitry which divides the 2 MHz clock signal down for use at various places in the DCU.

8-116. The A6 board contains registers in which center frequency (CF), step and sweep width data is stored. The M Register on A6 is used to store frequency data for checking limits. Data is shifted in and out of these registers one digit at a time. As an example consider moving data from the KSR on A2 to the CF Register on A6. The signal KTT-H is made active which places the digit at the output of the KSR at the input to the CF Register. The KBR and CF Registers are both clocked which shifts the first digit into the CF Register and shifts the KSR right one digit. The digits shifted out of the KSR are shifted back into the input of the KSR through MPX III and MPX II. After 10 clock pulses the 10 digits from the KSR are now in the CF Register and the KSR has the same data it started with. The inputs to all the registers on A6, A Register on A9, and Readout Register on A3 are connected together.

This common connection to the register inputs is called the T Bus.

8-117. The A7 assembly contains the Arithmetic Logic Unit (ALU). This assembly can perform the following functions:
1. Pass data without changing it.
2. Add or subtract data from two of the registers.
3. Add or subtract data from ROM \#4 and one of the registers.

8-118. The output of the ALU goes to the T Bus and can be shifted into any of the registers driven by this bus.

8-119. The A Register on the A9 Assembly is used to hold data before being shifted into the A10 Output Register. The A Register is really in three sections. The registers called A2 and A3 on the diagram are used during sweep mode. The A10 Output Register drives the Phase Lock Loops. Thus the contents of A10 determine the RF output frequency of the 8660 . Data can be changed around in all the other registers in the DCU, but the RF output frequency will not change until the data in A10 changes.

8-120. The A8 Sweep Count Assembly keeps track of where the output RF frequency is when in sweep mode. It does this by counting the number of steps up and down that the output frequency has moved. It generates two qualifiers to tell the ASM when the maximum count is reached (QCTM) and when the minimum count is reached (QCTZ). There is a D/A converter which provides an output voltage proportional to where the output RF frequency is within the sweep range.

8-121. The front panel display (A12) is driven by the Readout Register on A3. The display is multiplexed by shifting the data around the Readout Shift Register. The BCD data from the Readout Register drives two ROM's on A12. The ROM's output the actual dot pattern to the LED displays. A half digit at a time in each of the two display sections is activated. The display is scanned at a 10 kHz rate so the readout appears continuous.

8-122. All the shifting around of data happens because instrucitons from the controller are issued to enable certain registers and shift data. Now that the controller and data handling parts of the instrument have been discussed separately we can look at how they interact. The best way to do this
is to look at the flow chart for one operation that the DCU performs. Figure \(8-10\) is the ASM flow chart for the operation of pressing a numeric key. This flow chart is annotated to provide a narrative description of the instructions and qualifiers. The ASM is always in state \(0 / 0\) when it is not perform. ing some function. State \(0 / 0\) is in the upper left hand corner of the flow chart. The qualifier which determines what the next state will be is F10-H. which is the output of a flip-flop on the A1 board. Notice that when F10-H is low (inactive), the next state is \(0 / 0\). Thus the ASM stays in state \(0 / 0\). This is often called a "wait loop" since the AS.I is "waiting" until F10-H becomes high before it leaves state \(0 / 0\). When one of the keys on the keyboard is pressed, the BCD code for the key is generated on A2 and the A1 F10 flip-flop is set which makes F10-H active. With F10-H high the ASM moves to state \(4 / 0\) when the next clock pulse occurs. In state \(4 / 0\) there are no instructions active and F7-H is the qualifier which determines what the next state will be. This flow chart is drawn showing only one exit from most of the qualifier symbols. This is because for the operation the chart is describing these qualifiers must be in the state shown on the chart. In state \(4 / 0\) the \(\mathrm{F} 7-\mathrm{H}\) signal must be low unless the instrument is in sweep mode or remote mode, neither of which is the operation the chart is describing. The ASM thus moves from state \(4 / 0\) to \(5 / 0\) and because the decimal point key is not pressed it moves to state \(6 / 0\). The qualifier examined in state \(6 / 0\) is NUM-H which is active when one of the numeric keys on the keyboard is pressed. Since this is the condition the flow chart is describing, NUM-H must be active and the ASM moves to state 6/1. F2-L is active and the ASM reaches state \(1 / 5\) where several instructions which initialize certain parts of the DCU become active. Qualifier NUM-H is examined again and the ASM moves to state \(0 / 2\) where the first instruction which moves data is issued. Instruction ETKO latches the data from the keyboard into the K0 register which is shown on the block diagram in A2. There is no qualifier which determines what the next state is after \(0 / 2\). State \(0 / 3\) always follows \(0 / 2\). During state \(0 / 3\) the digit in the K 0 register is shifted 10 places to the right to the end of the KSR. It takes 10 clock pulses to shift the data so the ASM must stay in state \(0 / 3\) for 10 clock pulses. Qualifier CKB-H stays low until 10 clock pulses have occurred which keeps the ASM in state \(0 / 3\). When CKB-H goes high, the ASM will move to state \(6 / 14\). Once the ASM leaves state \(0 / 3\) the data movement is complete. All the remaining states that the ASM passes through are just to get back to state \(0 / 0\). State \(4 / 10\) prevents the ASM from re-

Figure 8-10. ASM Troubleshooting Flow Chart for Numeric Key Pressed
turning to state \(0 / 0\) until the key is released. In state \(4 / 10\) the qualifier KDN-H is active (high) as long as the key is depressed. This keeps the ASM in state \(4 / 10\). When the key is released, KDN-H goes low which causes the ASM to go to state \(5 / 10\). The ASM is driven by a 1 MHz clock so in about 20 microseconds the ASM will go from state \(0 / 0\) to state \(4 / 10\). A person pressing a key could hold it down for several seconds. If the ASM returned to state \(0 / 0\) and found the key pressed, it wouldn't know if the key was pressed for a new entry or hadn't been released from the previous entry. Thus the ASM is allowed to return to state \(0 / 0\) only after the key is released.

8-123. From the preceding description some actions take place independently of the ASM such as the keyboard generating the BCD code to identify which key is pressed. The action of moving data into the K0 register and into the KSR happens under control of the ASM. Throughout the DCU there are things happening independently of the ASM and other things which are completely under ASM control. There are no hard and fast rules to determine which is which. All processes must be examined to determine how much control the ASM has on the process.

\section*{8-124. DCU Repair}

8-125. The most important thing in troubleshooting the DCU is to isolate the problem to a small area. To do this you have to understand the DCU block diagram and use the trouble symptoms to narrow down where the problem could be. One of the best ways to do this is to use the troubleshooting flow charts which appear in this section immediately following SERVICE SHEET 42. These charts provide a lot of details about the movement of data between registers and the specific ASM sequence to perform DCU functions. This manual also contains information about how to use the flow charts for troubleshooting.

8-126. Interface Circuits. The interface circuit provide the capability of operating the Model 866 with the front panel controls (local mode), or by remote programming device via a rear panel cor nector (remote mode).

8-127. RF Section. An RF Section plug-in is n quired to produce a useable rf output. Figure \(8-1\) shows a block diagram of the Model 8660. A plug-in sections are covered by separate manual

8 -128. Modulation Section. If a modulation ser tion is not available, it will be necessary to have a auxiliary section in the modulator compartment t complete necessary connections.

Figure 8-11. Integrated Circuit Packaging

service sheet
BLock DI
General
vavaxas=
 \(\pm= \pm= \pm= \pm= \pm\)
 Reference Loop
 \(=\mathrm{wa}=\mathrm{w}=\)
 \(\pm=-=5=\)

service shet icontrd)

 Hilib Frequeno Loop

 Mixitivem
 vivide By N Loop N 1

\section*{SERVICE SHEET 1 COontid}

 contuoled ossillator frequen

sepviceshet 1 ICond

\section*{5} \(=5=5=5=\)

\section*{Divide By N Loop N3}

\section*{note}

等 \(5=2=5\) man

senvicsuetil 1 cond
Summing Loop 2

Summing L Loop
instruments
n \(\qquad\)

The outuout frequency of \(\mathrm{SL2} 2\) is equal to the N2 frequency plus the Summing Loop 1

Sericer

 RF Section
The RF Section plugin procesese the outputs from the mintrame to provide the desired \begin{tabular}{c}
Information rea \\
mannall \\
\hline
\end{tabular}
Digital Control Unit
Ericie Shee 18 p provides logic diagram of the digitat onntrol unit

reference Loop general

Mreference oscillator, amplifier and relavs

service sheet 2 (Cantal

TEST PRocedure \(\boldsymbol{I}\)

If the signa is present proceed to toest 1 -., If the signal is not present
proceed to test \(11-\infty\)

SERVICE SHEET 2 (Contd)
Phase detector assembly (AAA2) genera

 I pulise generator

TEST PRocedure

SERvice SHEET 2 (Contal
I SAMPLER

,imy

\section*{}
 \(=\mathrm{mam}=\mathrm{max}=\)

\section*{IERRor SIINaL AMPLIFER}

 test procedure \(\quad[\)

\section*{}
\(A A A 1\) asembly divides the 10 MHz innut trom the

SERVIICE SHEET 2 Contid

actinuoi
\(12 \pi / 1-2=15\) men

Nhit doxatatis 5nats

 Obering the wavetomsat the test points speafied dowle enale the teconicican to quuckly

 TEST EQUIPMENT REQUIRED (See Talle - 12) Digitl Voltmeter
ociulucop
Frouenenco Counter

Mosclutor

SERVICE SHEET 3 (Cont'd)

 -120 MHz OUTPUTS

\section*{Test procedure [1]}

 Ithe iegnal is ont present proceed to toes 2 .c.

service shem 3 (contald

\section*{- DIVIDEBY-TWO CIIRCUIT AAAB}

 test procedurela

\section*{SERVICE SHEET 4}

PRETUNING ASSEMBLY (AAAG)
Normally, causes of malfunction in the Model 8660 C will be isolated to a circuit
board or
troorstembesty oard or assembly
roublesho oting trees.
The AAAG assembly, a part of the threeassembly High Frequency Loop, is shown

 hiolu be performed to ensure instrument. EST EQUIPMEN
High freouency Loop general information

ired output signal.
 trequency within the capture range of the loop.
Integrated circuit 1 is a deoder which converts the BCD input from CF digit 8
to individual select lines which turn on one of nine transisisors connected in a sistive network. The transistor which is turned on efrectively grounds one poin the resistive network. The voltage level output to the voltage controlled A single input line, representative of BCD 1 . 1 from CF digit 9 drive \(Q 1\) to turn on
Q1. Q11 the tent transisto swith in
the pretuning network, grounds the owest resistance po
scillitoto to 350 MHz .
test procedure [1]
Test 1 sa. With the digital voltmeter connected to the junction of R15, R18 and
 If changing the seting of CF digit 8 through its range does not result in a change
in the dec level a t the iunction of R15 R1 R18 and R19, U1 may be defective. Test 1 -b. Use the digital voltmeter to check the \(A, B, C\) and \(D\) inputs to U1 fron
CF digit 8 . These inputs are binary 1248 positive ruue logic. (Example: with \(C\)

Reference Loop VCO
SERVICE SHEET3

SERVICE SHEET 4 (Cont'd)

Operation of transistors Q2 through Q11 may be checked by checking the de level at their
collectors which are connected to the transistor shell. The numbers plated on the circuit
.
 2 summing circuit
Common base current source Q13 sums the output of the digital to analog converter,
urrent from a +20 volt source (R13) and the error signal from the A4A sampling phase

 \begin{tabular}{c}
from the \\
assembly \\
\hline
\end{tabular} EST PROCEDURE [2]
Test 2 . Connect the digital voltmeter to the AAAG output labeled FREQ on the circuit
ooard. Set the CF digits as shown in Table \(8-44\). The voltages sho
 If the voltages were correct in test 1-a, but are not in test \(2-a\), , check Q12, Q13 and
Table e.44. Pretuning DC Levels
\begin{tabular}{|c|c|c|}
\hline Center Frequency & Test \(1-a\) DC Level & Test \(2 \cdot \mathrm{D}\) DC Level \\
\hline 0000.010000 MHz & -34.7 volts & -34.5 volts \\
0010.010000 MHz & -28.3 volts & -29.3 volts \\
0020.010000 MHz & -23.1 volts & -25.0 volts \\
0030.010000 MHz & -18.7 volts & -21.4 volts \\
0040.010000 MHz & -14.9 volts & -18.4 volts \\
0050.010000 MHz & -11.6 volts & -15.7 volts \\
0060.010000 MHz & -8.9 volts & -13.5 volts \\
0070.010000 MHz & -6.5 volts & -11.6 volts \\
0080.010000 MHz & -4.5 volts & -9.9 volts \\
0090.010000 MHz & -2.6 volts & -8.4 volts \\
0100.010000 MHz & -1.1 volts & -7.2 volts \\
\hline
\end{tabular}

Normally, causes of malfunctions in the Model 8660 C will be isolated to a circuit
board or assembly as a result of performing the tests specified in the
troubleshooting trees.
The A4A7 assembly, a part of the ihree.assembly High Frequency Loop, is shown
schematically and described on this service sheet. The other two assembies, A4A schematically and described on this service sheet. The other two assembies, A4A
and \(A 4 A 6\), are shown schematically and deseribed on Service Sheets 4 and 6 .
\[
\begin{aligned}
& \text { After making repairs in any part of the HF Loop circuits the } \\
& \text { asjustment procedure specifee in Section } \begin{array}{l}
\text { paparapap } 5-28 \\
\text { should } \\
\text { instrument. }
\end{array} \text { periormed to ensurre proper operation of the }
\end{aligned}
\]

TEST EQUIPMENT REQUIRED (See Table 1-2
Oscilloscope (with 10:1 divider probes)
Test Oscillatore
\begin{tabular}{l}
eist Osciliator \\
Digital Voltmeter \\
\hline
\end{tabular}
high frequency loop general information

The sampling phase detector compares the voltage controlled osciliator output to
10 MHz signal from the reference section. The output of the phase detecto

\section*{I pulse generator}

 When \(Q 3\) conducts heavily CR1 is reverse biased by the sigmal which appears
across the secondary winding of T1. When Q3 is turned off the collapsing

\section*{SERVICE SHEET 5 (Cont'd)}
inductive field of the T 1 primary winding and the resonnant circuit of L 5 and \(\mathrm{C10}\)
cause e flyazack ation which drives CR1 info conduction. 44 and \(C 9\) also enhance
the flyback action.
NOTE
 When the pulse which forward biased CR1 has ended, CR1 is again reverse biased;
however, current will fow in the reverse direction until the charge stored in CR1

 test procedure \(\square\)

Test 1.a. Composite waveform SS5-1 illustrates the correct waveforms for the

NOTE
\[
\begin{aligned}
& \text { Since an oscilloscope would load the remainder of the pulse }
\end{aligned}
\]
\[
\begin{aligned}
& \begin{array}{l}
\text { oulse, waveform analysisi is not practicable. II the waveforms } \\
\text { are as show in s5s-i. and the coop does not phase lock, } \\
\text { proceed to test procecdure } 12 \text {. }
\end{array}
\end{aligned}
\]

Z Sampler and signal processor

\section*{SERVICE SHEET 5 (Cont'd)}
biased a sample of the signal from the A4A5 voltage controlled oscillator is taken and stored
Q4 and Q5 comprise a differential ampifirier. The non-inverting input (G2) is derived from
the sampling circuit. The output is applied to emitter follower Q6 which provides
a
oww

 tier's frequency response.

CR8 and CR9 provide reverse bias voltages for the sampling gate diodes. These bias voltages
are balanced and centered on the output signal to improve sampler efficiency.
R18 controls the response of the sampler by varying the amount of back-bias for the bridge
it is adusted for maximum frequency response with minimum peaking. R22 controls the quisesent output level to the summing circuit in AAA6; it should be
adjusted for zero output with the input from the voltage controutled oscillator disconnected If the voltage controlled oscillator output is harmonically related to the reference signal the
output of the phase detector is proportional to the sine of the difference in phase of the tw
 TEST PROCEDURE [2
Test 2-a. Disconnect the input to the sampler gate from the AAA5 voltage controlled
oscillator and substitute a \(1 \mathrm{MHz}, 10\) dimm signal from the test oscillatar. Connect the
 change.
\[
\text { the oscilloscope display is not as specified proceed to test } 2 \text { - }
\]

If the display is correct and the display for test 1-b was correct, check the step-recovery
diode and associated components.
 ossillator is
components.
If the signal is not displayed check \(\mathrm{Q4}, \mathrm{Q} 5, \mathrm{Q} 6\) and associated components.

VCO AND AMPLIFIERS (A4A5)
Normally, causes of malfunctions in the Model 8660 C will be isolated to a circuit
board or assembly as troubleshooting trees.
tresult of performing the tests specified in the

NOTE
After making repairs to any part of the HF Loop circuits the
adjustment proed After making repairs to any part of the HF Loop circuits the
ajiustment proceures specified in Setion \(V\) parargaph 5 5.28
should be performed to ensure proper operation of the

TEST EQUIPMENT REQUIRED (See Table 1-2)
Dipital Voltmeter
Spectrum Analyzer
Freauency Counter
I HIGH FREQUENCY LOOP GENERAL INFORMATIO
The purpose of the HF Loop is to provide a precise e cipitally controlled outpul
trequency between 350 and 450 MHz in 10 Mzz increments This output is sued in the Frequencey Extension Module and in the plug in RF Section to provide th CCO AND AMPLIFIER
Transistor A4 and associated components comprise a voltage controlled oscillator
The output frequency, when the loo is phase locked, is always a 10 MH harmonic between 350 and 450 MHz . C3 is is adiusted to seet the himy hrequency ac ground for the varactor at the bop bisis point.
The oscillator output (about. .5 volts rms) is coupled through an isolation
ransformer to two identical threestage buffer amplifiers. The isolation
 sead hrough of extraneous signals from one amplifier
rovide outputs that are about 1 volt rms into 50 ohms
 grounding points for individual stages and separation of ground planes for
lndividual stages.

 부ㄴㅜㅜㄴ․․․․․․ 5

 TEST PROCEDURE \(\square\)

SERVICE SHEET 7 (Contra)

maxay

SERVICE SHET (Conta)

\section*{ \\ MWMWMWM}
 andman

ERRVICE SHEET 7 (Con'd)

 mis
yin

SERVICE SHEET7 (Cont'd)

\section*{The inputs to AND giti UTC are not as shomm. U6 or 42 may bededective.}

\section*{a PuLSE AMPLIFER}

 Wan

Waveform SS7-6

\section*{SERVICE SHEET 8}

N1 PRETUNING AND OSCILLATOR ASSEMBLY A17
Normaly, causes of malfunctions in the Model 8660 will be isolated to a circuit
boord or arsembly as a
troubleshooting trees. The A17 assembly, a part of the two assembly N1 phase lock loop is shown
schematicill and described on this serice sheet. The N1 Phase Detector
Assembly, A16, is shown schematically and described on Service Sheet 7 . When trouble has been isolated to the A17 assembly it should be removed and
reinstalled using two extender boards. This will provide easy acceess to toest points
and components. and componens.

After making repaits in any part of the N1 loop circuits the
adiustment \(\begin{aligned} & \text { spocedures speocified in Section } V \text { paragraph } 5 .-29 \\ & \text { shoul } \\ & \text { instrument. }\end{aligned}\) performed to ensure proper operation of the
test equipment required (See Table 1-2)
Digital Voltmeter
Frequency Counter
frequency Counter Oscilloscope (with 10:1 divider probes)
N1 Loop general information

-1 voltage controlled oscillator
Q3 Q5 and associated components comprise a voltage controlled ascillator. Two
varactors CCRG and ar are used in parallel to provide a high Q Qs well as the
wide capacitance range equired.

\section*{ERVICE SHEET 8 (Cont'd)}

\section*{test procedure \(\square\)}

Test 1 -. Connect the frequency counter to XA17-1.2 and set CF as shown in
tatile \(8-\). The counter readout should be as shown in the table. (Make allowances
for counter accuracy If the counter does not display a frequency at, or close to, that specified, connect
the oscilloscope to TP3. The oscilloscope should display a sine wave at about
 If there is no signal at TP3 check the bias level at TPP. The bias. level should be
about as shown in Table \(8-4\) for the front panel frequency setting. If the bias level
.

the counter displays the correct readout for some, but not all, of the fro
2 Pretuning circuit

 Coniected high they cause the output of the NAND gate to which they yre the transistor connected to the NAND gate output is
sitched on.
When all of the BCD inputs are low Q9 is biased to provide approximately -25
voltita at TTH
\(2977 \mathrm{e})\). With this dc level at TP1 the oscillator is roughly preset to

 voltage at TrP is app.
preset to 19.8 MHz .
Q4 is a summing ampliiier which combines the output of the digital to analog
converter and the signa from the N1 phase detector. hhe summing point (
(4.e)
 TP1) and the error sisnal negative source from the dipitat to analog convert
summing point is always zero volts.

\section*{ERVICE SHEET 8 (Cont'd}

\section*{TEST PROCEDURE \({ }_{2}\)}

Table \(8-45\) represents typical voltage levels for test points 1 and 2 and exact
frequencies at XA17-1-2 for given settings of CF digits six and seven when the
loop is locked.
\[
\begin{aligned}
& \begin{array}{l}
\text { While the voltages shown for } \mathrm{EP2} 2 \text { are typical (they will vary } \\
\text { from instrument to instrument due to differences in varactor }
\end{array} \\
& \begin{array}{l}
\text { charracteristics). } \\
\text { to TP1 voltages. }
\end{array}
\end{aligned}
\]

Test 2.a. With the dietal voltmeter connected to TP1 select CF's shown in Table
8.45 . The voltage level should approximately follow those shown in Table 8.45 .

 rransistor.
If the voltages at TP1 re aproximately as shown in Table 8.45 proced to

\section*{SERVICE SHEET 8 (Cont'd)}

\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Center } \\
\text { Frequency } \mathrm{MHz}
\end{gathered}
\] & Frequency
At TP3 kHz & Voltage at
TP1 & \[
\begin{gathered}
\text { Voltage at } \\
\text { TP2 }
\end{gathered}
\] \\
\hline 0000.100000 & 29600.000 & -25.2v & -29.2v \\
\hline 0000.100000 & 29600.000 & -25.0v & \(-28.7 \mathrm{v}\) \\
\hline 0000.200000 & 29500.000 & \(-24.8 \mathrm{v}\) & \(-28.2 \mathrm{v}\) \\
\hline 0000.300000 & 29400.000 & -24.6v & \(-27.7 \mathrm{v}\) \\
\hline 0000.400000 & 29300.000 & \(-24.4 \mathrm{v}\) & -27.1v \\
\hline 0000.500000 & 29200.000 & -24.2v & -26.6v \\
\hline 0000.600000 & 29100.000 & -24.0v & \(-26.2 v\) \\
\hline 0000.700000 & 29000.000 & \(-23.8 \mathrm{v}\) & \(-25.7 \mathrm{v}\) \\
\hline 0000.800000 & 28900.000 & -23.6v & \(-25.2 \mathrm{v}\) \\
\hline 0000.900000 & 28800.000 & \(-23.4 \mathrm{v}\) & -24.7v \\
\hline 0001.000000 & 28700.000 & -23.2v & -24.3v \\
\hline 0002.000000 & 27700.000 & -21.2v & -20.2v \\
\hline 0003,000000 & 26700.000 & -19.2v & -16.6v \\
\hline 0004,000000 & 25700.000 & -17.2v & -13.6v \\
\hline 0005.000000 & 24700.000 & \(-15.2 \mathrm{v}\) & -11.9v \\
\hline 0006.000000 & 23700.000 & -13.2v & -8.9v \\
\hline 0007.000000 & 22700.000 & -11.2v & -7.1v \\
\hline 0008.000000 & 21700.000 & \(-9.2 v\) & \(-5.6 \mathrm{v}\) \\
\hline 0009.000000 & 20700.000 & -7.1v & \(-4.3 \mathrm{v}\) \\
\hline 0009.900000 & 19800.000 & \(-5.3 \mathrm{v}\) & \(-3.4 \mathrm{v}\) \\
\hline
\end{tabular}

test procegure
 Center frequence vis in intiduly set to zero.
 Ithe correct ignal is presen, proceed to toest 1 -b
It the ountat read out is 100.000 kitiz but the

SERVICE SHEET9 (Cont'd)

 It he phubes are presen tar Tpa, but were not presentat TP4, cheod

service Sheet 9 Contal

 and repeat esest 1

\section*{SERVICE SHEET 9 (Cont'd)}

2] SAMPLING PHASE DETECTOR

 transformer primary to
transformer secondary.
A 100 kHz signal from the reference loop is applied to the secondary center taas
of T1. L7 and C9 (along with C3 in the reference lo o A AA1
assembly cemprise al \(10 w\) pass filter, it has an impedance of about 450 ohms and a cutoff frequence
of about 150 kHz . The TTL input from the reference loop is reshaped into o sine
 unwanted high frequency signals and further filters the sine wave
 forward bias CR3 and CR4 Since the gate
opposite in polarity, hey will cancel at TP6.
While CR3 and CR4 are forward biased the sampling gate is open and the 100 kHz
reference signal is sampled.

SERVICE SHEET 9 (Cont'd)
This type of sampling phase detector may be phase locked at virtually any point on the sine wave curve.
deally te zero oolt crosover point of the sine wave should be bsed to improve the lock and hold in
andily
If the divided down output of the voltage controlled oscillator in the A13 assembly (10 kHz pulses) is not any given time depends on the polarity of the 100 kHz sine wave at the time the last sample was taken. The
 laken from. Aach time CR3 and CR are forward bised the sighal derived from the 100 kHz .
ignal at T1 terminals 4 and 6 are coupled throumh the sampling gate to controt the charge on C22.

 TEST PROCEDURE 2

Test 2 -b. With the oscilloscope connected to TPG, ground TP8. The sienal displayed should be similiar to
pat shown in Composite Waveform sss-9, at about 4 volts. The frequency of the signal will be determined that thown in Composite Waveform SS99.9, at about 4 volts. Thi frequency of the sign
by the frequency difference detected by the sampling gate tivpically 200 to 400 Hz\()\).
the signal is present at TPG, connect the oscilloscope to Q5.e. The sine wave should be about the same as If the signal is present at \(Q 5\)-e the error amplifier and the sampling circuits are functioning properly.
If the signal is not present at \(Q 5\) e and was present at TP6, check \(Q 3, Q 4, Q 5\) and associated components.
Atter repairs are made repeat the test and remove the ground from \(T P 8\). NOTE
Operation of the circuit shown on Service Sheet 9 -a is essentially the same as that shown
on Sevice Shee 9 . Reference designations differ. The count down is always 3000 .

Figure 8.36. A14a N2a Phase Detector Component Locations

\section*{ERVICE SHEET 10}

2 OSCILLATOR ASSEMBLY A13
Normally, causes of malfunctions in the Model 8660 C will be isolated to a circuit
board or assembly as a result of performing the tests specified in the
troubleshooting trees.

When trouble has been isolated to the A13 assembly it should be removed and
reinstaled sunt
and components.
extender boards. This will provide easy aceess to test points note
After making repairs to any part of the \(N 2\) loop circuits the
adjustment procedures specified in Section \(V\) paragraph 5.30 adijustment procedures specified in Section D parararapp 5.30
should be performed to ensure proper operation of the
instrument.
SST EOUIPMENT REOUIRED (See Table 1.2)
Digital Voltmeter
Frequency Counter
I2 Loop general information
The purpose of the N 2 loop is to generate digitally controiled RF signals in the
range of 19.80 to 29.72 Mzz in eseectabte 10 KHz increments. The voltage

I voltage controlled oscillator

 low impedance at the source. The gain of the FET amplifier for the output signal
is sess than ones this minimizes the Miller ffect which might otherwise reflect
capacitance back into the oscilator tank circuit.
Q1 ampirifies the e iinnal and applies it to U1A Which functions as a Schmitt triger
U1D inverts the output from U1A and applies it to the programmable divider in
 test procedure \(\quad\) I

\footnotetext{
NOTE
\(\begin{aligned} & \text { Do not use long coox leads from the counter to } \text { tP3. The } \\ & \text { capacitive loding may attenuate the signal below a useable } \\ & \text { level. }\end{aligned}\)
}

SERVICE SHEET 10 (Cont'd)
Test 1.8. Connect the counter to TP3 and set Center Frequencies as shown in
Table 8-46. The counter readout should be as shown in the table. (Make allowances NOTE

TP2 in Trabe 8-46. If the voltage levels are incorrect proceed
Ro test procedure \([\mathbf{2 4}\).

If the signal is present at TP3 but is not present at XA13-1 pins 4 and 6 check \(U\) I. Test 1 -b. If the signal is not present at TP3 use the oscilloscope to check the
signal at the collector of \(Q 1\). The signal should be about 1 volt in amplitude. If the signal is not present at Q1-c use the oscilloscope to check the signal at the
Q1 base. If the signal is now present (about 0.3 volt), Q1 is probably defective. the signal is not present at \(Q 1\) base, check \(Q 2, Q 9\) and associated components. 2 PRETUNING CIRCUIT
The frequency of the voltage controlled oscillator is roughly preset by the digital
to analog converter (U2, U3, transistors connected to the outputs of the NAND

 gate with which they ra
NAND gate is switched on.

 hrough R28, R30 and R37, a negative surree from the tioitital to analog ocverter
TPR) and the signal from the N2 phase detector. The voltage at the summing Pint ind the signal fro
When \(\mathrm{TP1}\) is at approximately -25 volts (no BCD input), most of the current
rom the +20 volt supply flows through \(Q 4\) and \(Q 3\); very litite flows through Q1

\section*{SERVICE SHEET 10 (Cont'd)}

CR4 through CR7. CR11 through CR16 and dssociated resistors are used to shap

 biased resistors a
to the varactors.
Q11 and Q10 are emitter followers which couple the output of Q12 to the
varactiors. Q11 provides a high impedance for the output of the summing
amplifir, Q12. test procedure
Test 2-a. Use the digital voltmeter to check the voltages at TP1 and TP2. These
de levels should be bout as shown in Table \(8-46\) for the center frequencies shown. If the voltagese at TP1 are about right, but those at TP2 are not, check Q12, Q11,
Q10 and asecoiated components.

If the voltages at TP1 are not approximately as shown in Tabie 8-46, check the
components in the digital to analog converter.

\section*{NOTE}

Miso check the BCD input lines for the correct levels, With \(C F\)
digits 4 and 5 set to a zero all eight input lines should be low
 and 9 should be high, etc.
Table 846. N2 Frequency Versus Voltage Chart
\begin{tabular}{|c|c|c|c|}
\hline Center Frequency & Counter Readout & TP1 Volts & TP2 Volts \\
\hline 00000 Hz & 29.790000 MHz & -25 & -31 \\
11100 Hz & 28.680000 MHz & -23 & -26 \\
22200 Hz & 27.570000 MHz & -21 & -21 \\
33300 Hz & 26.460000 MHz & -18.5 & -16.8 \\
44400 Hz & 25.350000 MHz & -16.4 & -13.4 \\
55500 Hz & 24.240000 MHz & -14.2 & -10.6 \\
66600 Hz & 23.130000 MHz & -12 & -8.3 \\
77700 Hz & 22.020000 MHz & -9.8 & -6.4 \\
88800 Hz & 20.910000 MHz & -7.7 & -4.8 \\
99990 Hz & 19.800000 MHz & -5.4 & -3.6 \\
\hline
\end{tabular}
\(=-=\)

 N3 LOOP GENERAL INFormation

 M \(\triangle 3\) PRoGRAMMABLE DVVIIER CIRCUIT

 TEST PROCEDURE 1 IT
Composite Waverorm
\(5== \pm=\) Note

\section*{}

MWMWMW
rsmome Nups
manmanim

SERVIIE SHEET 11 (Contrd)

 IH the eimal is iso nopesentat A 10.1 .2 cheer inte

 andemax \(=2==5\)

\section*{SERVICE SHEET 11 (Cont'd)}

Rem
 TE

 there is no change in the dce levers at U1 pins 5 and 6 with U1

\section*{SERVICE SHEET 11 (Cont'd)}

service sheet 111 (Contad)

11 SAMPLING PHASE DETECTOR

 While CR3 and CRA are forward diaed the smmpling gate is open and the 100 kHiz refermece input Signal is
empled.

Test 2a. Connect the oscilloscope to TP6. If the 100 kHz reference simgal is present one of the sampling
gate ediodes (CR3 or CR4) is probabaly shored. If the gate puses are present one of the sampling gate diodes
 difference frequency detected by the sampling gat
If the signal is present at TP6, connect the oscilloscope to Q5-e. The sine wave should be the same as seen at
TP6.
if the signal is present at \(Q 5\)-e the error amplifier and the sampler circuit are functioning properly.
the signal is not present at Q 5 e and was present at \(\mathrm{TP6}\), check \(\mathrm{Q}, \mathrm{Q}, \mathrm{Q}, \mathrm{Q} 5\) and associated components.

\section*{SERVICE SHEET 12}

N3 OSCILLATOR ASSEMBLY A8
Normally, causes of malfunctions in the Model 8660 C will be isolated to a circuit
board or asembly as a result of performing the tests specified in the
troubleshooting trees. The A8 assembly, a part of the two-asembly N3 phase lock loop is shown
schematicall and dearibed on thi servie sheet. The N3 Phase Detector
assembly, A10, is shown schematically and deseribed on Service Sheat 11 . When trouble has been isolated to the A8 assembly it should be removed and
reinstallud using two extender boards. This will provide ensy aceess to test points
and components. NOTE
\[
\begin{aligned}
& \text { After making repairs to any part of the N3 loop circuits the } \\
& \text { adjustment procedures specifed in Section } V \text { paragrap } 5 \text { 5-31 } \\
& \text { shiust } \\
& \text { instrument. }
\end{aligned}
\]

\section*{TEST EQUIPMENT REOUIRED (See Table 1-2)}

Digital Voltmeter
Frequency Counter
N3 LOOP GENERAL INFORMATION
 controlled oscilitator is phase locked to a 100 kHz reference which is derived from
the master oscillator in the reference section. The RF output of the N3 yoltage
 crements.

\section*{1 voltage controlled oscillator}

Q2, Q7 and associated components comprise a voltage controlled oscillator. C14
and C17 provide isolation for the de levels required to bias the varactor. C13 provides the feedback kequired to sustain oscillation. The resonant tank is coupled
to Q by capacitive divider C 16 and Cl 7 . The FET Tacts as asource follower in the
 the source. The gain of the FET for the output signal at the drain is held at lees
than unity tominize the mille effect which might otherwise reflect capacitance
back into the oscillator tank circuit.

\section*{ERVICE SHEET 12 (Cont'd)}

\section*{EST PROCEDURE 1}
\[
\begin{aligned}
& \begin{array}{l}
\text { Do not use long coox leads srom the counter to N3 test point } \\
\text { The capacitive looding may attenuate the signal below useabli } \\
\text { level }
\end{array} \\
& \text { The capacitive loading may attenuate the signal below us useable }
\end{aligned}
\]

Test 1.a. Connect the counter to TP2. With the center freugency set to zero the
counter readout should be 21.00 MHz . Set CF digits 1 and 2 to the setting

\[
\begin{aligned}
& \text { NOTE } \\
& \begin{array}{l}
\text { If the frequency readouts listed in Table } 8 \text {-47 are no } \\
\text { apporoinately as shown, check the voltage levels shown for } T P 3 \\
\text { ap the table }
\end{array} \\
& \begin{array}{l}
\text { approximately as shown, check the voltoge elevels shown for } T \text { TP3 } \\
\text { in the tabel If the ooltage levels are incorrect proceed to test } \\
\text { procedure II. }
\end{array}
\end{aligned}
\]

If the simal is present use the oscillosoope to check the signal at points shown in
Composite waveform SS12-1. Signals shown are about 4 volts in amplitude.

\section*{2 PRETUNING CIRCUIT}

The frequency of the voltage controled oseiliator is roughly preset by the dipital
to analog converter (U2 and Q8 through Q11). The digital to analog converter

\section*{ERVICE SHEET 12 (Cont'd)}
annot, by itself, set the oscillator frequency precisely; it does set the frequen oded 1, , 4 and . When any one of the \(\operatorname{BDD}\) inputs are high they cause the
utput of the NAND gate to which they are connected to go low; the transistor conput orted the NAND NAND gate to which they are conne.
coutput is switched on.

When any one or more BCD inputs go high the transistor associated with it
saturates and the current through \(Q 6\) is reduced. The reduction of current

Q3 is a summing amplifier which combines the output of the digital to ana
 Q3e) sums the current from three sources; a current source from the + +20 volt analog converter (TT1), and the error signal from the phase detect
at the summing point is always zero volts when the loop is locked.

The output from Q3 is coupled through Q4 and Q12 to control the bias on
varactor CR5 and the frequency of the voltage controlied oscillator.
TEST PROCEDURE
Test 2 -a. Use the dipital voltmeter to check the voltages at TP1 and TP3. These
dec levels should be about as shown in Tabie \(8-47\) for the center frequencies shown.

If the voltages at TP1 are about right, but those at TP3 are not, check Q3, Q4,
Q12 and associated components.
If the voltages at TP1 are not approximately as shown in Table \(8-47\), check the
components in the digital to analog converter.
nоте
\[
\begin{aligned}
& \text { NOTE } \\
& \text { Also check the dc levels at the } B C D \text { input lines. }
\end{aligned}
\]
\[
\begin{aligned}
& \text { NOTE } \\
& \begin{array}{l}
\text { These voltages are typical. They will vary from instrument to } \\
\text { instrument because of differences in individual varactor } \\
\text { characterisitics }
\end{array}
\end{aligned}
\]

SERVICE SHEET 12 (Cont'd)
Table 8-47. N3 Frequency Versus Voltage Chart
\begin{tabular}{|c|c|c|c|}
\hline Center Frequency & Counter Readout & TP1 Voltage & TP3 Voltage \\
\hline 00 Hz & 21.000000 MHz & -8.5 V & -3.7 V \\
11 Hz & 20.890000 MHz & -8.3 V & -3.6 V \\
22 Hz & 20.780000 MHz & -8.1 V & -3.5 V \\
33 Hz & 20.670000 MHz & -7.9 V & -3.4 V \\
44 Hz & 20.560000 MHz & -7.7 V & -3.3 V \\
55 Hz & 20.450000 MHz & -7.5 V & -3.2 V \\
66 Hz & 20.340000 MHz & -7.3 V & -3.1 V \\
77 Hz & 20.230000 MHz & -7.1 V & -3.0 V \\
88 Hz & 20.120000 MHz & -6.9 V & -2.9 V \\
99 Hz & 20.010000 MHz & -6.7 V & -2.8 V \\
\hline
\end{tabular}

EST EOUIPMENT REQuired (See Tale 1.2)

summing Loop 2 general

 TiPHASE DETECTOR

SERVICE SHEET 13 (Contid)

 Sine the sene ciriutit does not function when he loop is locked,
operation of the phase detector

SERVICE SHEET 13 (Contal)

 E=v= = vive

SERVICE SHEET 13 (Cont'd)

 The osectloscocope uss mineqered from TPI for thesese

It the puleses are not preent at TPP proceed to toest 1 b.b.

service shet 13 Cont

SERVICE SHEET 13 (Cont'd)
the signal is s shown at TP1, U7A or 012 may be dedective
 est 1.c. If herer is no signal at Tr3, or the simal is not approximately \(x\) and

 It te eiseal does not appear at Q4c but the signal at TP4 is present theck Q5, Q4 and

ERVICE SHEET 14
SUMMING LOOP 2 OSCILLATOR A11
Normally, causes of malfunctions in the Model 8660 will be isolated to a circuit
boord or assmbly
troubleshooting trees.
 When trouble has been isolated to the A11 assembly y thould be removed and
reinstaled using two extender boards. This will provide easy access to test points
and components. and components.

\section*{nOTE}

After making repairs so any part of the SL2 5 ircuitst the
adiustment procedures in section \(V\) paragraph 5.32 should be
perform to ensure proper operation of the instrument.
TEST EQUIPMENT REQUIRED (See Table 1-2)
Oscilloscope (with 1
Dipital Voimmeter
Frequency Counter

\section*{SUMMING LOOP 2 GENERAL}

The purpose of Summing Loop 2 (SLL) is to generate diditally controlled RF
signals in the range of 20.0001 to 30.0000 MHz in selectable 100 Hz increments.

II PRETUNING AND oscillator
The A11 assembly contains a voltage controlled oscillator, a digital to analog
converter and a a circuit to combine the pretuning do cevel with the output from
俍

 pretuning signal cannot, by itself, set the osciliator pre
frequency w within the cappure range of the phase lock loop.
U2 is a decoder which converts the BCD information from diditit to turn on on
of nine transistors in a resistive network. Quad NAND gate U3 turns on one o of nine transistors in a resistive network, Quad NAND gate U3 turns on one or
more transistors (QQ17 through Q20) when ther is is acD input from digit Quad NAND gate U8 in the A12 assembly tums on one or more transitsor
A12Q8 triough A12Q11 also in the A12 assembly) when there is a BCD inpui
from digit 3

SERVICE SHEET 14 (Cont'd)

Q4 is a summing amplifier which combines the output of the digital to analog
converter and the signal from the SL2 phase detector. The summing point (Q4e) ms the current from three sources; a current source from the +20 volt supp

When TP3 is at approximately -25 volts (all BCD inputs low), most of the
current from the +20 volt source flows through \(Q 5\), very little flows through \(Q 4\).

 TEST Procedure

NOTE

If the eignal is present use the oscilloscope to check the signals at points shown by
composite waveform SS14-1.

\section*{SERVICE SHEET 14 (Cont'd)}

\section*{}

If the sigmal is present at TP4 but is not present at XA11-1-2 or XA11-1-6, U1
probabiy defective.

EST Procedure 1
Test 2 a. Use the digital voltmeter to check the voltages at TP3, TP2 and TP5
These dc levels should be about as shown in Table \(8-48\) for the center frequencie
\[
\begin{aligned}
& \text { NOTE } \\
& \begin{array}{l}
\text { These voltages are typical. They will vary from instrument to } \\
\text { instrument because of differences in individual varactor } \\
\text { characteristics. }
\end{array}
\end{aligned}
\]

II the voltage at TP3 does not change when CF disit 5 is changed to any position
U2 is probably defective. (Verify presence of BCD inputs. If the voltage at TP

When the voltage at TP3 does not change with a change of the setting of CF digt
U3 or the associated transistors may be defective.
When the voltage at TP3 does not change with a change in the setting of CF digit

SERVICE SHEET 14 (Cont'd)
If the voltagese are approximately correct at TP3 but are not correct at either TP2
or TP5 , check Q4, Q15 and associated components. The counter is connected to TP4 for readouts specified in Table 8-48.

Table 8-48. SL2 Frequency Verma Votaze Cher
\begin{tabular}{|c|c|c|c|c|}
\hline Center Freauency & Counter Readout & TP3 & TP2 & TP5 \\
\hline 00000 Hz & 30.000000 MHz & -25.1 V & -31.6 V & -30.9 V \\
11100 Hz & 28.890000 MHz & -22.8 V & -25.5 V & -24.8 V \\
22200 Hz & 27.780000 MHz & -20.5 V & -20.5 V & -19.9 V \\
33300 Hz & 26.670000 MHz & -18.3 V & -16.4 V & -15.7 V \\
44400 Hz & 26.560000 MHz & \(-16 . \mathrm{V}\) & \(-13 . \mathrm{V}\) & -12.4 V \\
55500 Hz & 24.450000 MHz & -13.8 V & -10.3 V & -9.6 V \\
66600 Hz & 23.440000 MHz & -11.7 V & \(-8 . \mathrm{V}\) & -7.3 V \\
77700 Hz & 22.230000 MHz & -9.5 V & -6.2 V & -5.5 V \\
88800 Hz & 21.120000 MHz & -7.3 V & -4.6 V & \(-4 . \mathrm{V}\) \\
99900 Hz & 20.010000 MHz & -5.3 V & -3.4 V & -2.8 V \\
\hline
\end{tabular}

Figure 8.46. A11 SL2 VCO Component Locations

\section*{ERVICE SHEET 15 (Cont'd)}

SERVICE SHEET 15 (Cont'd)
Phase lock has been achieved and the loop will remain locked as long as pulses al

 TEST PROCEDURE 1
Test 1.a. Connect the oscilloscope input to test points shown by composite
waverormm SSI5.-1. This composite waveform illustrates correct waveforms and waverorm ssi5-1.l.This composite wavetorm illustrates correct waveforms and
timing realionships for the points tested. All signals are about 4 volts in
implitude. note
The oscilloscope was triggered trom TP1 for all waveform the pulses are not present at TP2 proceed to test 1-b
 and TP8 as appropriate.

If the pulses are approximately as shown in the top five traces of composite
 If the sigmal is not present at U1D pin 11 use the oscilloscope to check the signal
at NAND gates U1 A pin 3 and U1B pin 6 . The ignals should appear as they did a

SERVICE SHEET 15 (Cont'd)
If the cause of trouble still has not been found, connect the counter to Tp3 and the dipital
volmeter and oscill
sococe to NAND gate UTA pin 12 . The counter readout should be aboul

show a change in level, ill does not, \(U\) or Us is probaily defecive.
Test 1-b. If there is no signal at TP2 or the signal is not approximately as shown in the top
 SL2 loop.

- SL2 VCO SEICE SHEET 14

\section*{SERVICE SHEET 16}

SUMMING LOOP 1 MIXER AND D TO A CONVERTER A18
Normaly, causes of malfunctions in the Model 8660 C will be isolated to a circuit
hoord
troubleshoo ototing trees. as a result of performing the tests specified in the
 chematicaly and deecribed on Service Sheet 15 . The SL1 O
A19) is show schematically and deseribed on Service Sheet 17 .
When trouble has been isolated tor the A18 assembly it should be removed and
reinstateded sung two extender boards. This will provide easy access to test pointes
and components.
NOTE
After making repairs to any part of the SL1 circuits the
adiustment procedures in Section V pargartap \(5-33\) should be
performed to ensure proper opertion
ST EQUIPMENT REOUIRED (See Tabie 1-2)
Sscilloscope (with \(10: 1\) divider probes)
Digital Voltmeter
Digital Voitmeter
Frequency Counter
SUMMING LOOP 1 GENERAL
The purpose of Summing L.oop 1 (SL.) is to generate dipitally controlled RF
signals in the range of 20.000001 to 30 . 0 . 1ow is in Hz The SLI voltage controlled oscillator is phase lockeded to the divide

Q14 and Q1 amplify the input from the SL1 voltage controlled oscillator.
Q2, Q15, Q18 and associated components amplify the output from the mixer
before applying it to the phase detector circuit in the A15 assembly. TEST PROCEDURE -
Test 1 1.. With the center frequency set to zero use the counter and the oscillo-
scope to cheok for the following (approximately sine wave) signals:

\&

\section*{SERVICE SHEET 16 (Cont'd)}

2 digital to analog converter
U3 is a decoder which converts the BCD inputs from digit 7 to an output that will turn on
one of nine transistors in a resisise network. Quad NAND gates U2 and U1 tum on one or one of nine transistors in a resistive network a
more transistors connected to their outputs in a resistive network. U2 and U1 are controlled more transistors connected to
by digits 6 and 5 respectively.

The current flow through Q4 and the bias for Q3 is determined by which of the transistors
in the resisitive network are saturated. The dc level at TPT is determined by which

\section*{TEST PROCEDURE []}

Test 2-a. Connect the digital voltmeter to TP1 and the counter toTP5. Refer to Table 8-49
for CF settings, counter readouts, and approximate voltage levels.

\section*{note}

The voltage readings are typical and may vary greatly from that shown
due to lifferencein ouractor charccterisitics. The important point to note due to dififerencesi in uaractor charrateristics. The impor
is the ratio of change as the center frequency is changed

If the voltage ratio changes about as shown but the frequency requirements are not met,
trouble is probabaly in the osillator assembly or the phase detector assembly.
Table 8-49. SL1 Frequency Versus Voltage Chart
\begin{tabular}{|c|c|c|}
\hline Center Frequency & Frequency TP5 & Voltage TP1 \\
\hline 0000000 Hz & 300.000 kHz & -25.5 V \\
1110000 Hz & 290.000 kHz & -23.4 V \\
2220000 Hz & 280.000 kHz & -21.0 V \\
3330000 Hz & 270.000 kHz & -18.8 V \\
4440000 Hz & 260.000 kHz & -16.6 V \\
5450000 Hz & 250.000 kHz & -14.3 V \\
6660000 Hz & 240.000 kHz & -12.1 V \\
7770000 Hz & 230.000 kHz & -9.9 V \\
8880000 Hz & 220.000 kHz & -7.7 V \\
9990000 Hz & 210.000 kHz & -5.4 V \\
9999999 Hz & 200.000 kHz & -5.4 V \\
\hline
\end{tabular}
8.124

\section*{SERVICE SHEET}

SUMMING LOOP 1 OSCILLATOR A19
Normally, causes of malfunctions in the Model 8660 C will be isolated to a circuit
booad or
troubleshooting trees.

When trouble has been isolated to the A19 asembly it should be removed and
renstalled using two extender boards. This will provide easy acceess to test points
and componenits.
note
After making repairs to any part of the SL 1 circuits the
adiustment procedurse in Section vapargaph 5 -53 should be
performed to ensure proper operation of the instrument.
ST EQUIPMENT REQUIRED (See Table 1-2)
Scilloscope (with \(10: 1\) divider probes)
ieital Volitmeter
Digital Voitmeter
Frequency Counter
Summing Loop 1 general
The purpose of Summing Loop 1 (SLL) is to generate dietally controlled RF
signals in the range of 20.000001 to 30.000000 MHz in selectable increments as

I) SUMMING AMPLIFIER

Q6 is a summing amplifier which combines the output of the digital to analog
converter and the signal trom the SLL phase detector. The summing point \(Q 66\) en
 hrough R 3 , \(R 7\) and R68, and the eigna from the SL1 phase detector through R6.
The de level at the summing point is held at zero volts.
俍

\section*{ERVICE SHEET 17 (Cont'd)}

\section*{test procedure}

Test 1 a. Connect the digital voltmeter to TP1 and set the center frequency as

If the voltage level from the digital to analog converter does change, but the level
TP1 does not, check \(Q 6, Q 7\) and associated components.
2 voltage controlled oscillator and amplifiers
Q5, Q4 and associated components comprise a voltage controlled oscillator. C17.
C20 and C21 provide isolation for the de levels required to bias the varactors. C19 provides the feedback necessary to sustaino oscillation. The resonant tank circuit is coupled to Q4 by capacitive divider C20 and C21. The FET acts as a source
follower in the feedback circuit; it provides a high impedance at the gate and a
fow

Q3 is a power spliter which drives two two-stage amplifiers. One amplifier output
is appliied to the RF Section plugin in and the other is applied to the mixer in the
A18 assembly

EST PROCEDURE 2
Test 2 .a. Connect the oscilloseope
points should be about 0.3 volts \(p / \mathrm{p}\)

SERVICE SHEET 17 (Cont'd)
 The sign present at TP3 or TTP4, Q3 is probably defective. If the signal is \(n\)

Test 2-b. Connect the counter to TP3 or TP4 and check for correct frequencies at
the CF shown in Table 8-50.

Table 8-50. Varactor Bias Versus Frequency SL
\begin{tabular}{|c|c|c|}
\hline Center Frequency & Frequency TP3 or TP4 & Voltage TP1 \\
\hline 0000000 Hz & 30.000000 MHz & -30.7 V \\
1110000 Hz & 28.890000 MHz & -25.3 V \\
2220000 Hz & 27.780000 MHz & -21.2 V \\
3330000 Hz & 26.670000 MHz & -17.2 V \\
4440000 Hz & 25.560000 MHz & -13.4 V \\
5550000 Hz & 24.450000 MHz & -10.6 V \\
6660000 Hz & 23.340000 MHz & -8.2 V \\
7770000 Hz & 22.230000 MHz & -6.3 V \\
8880000 Hz & 21.120000 MHz & -4.7 V \\
9990000 Hz & 20.010000 MHz & -3.3 V \\
9999999 Hz & 20.000001 MHz & -3.2 V \\
\hline
\end{tabular}

\(\substack{\text { GENERAL } \\ \text { The DCu } \\ \text { mantrame } \\ \text { in }}\)

 The \(R\) bus courles the outputs of the \(C\) C and \(A\) regisises to the
ALU on command

SERVICE SHEET 18 （Conted）

 2xax 2주Naz＝ ＝2 \(==\) \(\pm=\) \(2 \times=\)

\section*{\(=\)}

OTE
まuwaw

SERVICE SHEET 18 （Con＇td）

SERVICE SHEET 18 （Con＇td）

 2．A freuency increnent sfrep hab bean added to 3．The instrument has been sivithed fom the weep modet to 4．The readout isto disinhy CF gadin afers the readout has Refer to s．sivice Sheet 29 for more detaled intomation about
hec cr resester Step Register
Any freuenery

\(\qquad\)

SERVICE SHEET 18 （Contid）

fer to Service Sheet 32 for a more complete descrition ad

OuTPUT REGIITER

 Refer to sevies sheet 35 for a more detetiled explanation of the
output eresider creutit． swep count Assembly

きま＝＝i＝

 SWITCH CoNTROL ASSEMBLY

Cont

SERVIIC SHEET 19
P/O SWITCH CONTROL ASSEMBLY AIA

 ,

CE SHEET 19 Contid

 Miphop U1 in the lewe left

The circuits receive inputs from all front panel switches except the
keyborad. These inputs serve to set (for resett certain flip fllops or may
simply flow throunh the asembly for keyboard. These inputs serve to set (or reset) certain flip.
simply flow through the ssembly for use in other assembies.
A principal output is qualifier F10-H from flip/flop U15 shown on SS19.
When qualifier F10-H is set the state machine will go through the various
 pushbutton switches, the sweep control switches or the manual mode tuning
dial.
A second principal circuit is the 4 .to-16 selector U26 (shown on SS19)
which is one of four such selectors in the DCU. Selector U26, which is
 selecto
28.
A third principal circuit is the clock divider
check outputs used in various DCU cireuits.
The firrt divider, D type flip-flop U32B, divides the 2 MHz coax clock by
two. The MHz output of U32B drives divide-byy ten U9 and is is also used as
the system clock.
The second divider, U9, divides by ten. The 100 kHz output drives divide
by-ten U8 and is also used as the keyboard clock.
The third divider, U8, divides by ten. The 10 kHz output drives U 6 and is
also used in the readout assembly
 put is used to cocok the weep control
(see SS19). The output also drives U5.
The sixt divider, U5, divides by ten. The 20 Hz output is used in the sweep
control circuits.
In the upper left hand comer of the schematic is a block labeled ROTARY
PULSE GENERATOR (abbreviated RPG). The RPG is enabled by the PULSE GENERATOR (abbreviated RPG). The RPG is enabled by the
MANUAL MODE RESOUTOTON switch in any position except OFF. The

SERVICE SHEET 20 (Cont'd)
The RPG contains a light source and two photocells which are used to senerate two square waves. These two squae

The circuits following the RPG CW and CCW outputs must detect when a
manual entry has been made and also whether the input is an increase or a manual entry has been
decrease in frequency. ND gate U33D is diven by the CW and CCW inputs from the RPG.
Assume that the RPG is to be turmed in the CW direction and that initially
he CW output is low. The CCW output is low when the CW output goe
 output is high. When the CW output goes low, PLSS-H goes high to cause an
add operation and the low output of AND gate U33D clocks U32A through
NAND add operation and the low output of AND gate U33D clocks
NAND gate U31D to cause the \(Q\) output (MNE-H) to go high.
When the RPG is turned CCW, the CCW output will go high at a time when
the CW output is low. 90. later CW goes high and AND gate U33D output

 gatd U21A, PLLSH, is low. A subtraction operation is directed rather than an
addition operation.

 gate e 2.
detect.
Divide-by-five counter U4 is used when the HF RF output unit is in use and
the 1 MHz (COARSE) step increment is selected. This is done to provide
 Option 004 instruments have a 100 Hz resolution rather than 1 H
resolution. Part of the changes required for this change is to shitt R18 from
 ground. Th
and 1
1 MHz .

\section*{SWEEP ENABLE CIRCUIT}

The SW1 fili-flop, U23A, Q output (SW1-H) and SWON-H go high for all
sweep operations. Selection of AUTO or MAN sweep controls the \(J\) Input of
 (1). Selection of SWEE
 When state \(0 / 13,0 / 14\) or \(0 / 15\) is reached the \(J\) input \(t\) U U23B goes high and
the system clock causes the \(Q\) output to go high. When U23B \(Q\) output is

P/O A1A1 Switch Control Assy (Part 1

SERVICE SHEET 20 (cont'd) hieh, NAND gate U25D is enabled and the system
clock is coupled through to NAND gate U14C. These thre estates enahe the seveep to stepe at the
maximum clock rate (1 MHz) during certain parts maximum clock rate (n
of the sweep operation
The \(\overline{\bar{Q}}\) output of the single sweep nip-fiop, U21A
 AND gate U20A are high the level
U21A does not affect the fipp-lop.
When the SWEEP MODE switch is placed in the
SINGLE mode and the SIIGLE pushbutton

 sweep width. The inverted system clock at the pin
2 input of OR gate U30A cannot reset U21A
beacuse instructions RQSS-H is low during the
bene single sweep operation.
When the single sweep operation is concluded,
instruction RQSS-H goes high, is inverted by U2D
 ystem clock resets bo.
When the single sweep was inititated, U21A \(\overline{\text { ® }}\) went
fow to cause the output of AND gate U13A to go

 U23A (SW1-H) to go high swo N-H is autpo of high
during the time the output of U12A is low as
controlled by the QSS fip-flop U21A While the \(Q\) output of U23B is high the systen
clock is coupled through NAND
 are high because U23B Q is low. The system cloc
is coupled throunh NAN Date U14C to U15A
Since the D inut © U15 is held high the output goes high on the clock pusee. The inverted
yystem clock then cause the Q output of U15B
 clock 0 reset U15A and U15B Q outputs go olow
to make them ready for the next system clock. When one of the three other clock sources is to be
used to drive U15A, state \(0 / 9\) is reached, pin 12 of OR gate U30D goes low, the inverted system clock
at OR gate U300 pin 11 resets U23B and the

When U23B is reset the \(Q\) output goes high and NAD gate U2DD is inhibited to prevent further
system colok pulsesfrom reachin U15A. The high
output from U25D is also used to partially enable output from U25D
NAND gate U14C.
When the SWEEP MODE switch is set to AUTO
and the SWEEP RATE swtich is set to MED and the SWEEP RATE swtich is set to MED, the
output of NAND gate U10A goes high to enable NAND gate U10D which supplies the 1 millisecond
年 used to inhibit U10C
Pins 2 and 13 of NAND gate U14A are high so the lock path is completed through to NAND gate
J14C. Pins 9 and 10 of U14C are both high \(s\).
U15A is clocked and its \(Q\) output goes high. The next inverted system clock causes QSP-H to go
high. This signal instructs the system to advance
. another sweep step. Using the inverted system
clock to clock U15B ensures that the 1 milliseond
chend clock to clock U15B ensures that the 1 millisecond
clock is synhronized to the system clock. The 1
milliseonn clock is derived from the system clock.
However. the divideries ere low powe device

 When the FAST sweep rate is selected, operation
of the circuit is the same as in the MED mode except that the outupt of AND gete Usi
(Q100.H is hish. In this mode the sweep is 100
steps at the 1 kHz rate. When the SLO sweep rate is selected, operation similar to the MED mode except that the output of
sio is low, U10C is enaled and the 10 milli-
second (20 Hz) Clock is is used. When the SWEEP MODE switch is set to MAN, the
RPG is enabled. Operation of the RPG and RPG is enabled. Operation of the RPG an
associated circuis is essentialy the same as it was
in the MAUAL TUNE RESOLUTION mod
NNE-H is applied to In the MANUAL TUNE RESOLUTION mode
MNE-H is appleie to the pin 5 input of NAND gate
U14B; U14B pin

 two inputs to U14C are high so U15A is clocked
by MNE.-H. U15B is then olocked by the next
tinevted system clock. This ensures that the
HNE by MNE.H. U15B is then clocked by the next
invered system clock This ensures that the
MNE-H input is synchronized wirth the system

\section*{SERVICE SHEET 21}

\section*{FIO A1A2 KEY CONTROL ASSEMBLY AND KEYBOARD}

The circuits in the A1A2 assembly are shown schematically on Service
Sheets 21 and 22 . The keyboard scan, encoding circuits and the keyboard
 The Model 8660 C keyboard is unique in that there are no mechanical
contacts. Basically the keyboard consitst of ten pairs of printed circuit pulse contacts. Basically the keyboard consists of ten pair of of printed circuit pulse
transformess with metalic spring least suspended adjacent to them when a
key is pressed the associated pulse transformer is inductively shoted. The pulse transformer primaries are connected in series pairs between the
100 klz clock pulses and a 1 of 10 selector, U26. The pulse transformer 100 kHz clock pulses and a 1 of 10 selector, U26. The pulse transformer
secondaraies are connected in series between the inputs of a uual comparator,
U20. The pulse transformer paiss pre conneeted so that seondory curents 220. The pusse transformer pairs are connected so that secondary currents
cancel until a key is pressed.

The keyboard clock (KYB CK) is connected to all of the transformer pairs.
However, only one transformer pair is selected at any given time by U26.

 time the D output of divide-by.ten U22
i17B determin which of the U2 con
comparator is the numeric key detector.

When the lower U20 comparator is being strobed, if a numerie key is pressed
apositive going pulse appears at U20 \(\mathrm{E}_{0}\) output. This causes the one-shot
 lock gate (U16C) to the divider (U25). U25A, B, C and D outputs retain the
 multiplexer U12 which is shown on service Sheet 22 . Numeric data cannot
affet the non-numeri data dircuits because OR gates U24A, B, C and \(D\) affect the non-numeric data circuits becaus
outputs are held high by NAND gate U16B.

Peration when a non-numeric key is pressed is essentially the same as it is
for a nummeric key. The upper U20 comparator is enabled by U17B \(Q\) anc or a numeric key. The upper U20 comparator is enabled by U17B Q and
oth u16B inputs are high. The low leve ot the outpot of U1B enables
U4A, B, C and D to couple the datat through to one-of-ten selector, U23. 24A, B, C and D to couple the data through to one-of.ten selecto U15 is a multiplexer which proceseses data from U23 in the local mode or
from external programming circuits in the remote mode. The only data functions processed through U15 ©re the step up, sted down and cante

 U 15 pin 11 is low so inputs \(0 \mathrm{~A}, \mathrm{OB}\) and \(O \mathrm{C}\) are selected. In
\(\mathrm{ZA}_{\mathrm{A}}, \mathrm{Z}_{\mathrm{B}}\) and \(\mathrm{Z}_{\mathrm{C}}\) outputs correspond to the \(\mathrm{A}, \mathrm{B}\) and C inputs.

\section*{SERVICE SHEET 21 (Cont}

The gating circuits to the right of U15 and U23 generate various qualifiers
and instructions. As an example, if the CF key is pressed (corde 8 , 10a0) the 08 output of U 23 is low, U 152 C is isw and the output of U 22 D is high. At
all other times, when the CF function has not been initiated, qualifier CF-H ,
Fiip/flop U7B functions in the microprogram to prevent an entry operation
from being made before a unit key is presed. A unit key must be pressed to complete the justifcation process. The F3 flippllop (UyB) Kinn but goese high

 J.K flip/fiop U7A is used in a synchronizing processs it is connected as a "D"
type flip/flop. The "D" input from U19 is asynchronous since it is a type fiip/flop. The "D". input from U19 is asynchronous since it is a
response to mannal press and release of a key. The synchronized KDN-H
output ensures correct machine state action.

Figure 8.60. Key board Assembly. Front Vieu.

\(\square\)

\section*{SERVICE SHEET 23}

P/O A1A3 READOUT CONTROL ASSEMBLY
Most of the circuitry shown on this service sheet is used to justify (properly
locate) the decimal point in the readout. Following entry of a multidigit locate) the decimal point in the readout. Following entry of a multididit
number, unititare selected and the number is sinited lett or right in the
keyboard resiter as contrilded by the following circuitry which determines
position of the decimal point.
 purpose of U 11 is to detect when \(\mathrm{A}=\mathrm{B}\).
The justification counter, U20, is a deeade counter which operates only after
a decimal point or a units entry has been made.

The next state, \(0 / 2\), contains the instruction ETK \(\rho\)-L. This causes the
numeric data to be stored in the K \(\overline{\text { Pegister. }}\)
 and a train of 10 clock pulses. These clock pulses transfer the data from the
singol doigit K \(\begin{aligned} & \text { regiser to } \\ & \text { keyboard storage register. }\end{aligned}\) the least significant storage in the ten digit

\author{
See Service Sheets 21 and 22
of the keyboard register.
}

When a decimal point is entered after a numeric entry the machine state path
is from state \(0 / 0\) through states \(4 / 0,5 / 0\) and \(5 / 1\) to state \(3 / 5\).
In state e \(3 / 5\) instruction SJCT-L (set justification counter) appears. This
instruction, which has \(a\) low assertive state, is applied to NOR gate U13A pin

\section*{SERVICE SHEET 23 (Cont'd)}

When U14A Q goes high NAND gate U33A is enabled. Pin 4 or U33A is high
because B9. is is not active at this time. The system clock at NAND gate
U35B pin 3 is applied to U33A pin 5 when CK10 CK is high and JUS or QJO U35B pin 3 is applied to U33A pin 5 when CK10 CK is high and JUS or QJO
are high. Pin 2 of U33A is high because KPTK is low. The output of NAND gate U33B is high since QJO is low and NAND gate
UU3D is enabod for a period of inne clock pulses. The train of clock pulses
ends when \(89-\mathrm{L}\) goes low and inhibits U33A. ends when B9-L goes low and inhibits U33A.
 The output of NAND gate U35B pin 6 is also used to clock the keyboard
register via line KCK. . The output burst of 10 clock pulses shits the new

 U14B has not yet been clocked because the JUSSL high level has been
inverted by U31E to inhibit AND gate U32B.

 next state is \(0 / 4\) which contains instruction RKQ \(Q\). (resest K \(\overline{0} 9\) register).

 to AND gate U32D to proace RK0-L.
Qualifier QU1.H is active for state \(0 / 4\) so th
instructions JUS L , KF3-L and CK10-L.

 mbeme
The low Q output of U14B is applied to one input of NOR gate U13B. The
second input to U13B is CKB-H which is also low. The high input to OR gate second input to U13B is CKB-H which is also oow. The high input to or gate
U21A at pin 1 is couplet throug to pin 10 of AND gate U32C. Pin 2 of \(O R\)
gate U21A is also held high by the inverted low \(A=B\) level. gate U21A is also held high by the inverted low \(A=B\) gevel.

\section*{SERVICE SHEET 23 (Cont'd)}

When QJO-H goes high it holds the instrument in state \(1 / 6\) until the OR Rate U23A. QUQ.H also e enables NAND gate U33B which then clocks U20
through U30D.
 inputs to U11 are
U14B to go high.
When U11 \(\mathrm{A}=\mathrm{B}\) is a high the justiification requirements are satisfied.
However, several things must happen before state \(1 / 6\) may be left.
The \(A=B\) high level is inverted by U31A and applied to pin 2 of or gate
U1A. This does not immediately affect the output of U21A because the output of NoR gate U13

 on a positive going pulse. The next time the inverted clock goes high is at the
beeginning of the tenth clock; this clocks 1418 and causes the \(Q\) output to go
high.

Now assume that 12.34 kHz was entered by accident, it should have been
12.34 MHz. 12.32 is still stored
necessary to to tart the justifification proceess overy is orard to presest the the MHz all key. that is is Operation of the justification circuit is the same as it was for kHz except.
that now
the ennuut to
Onl

 For a third example assume
desired output frequency.
Initiation of the justification cycle is the same as it was in the previous two
examples. How, however, the \(A\) inputs to U11 are a 3 (0011) and the \(B\)
 U13C holds the \(D\) input of U14B high and U14B is clocked as it
but no output change results since the \(Q\) output was already high.
- P/O A1A2 Key Control Assy (Part 2)

SERVICE SHEET 23 (Cont'd) The low A=B output of U11 is again inverted and
applied to OR gate U21A to enanhe AN agate
U32C and again canse
 U11 is continually comparing the outputs from
U20, U1B and U21B. The first clock to U20 causes

 progression back to state
During all of these justification counts, outputs
from KKK.L to the keyboard rexiser cause the
enty to be shitted toy
units and decesimal point.
It may be seen from the foregoing examples that
left shifing from kiz to Mrk) take three trains
of clock pulses, while right shifting (from MHz to

The decimal point storage, U3, is a \(4 \times 4\) file.
storese 4 four-bit words. These words are selectee
 Oi; word 3 ,
keyboard 11 .
The inverted system clock is applied to por. 12
(GWW) of U3 Where it is sued a ath write wiok. WA
and \(W_{B}\) (write) inputs are controled by
 the KYBD, STEP or SWP WIDTH, punhtuttens
the local mode. When these pusbuttons are
inactive the center frequency is selected.

When operatitg in the remote mode only the
center frequency is displayed. It is displayed in
MHz only. In the remote mode the LOCAL-H line

 remote mode. Pin 110 of U1C and Pin 12 of U1D
are coneneted direcly to the output of U2A
AND gate. Normaly, in the hocal mode, the output
 Decoder U7 is one-8.ten selector. All outputs of
the eocoder are high except the one selected. The
outputs of the decoder directly der outputs of the decoder directly drive the decimal
point LLD s sit the readout (the series resistors are
for current limiting).

dout control assembly atas
\(\underset{\substack{\text { The A1A } 3 \text { aseemly is shown shematically on Serice Sheets } \\ 23 \text { and } 24}}{\text { 4. }}\)

SERVIIE SHEET 24 Contad

ERVICE SHEET 24 (Contod)

go low and inhibit AND
 Then Hzis selecteded all leading zzeros see blanked.
 Input Rol.L e etabilishes prointy for the readout during manual
wewep

\section*{SERYICE SHEET 24 Conita}

Toble 8.5.1. Readout Register Leading Zero Bunkking

RVIIE SHEET 24 Cont
T.able e.52. Readout Regsisere Sienificant Zero Bunnhing Trhbiot

finct \(\operatorname{tanec}\) Untal

P/O ROM INPUT ASSEMBLY AIA
The A1A4 (SS25 and 26) and the A1A5 (SS27 and
 The A1A4 assembly contains the qualifier select circuit shown on SS25 and the seven ffip/f1
ROMs and qualifier flip/Ilops shown on SS26. Because of the number of inputs from other
assemblies to the circuit shown on SS25 the inputs assemblies to the circuit shown on SS25 the inputs
are shown at the bottom of the page. .he only
ant
 This output provides th
ROMS shown on SS26.
U18, U9, U19, U20, U21, U22 and U23 are four
input oneof.sixteen selectors. The A, B, C and D
 the \(A_{0}, A_{1}, A_{2}\) and \(A_{3}\) outputs of the seven state
fiip/flops shown on SS26. These inputs are applied on of the secectors in parallel.) However, only One-f.ten selector U10 (only y outputs are used
is controlled by the A1 A5 and As outputs of the cven state flip/flops shown on SS26. All of the
input to Cl 10 is grounded because only 2 and 1).
It is readily apparent from the circuit configuration
that the state for any of the inputs to the code selectors is easily detected. As an example, assume
that the inupust from the even state fipfflops are
nit low. The U10 Oo output is low and U23 (code that the inputs from the seven state fip/flops are
all low The U10 ou output is low and U23 (code
0 is seleced. Since the O) is selected. Since the A, B, C and Dinputs to
U23 are all low, input \(\mathrm{E}_{0}\) is selected. The \(\mathrm{E}_{0}\)
 made, F10-H is low the Woutput of U23 is high
and the instrument is held in state olo. If the
F10-H innut is himh the \(\begin{aligned} & \text { output of U23 goes }\end{aligned}\)
 low, the out
is selected.
In the foregoing example, assume that qualifier
F10-H was hinh. Refering to the ASM chart tit may be seen that then next state is \(4 / 0(1000000)\). Since
he input to U10 is now a 4 (100) U19 is selected.
 once again Eo input is selected. The innuut to \(E_{0}\) is
from the ET -H fipp flop shown on Ss26. It may be from the F7-H flip/flop shown on SS26. It may be
seen on the elagorimt that if F 7 is high the next
state is \(0 / 1\), if low, \(5 / 0\).
AND gate U2C combines CKA-H and CKB-H when they are both high to provide inputs to U U20 and
U21. These inputs are used in tataes \(3 / 1,3 / 0,2 / 13\)
and \(2 / 12\)

SERVICE SHEET 26 (Contrd)

 mim m . un

 mix mix
 An

 down opeation 2

risure 8-72. PIO AIA A ROM Input Assembly Component Locations (Part 2)

As an example of circuit operation, assume that
the CK12-L input goes low. The output of AND
the CK12-L input goes loweration, Thasume that
gate U112 goos low to cause the output of NAND gates UAA and U9B to go high. . This inibitits he
MR input to U18. Since the output of U21A is low MR input to U18. Since the output of U21A is iow low
at this time, the output of inverter UUOC is high
and the clock is coupled tho at this
and the
to U18. When CK12-L went low it was inverted by U4E
and used to enable NAND gate U20A. U20A U20B and U2AA Aorm a detecect circuit midch pro.
vides the CKA-H output for the binary number vides the
selected.
 reaches 12 (1100), the output of U20A go
and causes the output of U21A to go high.

P/O ROM OUTPUT ASSEMBLY AIA5
The A1A4 (SS25 and 26) and the A1A5 (SS27 and 28) assemblies contain most of the meicroentire instrument.
Al of the gates shown on SS28 are controlled by
the 4 -line-ta-16- line instruction decoders U25, U17 the A. Aline.tol-16-1ine instruction decoders U25, U17
and U8. These decoders have six inputs, all of
which are required to de of and
mhich are requiredecoderss hade he et the singute o ol
All outputs are high except the one deocded.
Note that the decoders are labeled CODE 1 , COD and CODE 3. These code numbers and the
utput numbers of the decoders quickly reveal the machine state code as shown on the algorithn
which is the state of the sevenstate flip/liops in
ine -

The gates shown combine the decoder outputs to
provide the desired instruction.
As an example, assume that
 decoded output is 6 (01110). The state code is 1 is 16
and the outputs of the sevenstate flip /lops is 00 .
The example quated for the instructions in state
\(1 / 6\) is very simple. Generation of many of the \(1 / 6\) in very simple. Generation of many of the
instructions is more complex when the instructio
is decoded from several machine states.

Take, as an example, state \(2 / 5\) (output 5 of U16). nstruction SCDP-L, set center frequency decimal
asertive state low. The state \(2 / 5\) low output from U16 is applied to inverter U4C and its
high output causes TTCH T bus to center frequency register -assertive state high, to ogo hig
The state \(2 / 5\) output from U17 is alo applid to The state 2 outpul
AND gate U13B, the pin 12 input to NAND gate
U2D goes low and KTT-H keyboard to To bus. U2D goes low and KTT-H
assertive state high, goes high.

The instruction SCDP-L occurs only in state \(2 /\) However, some of the other instructions generat
in state \(2 / 5\) are also generated in other states. Instruction TTC-H is also made to go high wed occurs when any one of the inputs to U 23 B goce ocurs when any one of hhe invuts
ow in states \(1 / 15,1 / 14,2 / 0\) or \(2 / 1\).

Instruction \(\mathrm{KTT} \cdot \mathrm{H}\) also goes high when the pin 5
input to U13B goes low in state \(1 / 4 . \mathrm{KTT}\) H goes input and dF3-L goes low when any of the inputs st AND gate U6A go low in states 1/13, \(1 / 12\) or \(1 / 111\).
Input pin 5 of U21B also causes JT3. to go low in state \(1 / 0\), but does not affect KTT-H.

Any of the instruction paths may be quickl test mode and to the state to be checked. The test mode and to the state to be checked. The
machine state block in the algorithm indicates all
instructions required in the eet statate.

service shet 20
O REGISTER ASSEMBLY ATAG

 Yhen the intument is init tumed on pRnT.L Lis

 me last valide entry.

 8.150

The low CK. H level is invered and applied to
 .The system clook is present tat U1OO pin 3 .

 coupled dround U1OC to the M regiser. Three other clocks oininate in the gating circuit
Shom

 ARECK.H wed in the A1AA A redster

 \begin{tabular}{l}
cor \(1 .-\). The \\
or 13 pules \\
\hline
\end{tabular}

SERVICE SHEET 30
P/O REGISTER ASSEMBLY ATAG
A1A6 regiter assembly circuits are shown
matically on Service Sheets 29,30 and 31 .
The sweep and step registers, which operate iden-
tically, are shown schematically on Serrice Shee tically, are shown schematically on Service sheet
30. The ocfiguraio of these registers is the same
 registers
registers.
When new data is to be entered into the sweep
register the input labeled (SFDP, TTF)-L goes low

llock pulses clock the sweep width inf Che \(T\) bus into the sweep register where it is stored
until called for.
When the data in the sweep register is to be
clocked to the S bus, the train of ten again appears at the CPC and CP in inuts pu again appears at The CPC and CP inputs. During
this cyccle (SFDP, TTF)L are high and the data
dite from the register output is recirculated back into
the register through the \(D_{1 A}\) and \(D_{1 B}\) inputs to Uhe register th
Operation of the step register is the same a operation of the sweep register exco
inputs are selected by (SIDP, TTI)-L.
PRDT-L at 29 (23 holds the registers in the reset
when the instrument is first tumed on until the
nain

Figure 8-80. PIO A1A6 Register Assembly Component Locations (Part 2)

A1A6 repister assembly circuits are shown sch
Serrice Sheet 31 shows the \(M\) register and the
freuency limits detect gates.
The \(M\) register differs considerably from the other
registers in the A1A6 assembly. U10 (BCD 1), U11
 bit shift registers. Only six of the 8 bit locations
are used (6 most significant digits). Data is clocked
 and dieits \(1,2,3\) and 4 are discarded. They are not
needed because 10 kHz is the lowest detected
feed bent needed becaus 10 kHz is the lowest detected
frequency limit for any of the plug in RF Section
available.

All of the gates, except U13, to the right of the \(M\)
reeisterare used to detect and provide frequency
limit register are used t.
limit information.
Two inputs, PLLMM and 13GL, shown in the lower
left comer of the schematic enable selected gates
The output of U31C, qualifier QA-H, sigigifying an

assembly) to a one shot on the A1A1 switch
control assembly. When QAAH goes high the
(SIND1, JNINC)H input to A1A1 gees high and

causes the ouT of RNG light to flash for about
second. The entered
seocond. The entered frequency will
ferred to the center frequency reegister.

The output of U30B, SIND2 (lowe lime output of U30B, SIND2 (lower frequency
limit), is applied directly to A1 A1 U14; it causes
the OUT OF RNG light to light and The OUT OF RNG Light to lo Aight and remain lit The The
instrument is capable of producing freauencies nstrument is capable of producing frequencies
considerably lowet than those specified as the
ine lower frequency limit. However, the output leve
may be degraded.

TII
The Code 1 and Code 2 outputs are used to change
time constants in the RF Section plus in powe time constants in the RF Section plug in pow

ERVVICE SHEET 32 (Contal

 \({ }_{\text {Add } 75+}{ }^{\text {BCD }} 5\)

\section*{}

ERVICE SHEET 32 (Contad)

Subbract 40 from 000
BCD
6
Co110

\section*{1 \\ } \(=9\) comple anmy 5 miontiow

A.zinimituvo and

\section*{ERVICE SHEET 33} ne manual sweep mode the output frequency max
be set up or down to any point within the swee
deth range.Note that the center ffrequency and the sweep
frequency have no ffect on the sweep oount
circuit. The counter tracks and counts the number steps that havere taken place on the in the AUTO sweep and SINGLE sweep modes the
ount is always up. In the MANUAL sweep mode ount is always up. In the MANUAL

Since U8, U10 and U5 comprise a three digit
counter, it is capable of reaching a count of 999 counter, it is capabale of reaching a count of 999
Essentaly, the final count is 1000 becuse the
input following 999 creates a carry at U5 pin 12
 and cause
The maximum count may be either 100 or 1000 When the count is 1000 , ald thriterer upl 100 or orn 1000 ount
rs are used. When the count is 100 , \(U 8\) is bypassel low on the Q100.H line implements the 1000
ount by enabling U8 and routing the
BOR and count by enabing U8 and routing the BoR and
CAR outputs to the CDN and UP inputs of U10
When the count of 100 is selected. \(100-\mathrm{H}\) goes Hhen the count of 100 is selected, Q100-H goes
high to clear (disable) U8 and the inputs to U8 are outed, by way of U2, to the CON and CUP in
puts of U10. puts
The \(\overline{L D}\) inputs to U8, U10 and U5 are preset
inputs. When ILD.L (input load) goes low it it inputs. When ILD.L (input load) goes low it it
inverted by UTD to enabie NAND gate UGC. Th ystem clock then presets U8, U10 and U5, Sinc
the \(A, B, C\) and \(D\) inputs of U8 and U10 are

Since the sweep operation starts initially at the
center frequency, U5 must be preset to the center 8-158
of its range, a 5 . Note that the \(\mathrm{DB}_{\mathrm{B}}\) and \(\mathrm{DD}_{\mathrm{t}}\) inp e preset output of U5 is a 5 (0101).

When the selected sweep is 1000 steps the up/down
counter is effectively preset to 500 ; will take 500 counter is efrecelive the count to reach maximum. All
Cur inputs for the sweep ramps following the first will start at 000
and require 1000 steps to reach maximum. When the selected sweep is 100 steps, U5 is preset
to 5 , U10 is preset to zero and U8 is bypased. The CUP and CDN inputs to U8 (or U10 when 100
tep sweep is selected) are coupled throueh NAND gates U6A and U6B. Operation of the gates is gates
essentialy the e ame exceeptration of input che gates is
be inverted because e is assertive state is low. NOTE
The CDN-L and CUP.H inputs are in
their asertive states for a period of 12 or their asestive states for a period of 12 or
13 coco ppluses. IUring this seriod the
output of U6A or U6B is low. When the output of U6A or U6B is low. When the
period dends the output of U6A or U6B poriod high This positive going excursion
is the input to triger U10 or UX.

At the bottom right of the schematic is the output
QCTZ-H (qualifer performs no useful function in the Auro mode. In
the manual sweep mode when manual sweep control is rotated CCW and the lower end of the
wwep widt range is reached, all of the of from U8, U10 and U5 are low and QCTY Eooses The digital-to-analog (D/A) output is a volage proportional to the number of steps which hav
occurred during the sweep operation. U1 functions
and a

 count maximum) gees high, Q1 is supplying all of
the current to the summing circuit and the \(\mathrm{D} / \mathrm{A}\)
output is 8 BV .

Figure 8.86. A1A8 Sweep Count Assembly Component Locations

SERVICE SHEET 34
A REGISTER ASSEmbly ATA9
The major difference between the A register and other registers in the it.
10,12 or 13 digits long.
The 12 and 13 disit data is is ssed in sweep operation
The 12 digit register is used when the sween is to be The 12 digit register is issed when the sweep is on obe
100 steps. The 13 digit register is used when the weep is to be 1000 steps.
When the instrument is operated in the CW mode
the final output the thaintrame througt the
ALU and the output reisiter is from the teut the ALU and the output register in if frome the ten- -digit \(A\)
 registers. U3 and U4 are fourbbit registers. The
 when not in the sweep mode. TTe information in
the tendidit reesteris clocked tot the ALU when
ATR-H goos high to enable NAND
. ATR-H
\(C\) and \(D\).
When a asweep operation is initiated for 100 steps,
the reegister is lengthened to 12 dipists by use of the register is enathened it it 12 died for 100 by steps, of
Cour-bit registers U5 and U6. The 12 -diegt data is clocked to the ALU when A2TRT-H booes high to
When a sweep operation is initiated for 1000 steps,
the register is lengthened to 13 digits by wee of
our-bit register U7. The 13 digit data is clocked to
the ALU when A3TR-H goes high to enable NAND the ALU when A3TT-H.
gates U13A, B, C and D.
When the 12 or 13 digit data is clocked into the A register via the T bus. In the AUTO sween the ALU normally adds one hundredth or one thousandth of the ewep widh unurdeath or or or
high in the sweep count assembly
note
It may be necessary for the technician to revieu the text for the secueep ocunt
assembly and the ALU to understand
this operation

Two of the three inputs to AND gates U10A, B, C and U9B are always high. The outputs are con--
rolled by the selected NAND gates which precede

The gates shown in the lower left comer of the
schematic control the clock inputs to the registers The instruction TTA.L or ATR-H enable the clock
 determines whether 10,12 or 13 clock pulses will
drive the combined registers. The instructions
pict U5, U inh and UT at atking the thringe add-on registers
Unformation is to be preserved.

SERVICE SHEET 35
OUTPUT REGISTER ASSEMBLY A1A1O The output register assembly contains the final
DCu register. From this register the data goes to
An the miniframe RF loops throumh the A9 Ca Cab
Loop Assembly or the A3 Interface Assembly. U4 through U8 function to provide serial
paratilel data storage. Each of them are dual four-b
 lateh is that the \(Q\) outputs follow the \(D\) inputs
when the thech is enatled. These latches are not
clocked directly by the system cloct a clocked directly by the system clock; they are
enabled by a combination of the output of one-of.ten selector U1, the system clock and the
PD-H input. This type of register is commonly PD-H input. This type of regi
termed a parallel dump register.
A parallel dump register has a distinct advantage
over serial dump registers, in that only the BCD over serial dump registers, in that only the BCD
bits
dumat requirire change, are changed. In serial
dumers. all of the RF phase lockloops lose ock each time the trequency is changed, even

\section*{switching time and temporary generation of many} switching time and temporary generation of many
undesired frequencies. These problems are partic. ulurly troublesome in the sweep mode
operation. Assume that the RF output has been 1.000000 M and is changed to 1.100000 MHz . The QoA output
(binary of doigit) of U8 goes high and all other
outputs remain unchanged.
U1, a one-of.ten selector, enables the gates in the
dual four-bit latches sequentially. They are enable at a four-bit latches sequentially. They are ena
at apples only to their output diagit number (D1
through D10). All outputs are high excent the one through D10). All outputs are high except the on
selected. The sequential BCD inputs on CNT 1,2 . selected. The sequential BCD inputs on CNT 1,2 ,
4and \(\begin{aligned} & \text { origines in a counter U17 on the AIAS } \\ & \text { assembly (see Serrice Sheet } 27 \text {) }\end{aligned}\) All of the enable latch gates are connected to the
output of NAND gate UBD. One of the inputs to output of NAND gate U3D. One of the inputs to
UUD is FD . Which is hich in the assertive state.
The other input is derived from the system clock
 mately 0.1 microsecond to ensure that the latches are not en

SERVICE SHEET 36
NUMERIC READOUT ASSEMBLY ATAZ
The numeric readout assembly consists of two readout units, U3 and U4,
and the circuits required to drive them. U4 displays the least significant
and

 therefore each half digitit is illuminated for 100 microseconds for each scan
cyclef.
Refering to Figure 8.92 it may be seen that each digit is made up of 20
LEDs that are divided into two 10 LED half digitis. During the scanning cycle LEDs that are divdec into two 1 LED half digits. During the scanning cycle
the half digits sare scanned, first right hall, then left half. The LEDs require

Referring back to the schematic it is readily seen that one-of.twelve selector
U5, the transistor drivers and ROMS U1 and U2 jointly control the readout. It is important to understand the relationship of the ROCK (10 kHz),
RSCAN-H and ROM (read only memory inputs. The 10 kHz ROCK input clocks U5 only during the time that RSCAN-H is low, i.e., when not in reset. RSCAAN-H stays 1 Iow for the period of six clock
pulses at a 5 kHz rate. The 5 kHz clock drives the tend pulses at a 5 kHz rate. The 5 kHz clock drives the ten-digit register on the
A1A
assembly, Service Sheet 24 , during the period of time that the readout is being displayed. The BCD inputs to ROMs A and B are BCD data which is
clocked in at a kHz rate.

It may be seen from the foregoing that U5 provides two outputs to the
transistor drivers for each BCD input to the ROMs. U5 also provides an \(R / L\). transistor drivers for each BCD input to the ROMs. U5 also provides an R/L
(rinht/ R eft) output which is used as the fifth address bit to the ROMs. This
\(\mathrm{R} / \mathrm{L} /\) output determines in (rightieft) output which is used as the firth address bit to the ROMs. This
RRL output deternis, in conjunctoo with the other ROM inputs, which
LEDs of the half digitit being displayed are illuminated.
 Simultaneously the R/L output or U5 provides the fift hadress bit to ROMs
\(A\) and \(B\). ROMs \(A\) and \(B\) then provide ground returns for the LEDS which are

It can be seen that the scanning cycle has effectively scanned 10 digits with
12 inputs locks at a 10 kHz rate. At this point in time RSCAN-H goes high
to reset U5.

In the A1A3 assembly the ten digit recirculating register contains a sync required to reposition the data in the regegiserer before the data can alagain be
used in the emole fore Used in the readout scanning cycle. Durisn the readout scanning cycle the
recirculating register is clocked ate 5 kHin rate If this nte were would be 800 microseconds before kHz He rate. If this rate mere continued, it However, a detect circuit driven from the sync register detects the sync code at the sixth 5 kHz clock and switches to the esstem clock of 1 MHz foot the
next four clock pulses. Using next four clock pluses. USing this system masures that there are only four
microsecond between readout scan cycles. See Service Sheet 24 for
expanded details of this operation.

All controls for the num eric readout, except for the 10 kHz ROCK, originate
in the A1A 3 Readout Control Assembly.
The assembly also has the drive circuits for the four incandescent lamps,
which display GHz , MHz , kHz and Hz units.
which display \(\mathrm{GHz}, \mathrm{MHz}, \mathrm{kHz}\) and Hz units.
The pushbuttons select SWP WIDTH, STEP and KYBD readout instructions
for the A1A1 Switch Control Assembly.

\section*{Noded 8660 C}

A1A12
front view
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & & U2 & \\
\hline \multirow[t]{2}{*}{52} & \multirow[t]{2}{*}{} & 43 & & 04 & \[
\begin{gathered}
\text { DS1 } \\
\text { OS2 DS } \\
\text { OS3 }
\end{gathered}
\] \\
\hline & & \multicolumn{3}{|l|}{\(\mathrm{XAa3}^{-1}\)} & \\
\hline & 05 & & & & \\
\hline
\end{tabular}

FRONT OUTPUT INTERFACE CIRCUIT BOARD
Normally, causes of malfunctions in the Model 8660 c will be isolated to a
circuit board or asembly as a result of performing the tests specified in the
troubleshootine trees circuit board or assen
troubleshooting trees.
When the defect has been traced to the front interface board, access to the
component side of the circuit board may be improved by ren
 screws which hold the digital control un
the extent of the interconnecting cables.
TEST EQUIPMENT REQUIRED (See Table 1-3)
Oscilloscope (with \(10: 1\) divider probes)
Digital Voitmeter
general
The major purpose of the interface circuits is to assure compatability
between the digital control unit the phase tock loops, the plugin secitions
and the programming information from the remote programming device (via \({ }^{\text {and }}\).
FRONT INTERFACE CIRCUIT - REMOTE MOD
dATA Input
The multiplexer, U8 and U9, converts the eight.line two-digit parallel BCD
innut to fourline eserial Intormation. The serail BCD
temporary storage register in the digital is control unit.
 inverted low LCL RMT input at A3XA1 pin B so U2A is enabled. (A)
at U2A pin 1 would hold the \(Q\) output high regardess of other inputs).
The 2 MHz clock, which is always present is inverted and applied to the
clock input of U2A. Since the inverted command pulse is high the first clock clock input of U2A. Since the inverted command pulse is high the first lock
pulse to \(U 2 A\) will cause the \(Q\) output to go high. The \(Q\) output neables the
 muttiplexer follow the selected inputs (in this case, dieitit 1). Several other
circuits function simultaneouly with this change of state to determine circuits function simultaneously with
where and how the input will be used. If the BCD inputs are data (BCD \(0-9\)), the output of NAND gate U3A is
hidh because at least one of the inputs is low UTD inverts the output of
U3A to inhibitit U4 which is the permanent command gate. The high output U3A to inhibit U4D which is the permanent command gate.
of U3A enables U4B which is the temporary command gate.
When \(U 2 A \bar{Q}\) output goes low with the clock pulse it presets \(U 2 B ;\) U2B \(Q\)
goos high and \(Q\) goes low. The low at U2B \(Q\) resets the oneshot (U1A and

\section*{SERVICE SHEET 37 (Cont'd)}

When U2B \(Q\) goes high it enables NAND gate U4A. NAND gate UAA
provides a negativesoing clock pulse to NOR gate U5C which provides
 held high by the output of NAND gate U3A, the output of NAND gate
clocks the digitit 1 BCD information into the temporary storage register. When the next clock pulse appears the "D" input to U2A is low. The \(Q\)
output goes low and the \(Q\) output goes high. The lower AND gates in U8A,
 Hen U2A 0 olpps are the same as he digh 2 input
 -
Since NAND gate U4C pin 9 is now held high by U2A \(\bar{Q}\) the clock pulse
at U4C pin 10 causes the output of U4C to go low and clear flip flop
 output goes high to enable the command oneshot on the rear interface
board, and the circuit ti quiescent until the next command pulse is received. ADDRESS INPUT
 low. This low level inhibits the temporary command gate U4C; through
inverter Ulid it aldo enabies the permanent (transfer) command gate U4D.
When the input command pule

The digit 2 inputs have been simultaneously applied to BCD to decimal
deocoder U10. When the digit 2 address is 0000 (center frequency) pin 1 of decoder U10. When the disit 2 address is 0000 (center frequency) pecinal 1 o
U10 goos ow to oddress she information stored in the temporary storage
register to the eenter frequency resiser lor
When the digit 2 address data causes U10 to produce a low to the input of
one of the NOR gates connected to the U10 outputs, a train of ten clock pulses transer thates connected to the U10 outputs, a train of ten cloch
selected final register. - 1

The outputs from the multiplexer are not used during the address function. Operation of U2B is the same during the address function as it is during the
data function. When the next clock pulse appears the state of U2A and U2B will change
and the circuit is quiescent until the next command pulse appears.

SERVICE SHEET 37 (Cont'd) power detect circuit

 on before the power supplies have stabilized. Whe turned off, pin 11 of NOR gate U5D goes high an
the U5D output goes low. The result is the same as when the \(+5 V\) power supply is low.

LAG CIRCU
The flag circuit provides a busy signal to the more of the inputs to UBB are low the output of more of the inputs to U3B are low the output is
himh...This oututis inverted on hhe rear interface
board and applied to reare panel connector \(J 3\) pin

There are several factors
duration of the flag signal.
When data is being programmed into the tem.
porary storage regiser in the digital control unit porary storage register in the diitita control unit
he durato of the fag signal is a maximum
about 1.5 microseconds. It stats
 amost immediately goes low to end the comman
pulse. The command line now goes high, but U2 pulse. The command line now goes high, but U2B
\(Q\) is now holding U3B pin 13 low so the flag pulse
continues. When the second clock pulse causes
U2B to be cleared, U2B Q goos high and the flag pulse is ended. One ssot U7 cannot be trigered
because the high output of U3A is inverted and applied to pins 3 and 4 of UT .
When the plug in programmable attenuator in the
RF Section pluz in is being addtren RF Section plug in is being addressed one-shot U
is trigered when U2B Q goes low on the second
clock

 soe milliseconds. The low output from U10 pin 4
tums off Q2 and the Q2 high output tums oft Q1 tums off \(Q 2\) and the \(Q 2\) high output tums off Q1.
The time constant of oneshot \(U 7\) is detemined by
R7, C3 and C4.

When any address other than the programmable
attenuator is programmed, oneshot U7 extends
 peration of the circuit is the same as when the
attenuator is addressed except that Q1 and \(Q\) are
on and the time constant of the one-shot is n and the time const
determined by R 6 and \(\mathrm{C4}\)
When the FM modulator is being calibrated a
second pulse appears at A3XA3 pin 15 which is apolie to U3B pin 12 to pronace an output pulse
aphat is 5 second in duration. local mode
In the local mode the AUTO-MAN input is high.
Inverter U1C inverts this level to hold the clear Input to U2A low and the Q output high. This
inhibitis all of the circuits on the front interface
ind board except U1C, U1A and U1B. U1A and U1B LCL-RMT fano-out of ten to the plus ins and the
digital control unit.

Figure 8.95 Interface Mother Board

 37

SERVICE SHEET 38
REAR INPUT INTERFACE CIPCUIT BOARD
Normally, causes of malfunctions in the Model 8660 c will be isolated to a
circuit board or assembly as a result of performing the tests specififed in the
troubleshooting trees.
When trouble has been traced to the rear interface circuit board it will be
neecesary to swing the A4 assembly out of the frame to provide access to the
necessary to swing the A4 assem
wiring side of the circuit board.
TEST EQUIPMENT REQUIRED (See Table 1-2)
Oscilloseope (with \(10: 1\) divider probes)
Dieital Voltmeter
general
The madior purpose of the interface circuits is to assure compatabiity
between the digital control unit, the phase lock loops, the plug in sections between the digitial control unit. the phase lock loops, the pluysin sections
and the programming information from the remote programming device ((i)
J3).
rear interface circuit
The BCD innuts from the remote input (J3) are applied to the "D" inputs of
two quad latch flip/flops (U2 and U4). When a negative-going command two quad latch fipiffiops (U2 and U4). When a negative-going command
pulse appears at the input to U3A the outputs of U1D and U1C clock U2
and U4. Since the \(\bar{Q}\) outputs of \(U 2\) and \(U 4\) provide the front interface drive signals
the negativetrue input BCD data (low \(=1\), high \(=0\)) is inverted. This data is the negative true input BCD data (low \(=1\), high \(=0\)
stored in \(U 2\) and \(U 4\) until the next command pulse.
NAND gates U1A and U1B comprise a oneshot with a maximum time
constant of 0.75 microsecond. Normally NAND gate U1B pin 6 is hish constant of of 0.75 microsecond. Normally NAND gate U1B pin 6 is high
because R21 is holding pin 4 of U1B low and pin 1 o TAND gate U1A is
held high by the command line. Pin 5 of NAND
 high by the \(\overline{\text { Q output of the flip/flop U2B on the front interface board. }}\)
When a negative-ging command pulse appears the output of NAND gate
 6) of NAND gate U1B to go low. The time constant of C4/R21 limits the
negativegoing pulse o m maximum duration of ofm mircoseond to allow
adequate time for a flip/flop in the front interface circuit to be be lockead once adequate time for a flip fllop in the front interface circuit to be clocked once
ay the 2 MHH colock (0.5 mim rosecond time base). To sasure that two or more
clock pulses do not by the 2 MHz clock (0.5 microsecond time base). To assure that two or more
clock puses do no appear in the front interface ircuit whil the com mand
pulse is present, the inputs to NAND gate U1B pin 5 is cused to go low

Q1, Q2 and NAND gate U3D comprise an error detect circuit. The input to
NAND gate U3D pin 12 is from the reference oscillator (A21) assembly. NAND gate U3D pin 12 is from the reference oscillator (A21) assembly.
When the ven temperature has not stabilized this level will be low. When
eithe tinu When the oven temperature has not tatailized this level will be low. When
either inputo U3D is iw the output will be high, Q1 will be turned on, and
an error sitgal (low) will be applied to J h pin 3 to inform the remote

SERVICE SHEET 38 (Cont'd)
rogramming device that the Model 8660 C is not tate U3D is also applied to the to digintal control und
Lo light a lamp on the annuciaitor block when the olight a lamp on the annunciator bl
oven temperature has not stabilized. The input th pin 13 of U3D is from one of two
cources. The F FLM input from A3XAA pin 11 sources. The F LIM input from A3XAA pin 11
orignates in the digital control unit center fret
quency circuit and is a low when the selected quence circuit and is a low when the selected
output frequency in not within the range of the RF
Section in use. The second input to contror NAND Section in use. The second input to control NAND
gate \(U D\) p pin 13 is the \(G H z\) Input in \(A 3 X A 5\) pin
and gate U3D pin 13 is the "GHz" input at A3XAS pin
D. This input is high when eseleced freuuncy is
not within the range of the 1.3 GHz RF Section or D. This input is a high when selected frequency is
not within the range of the 1.3 GHz RF S Section or
the internal Frequency Extension Module. A high the internal Frequency Extension Module. A Aigh
hput to the base of Q2 will cuase Q2 to tur on
te output of NAND gate U3D will again go high he output of
to turm on Q1.

AND gate U3C inverts the FLAG signal, which is Enerata in the 7 ond iteface circuil, and applies it to J3 pin 17 as
programming device.

R25 and R29 hold the AUTO line (A3XA5 pin 5) igh when the instrument is operated in the local rogramming device, this line goes low and the strument is in the remote mode.

R26 and R30 hold the RESET line (A3XA5 pin J) igh when no error is present in programming device. When an error is presest J 3
pin 24 goes
thew and cuases the PWR DET circuit ne the front interace board to clear the center
frequency storage register and shut off the frequency \({ }^{\text {s. }}\) s.
moduation.

\section*{SERVICE SHEET 39}

\section*{3. AEAR INPUT HP-IB OPTION OO5 ASSEMBLY}

\section*{General}

Basically the HP-IB input assembly accepts the data from the bus, detects the programming action taking place and pro
operational parameters for the Model 8660 .

\section*{Divies (R2, R9) ad Schitu Trigers (U8, U14)}
 +VV when the lines are eno teing driven ob data, These dividers are suse t
keep the load on the bus, which is wire ANDed to all instruments, constant keep the load on the bus, which is wire ANDed to all instruments, constan
Note that the lines which are not uesd in the Model 866 (DO O8, EOL-L an
SRQ-L) are alo terminated in loads to preserve the constot loding of the SRQ-L) are also terminated in loads to preserve the constant loading of the
HP-IB bus.

The HP-IB input lines are negative true logic. These lines are high in the
uniescent state and are pulled low in the assertive satate (OV \(=H\). One of the
 high. If positive true logic were used, a discontinuity or a disconnected
connetor would simulate a high and the inputs lines would see this as the
assertive state. U8 and U14 are Schmitt Triggers. These Schmitt Tingers improve the
quality of the data innuts, provide buffering and invert the input opic levels
Buffering is required to lo limit the load on the controller to one standard loa

 negative true logic. Again, the data bits
inputs lines because of excessive loading.
Address Decoder U12
One of the characteristics of a NAND gate is that all of the inputs must be
high in order for the output to be low. Therefore, all of the inputs to U1

 U13 (MLA-L) to
HP-IB characters 3
If more than one Model 8660 is used in the sytem, each additional \(8660^{\circ}\) s
 HP-IB character.

\section*{ERVICE SHEET 39 (Cont'd)}

When MLA-L goes low it is inverted by U11.
and applied to one input of AND gate U9D.
The second input to AND gate U9D is the in-
verted DAC-H output of NAND gate U3B verted DAC-H output of NAND ga
which is low until the data is accepted
3. The high output of AND gate U9D is applied
to one input of AND gate U9B. The second to one input of AND gate U9B. The
input to U9B is from AND gate U9A.
4. The inputs to AND gate U9A are the inverted
MRE-L (Multiple Response Enable) and the inverted DAV-L (Data Valid) inputs.
5. MRE is an address function so it goes low
6. Finally, DAV goes low, is inverted and ap.
plied to the clock input of U10A. It is the peegite toing DoAk signal which supplies the
positive-going pulse to cock U10 When MLA-L Lis low and U10A is clocked the U10
Q output goes high and the \(Q\) output goes low.

Note that the \(\bar{Q}\) output of U10A is labeled LCL-H. When the LCL line goes fow the Model 8660 goes ot the remote mode and the front
(except for STBY/ON) are inhibited.
Address Flip/Flop U10B
When MLA.L goes low it is also used to set the " D ""
input to U10B himh. This sis caccomplished as fol
 unisten" command appears, so is the pin 9 input.
The high output of U1C enables the " \(D\) " input of
U10B. U10B is clocked in the same manner as U10A, by a The \(Q\) output of U10B is applied to one input or
AND gate U1A. The second input to U1A is MRE, which is now in the quiescent state (high), so the
output of U1A (ADR-H) is also high. Unlisten Gate UG
When all of the inputs to U6 go high the address
finip liop is reses and the incoming data has no
effecto DCR-L Gate U5 (Device Clear) instrument is initialized with frequency
and attenuation set to predetermined value.

The remaining gates and inverters are convention-
at and should pose no problem to the average
technician.

\section*{SERVICE SHEET 40}

A3AI RONT OUTPUT HP-IB OPT 005 ASSEMBLY
General
The HP-IB Output Board accepts inputs from the HP-IB Input Board, the The HP-IB Output Board accepts inputs from the HP--B Input Board, the
DCU and the maintrame and converst thes inpututo tota whici is sed to
program the mainframe, the plug-in sections and the HP-IB Input asembly. Four-State Machine U7A/B
Located at the left side of Service Sheet 40 is a schematic representation of
the fourstate machine designated as U7A and U7B. Located outside of the
 chart)
Each of the four states of the ASM are labeled at the upper right thand corner
with the machine state (11, 10,00 and 01). Each of the states refer to the with the machine state \((111,10,00\) and 01\()\). Each of the states refer to the
state of the Q outputs of the fippflips with the 1 representing a high. For
example, he top box, labeled state 11, indicatases that the Q outuuts of both example, the top box, labeled state 11 , indicates that the \(Q\) outputs of both
U7A and UTB are high. Note that in each case the first digit is for U7B and

Initially, with U7A/B in the quiescent state (state 11), the flip/flops are
ready for DAV (Data Valid) to go low signifying that there is a data input. When DAV goes low it is inverted by UloE and applied to AND gate U1A. The other input to U1A is held high at this time by U7B \(Q\), so the \(K\) input of
U7A goes hish
The next clock pulse causes U7A to change state; \(Q\) goes low and \(\bar{Q}\) goes
high and the ASM proceds to state 10 . In state 10 the incoming data is
hito
Since there is no qualifier following state 10 , the next clock pulse moves the
ASM to state 00 . In state 00 the command pulse to transfer the data is generated.
Like state 10 , there is no qualifier following state oo, so the next clock pulse
moves the ASM to state 01 , which is the DAC (Data Accepted) state.
Following state 01 is qualifier DAV.H and BUSY.L. When the output of
qualifier DAV-H and BuSY-L is low, the ASM is held in state 01 . When the qualifier output goes high the AMS, (and the flip flops), retum to state 11
and are ready for the next data input.
Flip/flops U7A/B control the three-wire handshake procedure within the
instrument. Jumper Jl , when in place, is used to couple the internally generated BUSY
signal to delay the RFD response. Without 11 the operator must make signal to delay the RFD response. Without \(J 1\) the operator must make
allowances in programming for the neecessary setting time delays of the
Model 8660 .

SERVICE SHEET 40 (Cont'd
Delay One Shot U6
U6, in conjunction with Q1 1 and associated compo-
nents. comprise a delay
netrouit which inhibits the start of the RFD period when certain programming
steps are initiated. This is gram mere ingitiated. This is required because the pro.
varies. As an example of circuit operation assume that
change in freuuecy is programmed. Q1 is turne
on and on and R3 and C5 determine the 5 millisecon
operating time of the oneshot. One-shot output is
from pin 4 to U1 and pin 12 operating tume of the one-s.s.
from pin 4 to U1 and pin 12 .
When an attenuation function is programmed, Q1
is turned off and \(R 6\), , \(C 4\) and \(C 5\) determine the is turned off and R6, C4 and C5 determine
milisecond operating time of the oneshot.
There is also a 5 second delay built into the Model
8660 DDU for use in the FM CAL operation. The
GT De
 for 5 seconds when FM CAL is is programn
delay input is the FL .AG-L (BUSY) signal.
Shift Register U5
U5 is a conventional 4-bit repister which is oper-
ated in the preset mode. U5 functions as a temp-
orary storage reegister.

When the inputs to U5 are
directly applied to the DCU.
When the inputs to U5 are an address, ENSL-H
(Enable Select) goes high to enable the U3 AND (Enable Select) goes high to enable the U3 AN
gates and the dadress
alat
is coupled to one-of te selector U4. When the U5
address, the clock inter is is processing and, CP, at pin 10 is inhibited address, the clock input, CP, at pin 11 is in inibited
for 100 micoseseonds This preents ocotrolee
change of address until ator sficient change of address until after sufficient time has
passed for the Model 8660 C state machine propassed for the Model 8660 c state machine pro-
cess. Jumper \(J 2\) may be installed to disable this operation

U4 determines which programming function (address) has been selected, and, in conjunction with PICK-L (Plug-in Clock) couples the address
datat to the appropriate reerister.

Power Detect Circuir
U13A and associated components comprise
power detect circuit which inhibits circuit ope power detect circuit Which inhions crand
tion on initial tum-on until the power supply has reached a stable condition. Initialization foliow reached a stabie conation. initailiation Hoinws
removal of the low level pulse, seting frequency
to 1 MHz and attenuation to -140 dB
\begin{tabular}{|c|c|c|}
\hline Jumper & function & When to Install \\
\hline J & Busy Enable - Keeps the Data Accepted line not grammed, 50 ms for the attenuation and 5 ms Yor all other functions. Nothing can be program.
med on the HP.IB until the setting time ends. & Optional for 8660 C . If the jumper is not installed, the programmer must compensate for the settling time of the instrument. Required for 8660 A . \\
\hline \({ }^{3}\) & Provides for faster internal operation which is possible when using an 8660A. & Install only with an 8660 A but never with an 8660 B or 8660 C . \\
\hline \[
\underset{\substack{\text { (not on all } \\ \text { boards) }}}{\mathrm{J}}
\] & Provides an internal change to provide compatibility with the HP 9825 calculator. & Install when using an 8660 B or 8660 C with an HP 9825 calculator and J1 is not installed. DO NOT install both J 1 and J 3 . \\
\hline
\end{tabular}

8.174

Figure 8-104. A6A1 Assembly Component Locations Front and Internal Views A3A1 HP-IB Front Output Assembly, Schematic
(SERVICE SHEET 40

ocu troubilshooting usmg asn flomecharts
 yun
 man
 and

 1

\({ }_{\text {Thoubleshooting }}^{\text {Pitur }}\)

The datap proesising greuutry must perform the proper action
when

 M=v=uaz= - =avavaw = =avavaw

\begin{tabular}{|c|c|c|}
\hline Menenoic & Osispatata A1 & Dessifition \\
\hline crr & \({ }^{\text {AUU1B }}\) & Than \\
\hline \({ }_{81}\) & \({ }^{16 a}\) & (e) \\
\hline & & \\
\hline \({ }^{\text {F2 }}\) & A4U188 & \\
\hline & & Pemen \\
\hline \multirow[t]{2}{*}{\({ }^{\text {r }}\)} & \({ }^{\text {av7r }}\) & Prevents an entry operation from being made before a units key is pressed. F3-L is active when a \\
\hline & & \\
\hline \({ }^{57}\) & anviea & This flip-flop is set when sweep mode is entered during state \(0 / 13\). It remains set during
sweep mode and is reset when leaving sweep mode during state \(2 / 9\). Also set under cer- \\
\hline \multirow[t]{4}{*}{\({ }^{\text {r }}\)} & AUU15a & \\
\hline & & \\
\hline & & \\
\hline & & maximum frequency during
state \(2 / 9\). \\
\hline \multirow[t]{8}{*}{\({ }^{\text {r9 }}\)} & A1238 & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & an iliegal frequency is stepped to, F9 is set in state \(0 / 15\) and the frequency data is
stepped to the upper limit at system clock rate. \\
\hline & & Mreme \\
\hline & & \\
\hline & & \\
\hline & & Start flip-flop. When a keyboard entry, manual tune entry, pushbutton entry or sweep
operation is initiated, F10 is set. A remote programming entry also sets F10. F10 must \\
\hline \(\mathrm{c}_{\text {Lip }}^{\text {LipN }}\) & \({ }_{\text {ata }}^{\text {Aatur }}\) & Thee \\
\hline & & Sel \\
\hline
\end{tabular}

(

\(=\) \(\stackrel{\square}{410}\) \(\frac{1 .}{46}\)
 \(\xrightarrow{201}\)
 \(\xrightarrow{42}\)

CF KEY PRESSED DATA FLOW

 and state \(2 / 3\) is entered. The old \(c\)
state \(3 / 8\). The new data is not used.
When the freaunecy is within limits, QA.-H is not active and state \(2 / 5\) is reached during \begin{tabular}{l}
rhich data is transterred dram the keyboard shift register to the CF, A, and Read Dut \\
eristrer As aech digit is placed on the T bus it is clocked into each of these registers \\
\hline
\end{tabular} simultaneously. During state \(3 / 7\) data is transferred from the e reegister througug the
ALU to the Output register. The new data is sent to the loops after all 10 digits are in
the \(A\) register. ALU tr the ou
How To USE

HOW TO USE
1. Tum the LINE switch to STBY and then to ON to intialize instrument.
2. Press a series of one or more numeric keys followed by a units key.

Ground the DCU MAN TP momentari
Press the CF key and hold pressed in.
Single step the ASM using the MAN SW and check, using the troubleshooting flow

SWP WIDTH KEY PRESSED DATA FLOW Sweep width data is first entered into the keyboard shift repister
by pushing numeric keys and a units key. This process is covered
 Key is pressed and during state \(1 / 11\) the data in the keyboard regis
ter is transerred to the Sweep Width Register. Center frequency is transferred during the remaining state sequence as explained on

How to USE
Turn the LINE switch to STBY and then to ON to initialize
the instrument.
the instrumen
2. Press a series of one or more numeric keys followed by
3. Ground the DCU MAN TP momentarily
4. Press the SWP WIDTH key and hold pressed in.
5. Single step the ASM using the MAN SW and check, using the
troubleshooting flow chart.

STEP \(\{\) AND STEP \(\mathfrak{K}\) KEY PRESSED DATA FLOW
If data was entered before the STEP key was pressed, state \(1 / 13\) is entered. During this
state the data in the Keyboard Register is transered to the Step Register. State \(1 / 13\) is state the data in the Keyboard Register is transferred to the Step Register. State \(1 / 13\) is
bypassed if no data was entere. In this case the previousy neteres step size is used.
State 5 . 13 is ontered and the eext state deends on whether STEP s. ST STP

 quence yatate to the value it had before the step was added and produced an out of
limits value.
State \(3 / 7\) is reached and during this state data is transefred from the A Register
throught he eLU without modification to the Output Regiser.. When all 10 digits are
in the Output Register, the new data is sent to the mainframe loops.
HOW TO USE
1. Turm the LINE switch to STBY and then to ON to initialize the instrument
2. Enter 50 MHz Center Frequency on the keyboard.
3. Press and release the " 1 " key and then the "MHz" key.
4. Ground the DCU MAN TP momentarily,
5. Press the STEP \(\uparrow\) or STEP \(\downarrow\) key and hold pressed in.
6. Single step the ASM using the MAN SW and check using the troubleshooting flow

The ASM then continues to state \(2 / 7\) during which data
transferred to the A and Read out Register. When state \(3 /\)
. Iransterred to the \(A\) and Read Out Reisters. When state \(3 /\) put register. The ASM then returns to state \(0 / 0\).

How TO USE
Turn the LINE switch to STBY and then to ON to init
ialize instrument.
2. Tum the MANUAL MODE RESOLUTION switch to

Enter 50 ta center frequency on the reyboard
4. Ground the DCU MAN TP momentarily
5. Turn the TUNING knob a small amoun
6. Press the MAN SW pushbutton and check the ASM
using the troubleshooting flow chart. When single stepsing the troubleshooting flow chart. When single step
ping the ASM, the center frequency doesn taways in. crement by the correct value but the ASM state so
quence functions correctly quence functions correctly.

8.184

Turring the SWEEP MODE switch to AUTO causes the ASM to move to state \(4 /\)
which begins the seauence
 which is checked in state \(0 / 10\) is set whenever it is time to step in frequency. Aftee
QSP-H becomes active, state \(3 / 1 /\) or \(3 / 0\) is reached during which the number in the register is incremented by 111100 or \(1 / 1000\) of the evauru in the twe number
An explanation of how this
Something unique happens the first time through the flow chart. When state \(4 / 111\) is
reached, F8-H is not yet active and the ASM goes to state \(3 / 14\). The ASM continues to
 and QCTM-H becomes active. Each time through this loop the frequency in the \(A\) regis
teer is incremented, but this frequency data is never sent to the Output Register. Whe the sweep counter reaches maximum, the A R Register aldo contain the unper frequene
in the sweep range. In this condition when state \(5 / 11\) is reached, the \(A\) MM goes o state \(6 / 11\) and then to state 2 2115 during which the sweep Width Reepister is subtracted from
the A Register and 8 H H is made active. The essult which is the lowest frequency in the the \(A\) Register and F8-H is made active. The result which is the lowest frequency in the
sweep range is placed in the \(A\) Register. The ASM then goes to state \(/ 2 / 2\) and when state

The ASM now goses into a loop between states \(3 / 14\) and \(0 / 9\). Each time through the
loop the A Register is incremententand then the new value is transferred to to to output loop the A Remister is incremented and then the new value is transferred to the Outpu
Register. After 1000 times (100 times in FATT RATE) trough the loop the outpu frequency is at the upper limit of the sweep range and QCTM-H becomes active again
The ASM then enters state \(6 / 11\) where the Sweep Width Register is subtracted from

How to USE
2 How touce

Turn the LINE switch to STBY and then to ON to initialize the instrument.
Enter 50 MHz Center Frequency from the keyboard.
Enter 1 MHz Sweep Width from the keyboazd
Ground the DCU MAN TP momentarily.
Turn the SWEEP MODE to AUTO and the RATE to MED.
Single step the ASM using the MAN SW and check, using the troubleshooting flow
chart. The ASM enters a loop between states \(3 / 14\) and \(4 / 11\) which it passes arrough 500 times. (50 times with SWEEP MODE in FAST). This makes single
stepping unusabie for this part of the flow chart. There are two things which car stepping
be done:
(1) Use a logic analyzer.
(2) Put the DCU in AUTO by momentarily grounding the AUTO TP. Then a few

 Refister is subtracted from the \(A\)
every 1000 times through the loop.

\begin{tabular}{|c|}
\hline \\
\hline
\end{tabular}

KYBD PUSHBUTTON PRESSED DATA FLOW When the KYBD pushbutton is pressed, state \(4 / 0\) is entered. When
state \(1 / 4\) is reached, the data on the Keyboard Shift Register is
transfered \(\mathbf{y}\).a the state \(1 / 4\) is reached, the data on the Kevbeard Shift Register is
transtered via the thus to the Read Out Rexister. The ASM goos
to state 0 O/O where it remains until the KYBD pushubun is to state o/0 where it remaine until the KYRE pushbutton in ires
leased. Releasing the pushbutton allows the ASM to leave state

How TO USE
Turn the LINE switch to STBY and then to ON to initialize
the instrument.
2. Press a series of numeric keys followed by a units key. This
key board register.
3. Ground the DCU MAN TP momentarily
4. Press the KYBD button and hold pressed in.
5. Single step the ASM using the MAN SW and check, using the the KYBD button and continue single stepping.

power.on initialization data flow
When the power detect signal from the A3A1 assembly goes high, the ASM begins the
power-on sequence. During state \(1 / 6\) MHz is stored as the units for the data. When power-on sequence. During state 116 MHz is stored as the units for the data. When
state 21 is reached, the CF Register (which was cleared by the power detect signal) is
added to 1 MIz from ROM \(\# 4\) on the ALU board and the result stored in the dded to 1 MHHA from ROM \(\# 4\) on the ALU board and the result stored in the CF and 4 Registers. During state \(2 / 7\) the data in the CF Register is transferred to the Read Out
and \(A\) Refisters. Then when state \(3 / 7\) is reached, data is transerred from the \(A\) Regis

\section*{HOW TO USE}

\section*{How TO USE}
1. Tum the LINE switch to STBY.
2. Connect a test lead from ground to the DCU MAN TP.

Turn the LINE switch to ON.
Single step the ASM using the MAN SW and check, using the troubleshooting flow
chart.

\section*{Hismon mots coll}
\begin{tabular}{|c|c|c|}
\hline \[
\begin{gathered}
\text { (N3) } \\
\text { (N) }
\end{gathered}
\] & R24, R26 \(\longrightarrow\) & Frequency Range Adjustment Pots \\
\hline \[
\begin{aligned}
& \text { A11 } \\
& \text { (SL2) } \\
& \text { Osc. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { R15, R19 } \\
& \text { R39, 54, 60, 67, 73, 77, 83, } 90 \longrightarrow \\
& \text { C17 }
\end{aligned}
\] & \begin{tabular}{l}
Frequency Range Adjustment Pots Oscillator Pretune Pots \\
30 MHz Oscillator Trimmer Adjustment
\end{tabular} \\
\hline \[
\underset{\text { (SLL2 Det) }}{\mathrm{A} 12}
\] & R37 & Phase Error Adjustment Pot \\
\hline \[
\begin{aligned}
& A_{(N 20}^{A 13} \\
& \left(\mathrm{O}_{\mathrm{sc})}\right.
\end{aligned}
\] & \[
\begin{aligned}
& \text { R } 37 \text {, R39 } \\
& \mathrm{C} 19 \\
& \hline
\end{aligned}
\] & Frequency Range Adjustment Pots 29.79 MHz Oscillator Trimmer Adjustment \\
\hline \[
\begin{aligned}
& \text { A15 } \\
& \text { ARLI } \\
& \text { Shase } \\
& \text { Phase } \\
& \text { Det }
\end{aligned}
\] & R14 \(\longrightarrow\) & Phase Error Adjustment Pot \\
\hline \[
\begin{aligned}
& \text { A16 } \\
& \text { (N1 Det) }
\end{aligned}
\] & R38 & Phase Error Adjustment Pot \\
\hline \[
\begin{aligned}
& \left.\mathrm{A}_{\mathrm{N} 17}^{\mathrm{Nsc}} \mathrm{~s}\right)
\end{aligned}
\] & \[
\underset{\mathrm{C} 17}{\mathrm{R} 24, \mathrm{R} 31} \longrightarrow
\] & Frequency Range Adjustment Pots 29.7 MHz Oscillator Trimmer Adjustment \\
\hline \[
\begin{aligned}
& \text { A18 } \\
& \text { SLI } \\
& \text { Miver }
\end{aligned}
\] & R35, 40, 44, 51, 55, 62, 68, 74 - & Oscillator Pretune Pots \\
\hline \[
\begin{aligned}
& \text { A19 OSC } \\
& \text { (SL1 OSc) }
\end{aligned}
\] & \[
=
\] & Frequency Range Adjustment Pots 30 MHz Oscillator Trimmer Adjustment \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \\
\hline
\end{tabular}

Figure 8-124. HP-IB Adapter and Self Test Features

Model 8660 C
\begin{tabular}{|c|c|c|}
\hline Points & Assemblies & Mother Board Inputs and Outpu \\
\hline \begin{tabular}{l}
(27) TP1 N3 Oscillator \\
30 TP2 N3 10 kHz \\
TP3 N3 Phase Error \\
TP4 N3 Phase Error \\
Grounding \\
24) TP5 SL2 Tuning \\
TP6 SL2 Oscillator \\
TP7 SL2 Pulse Phase Error \\
TP8 SL2 Phase Error \\
TP9 N2 Oscillator \\
TP10 N2 Phase Error \\
TP11 N2 10 kHz \\
TP12 N2 Phase Error \\
Grounding \\
TP13 SL1 Pulse Phase Error \\
TP14 SL1 Phase Error \\
TP15 N1 100 kHz \\
TP16 N1 Phase Error \\
Grounding \\
TP17 N1 Phase Error \\
TP18 N1 Oscillator \\
TP19 SL1 Mixer Output \\
TP20 Not Connected \\
(5) TP21 SL1 Driver \\
(8) TP22 SL1 Oscillator
\end{tabular} & & \begin{tabular}{l}
(1) 100 kHz Reference Input \\
(2) 100 kHz Reference Input \\
(3) 400 kHz Reference Input \\
(4) SL1 Output \\
(3) BCD Frequency Data \\
Digits 1 through 7
\end{tabular} \\
\hline
\end{tabular}

Figure 8-130. Mainframe Mother Board Test Points (2 of 2)

rear view

Should one of your HP instruments need repair, the HP service organization is ready to serve you. However, you can help us serve you more effectively. When sending an instrument to HP for repair, please fill out this card and attach it to the product. Increased repair, efficiency and reduced turn-around time should result.
\begin{tabular}{ll}
\hline COMPANY \\
\hline ADDRESS \\
\hline TECHNICAL CONTACT PERSON \\
\hline PHONE NO. & \\
\hline EXT. \\
\hline MODEL NO. & SERIAL NO. \\
\hline P.O.NO. & SERIAL NO. \\
\hline
\end{tabular}

Accessories returned with unit
\(\square\) none
\(\square\) CABLE(S)
\(\square\) POWER CABLE \(\square\) ADAPTER(S) OTHER

\section*{vP}

\section*{(ip) \\ HEWLETT PACKARD}

Should one of your HP instruments need repair, the HP service organization is ready to serve you. However, you can help us serve you more effectively. When sending an instrument to HP for repair, please fill out this card and attach it to the product. Increased repair, efficiency and reduced turn-around time should result.

\section*{COMPANY}

\section*{ADDRESS}

TECHNICAL CONTACT PERSON
\begin{tabular}{ll}
\hline PHONE NO. EXT. \\
\hline MODEL NO. & SERIAL NO. \\
\hline MODEL NO. SERIAL NO. \\
\hline P.O. NO. \(\quad\) DATE \\
Accessories returned wIth unIt \\
\(\square\) NONE \\
\(\square\) PABLE(S) \\
OTHER CABLE \(\square\) ADAPTER(S) \\
\hline
\end{tabular}

Should one of your HP instruments need repair, the HP service organization is ready to serve you. However, you can help us serve you more effectively. When sending an Instrument to HP for repair, please fill out this card and attach it to the product. Increased repair efficiency and reduced turn-around time should result.

COMPANY

ADDRESS
TECHNICAL CONTACT PERSON
PHONE NO. EXT.
MODEL NO. SERIAL NO.

\section*{MODELNO. SERIALNO.}
P.O.NO.

DATE
Accessories returned with unit

\section*{\(\square\) NONE \\ \(\square \mathrm{CABLE}(\mathrm{S})\)}
\(\square\) POWER CABLE \(\square\) ADAPTER(S)
OTHER
over

\section*{(hp HEWLETT PACKARD}

Should one of your HP instruments need repair, the HP service organization is ready to serve you. However, you can help us serve you more effectively. When sending an instrument to HP for repair, please fill out this card and attach it to the product. Increased repair efficiency and reduced turn-around time should result.

\section*{COMPANY}

\section*{ADDRESS}

TECHNICAL CONTACT PERSON
\begin{tabular}{ll}
\hline PHONE NO. & EXT. \\
\hline MODEL NO. & SERIALNO. \\
\hline MODEL NO. & SERIALNO. \\
\hline P.O. NO. & DATE
\end{tabular}

Accessories returned with unit

\author{
\(\square \mathrm{none}\) \\ \(\square\) CABLE(S) \\ \(\square\) POWER CABLE \(\square\) ADAPTER(S) \\ OTHER
}

Should one of your HP instruments need repair, the HP service organization is ready to serve you. However, you can help us serve you more effectively. When sending an instrument to HP for repair, please fill out this card and attach it to the product. Increased repair efficiency and reduced turn-around time should result.

COMPANY
ADDRESS
TECHNICAL CONTACT PERSON
\begin{tabular}{ll}
\hline PHONE NO. & EXT. \\
\hline MODEL NO. & SERIAL NO. \\
\hline MODEL NO. & SERIAL NO. \\
\hline P.O. NO. DATE \\
Accessories returned with unit
\end{tabular}

\footnotetext{
口none
\(\square\) CABLE(S)
\(\square\) POWER CABLE \(\square\) ADAPTER(S)
OTHER
}

\section*{HEWLETT \\ PACKARD \\ (hp}

Should one of your HP instruments need repair, the HP service organization is ready to serve you. However, you can help us serve you more effectively. When sending an instrument to HP for repair, please fill out this card and attach it to the product. Increased repair efficiency and reduced turn-around time should result.

COMPANY

\section*{ADDRESS}

TECHNICAL CONTACT PERSON
\begin{tabular}{|c|}
\hline COMPANY \\
\hline ADDRESS \\
\hline TECHNICAL CONTACT PERSON \\
\hline PHONE NO. EXT. \\
\hline MODEL NO. SERIAL NO. \\
\hline MODEL NO. SERIALNO. \\
\hline P.O. NO. DATE \\
\hline Accessories returned with unit \\
\hline \(\square\) NONE \(\square\) CABLE(S) \\
\hline \(\square\) POWER CABLE \(\square\) ADAPTER(S) \\
\hline OTHER \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline COMPANY \\
\hline ADDRESS \\
\hline TECHNICAL CONTACT PERSON \\
\hline PHONE NO. EXT. \\
\hline MODEL NO. SERIAL NO. \\
\hline MODEL NO. SERIALNO. \\
\hline P.O. NO. DATE \\
\hline Accessories returned with unit \\
\hline \(\square\) NONE \(\square\) CABLE(S) \\
\hline \(\square\) POWER CABLE \(\square\) ADAPTER(S) \\
\hline OTHER \\
\hline
\end{tabular}

MODELNO. SERIALNO.
\begin{tabular}{|c|}
\hline COMPANY \\
\hline ADDRESS \\
\hline TECHNICAL CONTACT PERSON \\
\hline PHONE NO. EXT. \\
\hline MODEL NO. SERIAL NO. \\
\hline MODEL NO. SERIALNO. \\
\hline P.O. NO. DATE \\
\hline Accessories returned with unit \\
\hline \(\square\) NONE \(\square\) CABLE(S) \\
\hline \(\square\) POWER CABLE \(\square\) ADAPTER(S) \\
\hline OTHER \\
\hline
\end{tabular}

Accessories returned with unit
\(\square\) NONE
\(\square\) CABLE(S)

POWER CABLE \(\square\) ADAPTER(S)
OTHER
over

HEWLETT
PACKARD

\section*{Service needed}

\section*{\(\square\) CALIBRATION ONLY}
\(\square\) REPAIR \(\square\) REPAIR \& CAL
OTHER

Observed symtoms/problems
FAILURE MODE IS:
\(\square\) CONSTANT \(\square\) INTERMITTENT
SENSITIVE TO:
\(\square\) COLD \(\square\) HEAT \(\square\) VIBRATION FAILURE SYMPTOMS/SPECIAL CONTROL SETTINGS
\(\qquad\)

If unit is part of system list model number(s) of other interconnected instruments.

9320-3896
Printed in U.S.A.

Service needed
\(\square\) CALIBRATION ONLY
Drepair
\(\square\) REPAIR \& CAL

OTHER \(\qquad\)

Observed symtoms/problems FAILURE MODE IS:

\section*{\(\square\) CONSTANT \(\square\) INTERMITTENT} SENSITIVE TO:
\(\square\) COLD \(\square\) HEAT \(\square\) VIBRATION
FAILURE SYMPTOMS/SPECIAL CONTROL SETTINGS \(\qquad\)
\(\qquad\)

If unit is part of system list model number(s) of other interconnected instruments.

\section*{Service needed}

\section*{\(\square\) calibration only}
\(\square\) REPAIR \(\square\) REPAIR \& CAL

OTHER \(\qquad\)

Observed symtoms/problems
FAILURE MODE IS:
\(\square\) CONSTANT \(\square\) INTERMITTENT SENSITIVE TO:
\(\square\) COLD
\(\square\) HEAT
\(\square\) VIBRATION

FAILURE SYMPTOMS/SPECIAL
CONTROL SETTINGS
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

If unit is part of system list model number(s) of other interconnected instruments.

9320-3896
Printed in U.S.A.

Service needed
-CALIBRATION ONLY
\(\square\) REPAIR
\(\square\) REPAIR \& CAL

OTHER \(\qquad\)

Observed symtoms/problems
FAILURE MODE IS:
\(\square\) CONSTANT \(\square\) INTERMITTENT SENSITIVE TO:
\(\square\) COLD \(\square\) HEAT \(\square\) VIBRATION
FAILURE SYMPTOMS/SPECIAL CONTROL SETTINGS \(\qquad\)

\section*{\(\square\) CALIBRATION ONLY \\ \(\square\) REPAIR \(\square\) REPAIR \& CAL} OTHER \(\qquad\)

Observed symtoms/problems
FAILURE MODE IS:
\(\square\) CONSTANT \(\square\) INTERMITTENT SENSITIVE TO:
\(\square\) COLD \(\square\) HEAT \(\square\) VIBRATION FAILURE SYMPTOMS/SPECIAL CONTROL SETTINGS
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

If unit is part of system list model number(s) of other interconnected instruments. \(\qquad\)

9320-3896
Painted in U.S.A.

\section*{Service needed}
\(\square\) CALIBRATION ONLY
DREPAIR
\(\square\) REPAIR \& CAL

OTHER \(\qquad\)

\section*{Observed symtoms/problems}

FAILURE MODE IS:
\(\square\) constant ■intermittent
SENSITIVE TO:
\(\square\) CoLo \(\square\) heat VIbration
FAILURE SYMPTOMS/SPECIAL CONTROL SETTINGS
\(\qquad\)

If unit is part of system list model number(s) of other interconnected inIf unit is part of system list model
number(s) of other interconnected in-

\section*{REGIONAL SALES AND SERVICE OFFICES}

\section*{NORTH/CENTRAL AFRICA}

Hewlett-Packard S.A.
7, Rue du Bois-du-Lan
CH-1217 MEYRIN 2, Switzerland
Tel: (022) 831212
Telex: 27835 hpse
Cable: HEWPACKSA Geneve

\section*{ASIA}

Hewlett-Packard Asia Ltd. 6th Floor, Sun Hung Kai Centre 30 Harbour Rd.
G.P.O. Box 795

HONG KONG
Tel: 5-832 3211
After Jan. 1, 1984
47th Floor, China Resources Bldg. 26 Harbour Rd., Wanchai
HONG KONG
Telex: 66678 HEWPA HX
Cable: HEWPACK HONG KONG

\section*{CANADA}

Hewlett-Packard (Canada) Ltd.
6877 Goreway Drive
MISSISSAUGA, Ontario L4V 1M8
Tel: (416) 678-9430
Telex: 610-492-4246

\section*{MEDITERRANEAN AND MIDDLE EAST}

Hewlett-Packard S.A.
Mediterranean and Middle East
Operations
Atrina Centre
32 Kifissias Ave.
Paradissos-Amarousion, ATHENS
Greece
Tel: 6828811
Telex: 21-6588 HPAT GR
Cable: HEWPACKSA Athens

\section*{EASTERN EUROPE}

Hewlett-Packard Ges.m.b.h.
Lieblgasse 1
P.O. Box 72

A-1222 VIENNA, Austria
Tel: (222) 2365110
Telex: 134425 HEPA A

\section*{NORTHERN EUROPE}

Hewlett-Packard S.A.
Uilenstede 475
P.O. Box 999

NL-1180 AZ AMSTELVEEN
The Netherlands
Tel: 20437771

\section*{SOUTH EAST EUROPE}

Hewlett-Packard S.A.
7, Rue du Bois-du-Lan
CH-1217 MEYRIN 2, Switzerland
Tel: (022) 831212
Telex: 27835 hpse
Cable HEWPACKSA Geneve

\section*{OTHER EUROPE}

Hewlett-Packard S.A.
P.O. Box

150, Rte du Nant-D'Avril
CH-1217 MEYRIN 2, Switzerland
Tel: (022) 838111
Telex: 22486 hpsa
Cable: HEWPACKSA Geneve

\section*{EASTERN USA}

Hewlett-Packard Co.
4 Choke Cherry Road
ROCKVILLE, MD 20850
Tel: (301) 258-2000

\section*{MIDWESTERN USA}

Hewlett-Packard Co.
5201 Tollview Drive
ROLLING MEADOWS, IL 60008
Tel: (312) 255-9800

\section*{SOUTHERN USA}

Hewlett-Packard Co.
2000 South Park Place
P.O. Box 105005

ATLANTA, GA 30348
Tel: (404) 955-1500

\section*{WESTERN USA}

Hewlett-Packard Co. 3939 Lankershim Blvd. P.O. Box 3919

LOS ANGELES, CA 91604
Tel: (213) 506-3700

OTHER INTERNATIONAL AREAS
Hewlett-Packard Co. Intercontinental Headquarters
3495 Deer Creek Road
PALO ALTO, CA 94304
Tel: (415) 857-1501
Telex: 034-8300
Cable: HEWPACK```

[^0]: *When using $86603 \wedge$ RF section above 1300 MHz least significant digit becomes either 2 Hz (standard) or 200 Hz (Option 004).

